
 © 2016, IJCSE All Rights Reserved 20

 International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Review Paper Volume-4, Special Issue-7, Dec 2016 ISSN: 2347-2693

Secure Data Sharing in Cloud Storage Using Key Aggregation

Cryptography

(Secure Cloud Storage using Java Keystore)

Tulip Dutta*

Girijananda Chowdhury Institute of Management and

Technology, Guwahati

Email: princetulip8@gmail.com

Amarjyoti Pathak

Girijananda Chowdhury Institute of Management and

Technology, Guwahati

Email: amar_cse@gimt-guwahati.ac.in

Available online at: www.ijcseonline.org

Abstract— Secure Cloud Storage is an online platform for storing user data with sharing facilities among other

users. The data is optionally encrypted before storing and decrypted on download by the system and the process is

transparent to the end user. The platform also provides marking data private or public such that all public data are

visible to end user and can perform search or download request to the owner. The data owner or user can audit all

such request and grant download access to individual or multiple files accordingly. Each file on our system is

encrypted using different AES key and the real challenge come when multiple file needs to be shared between users.

This constraint is addressed by applying a concept known as Key Aggregation which states the generation of

constant size key for a single or multiple files and thereby end user can easily decrypt the shared files.

Keywords- Data Sharing, Key Aggregation, Java Keystore, Private Key Cryptography, Encryption, Decryption.

I. INTRODUCTION

Data Sharing is an important functionality of a cloud
storage. In our cloud storage, we are optionally giving
features to end user to encrypt their data on uploading. It is
also important to share these encrypted data securely
among the users that are registered in our cloud storage. we
are going to focus how we can make private key
cryptography secure to share encrypted data among users.
It is very important not to share a users’ private key to
other users. So we have to share the encrypted data to users
without sending the private key of the data owner user.

II. COMPARATIVE ANALYSIS

A. Case 1

We can share encrypted data in cloud storage by
generating a single secret key for all the data. Following
example will visualise it perfectly.

Let us consider, Alice encrypts her data 1,2,3,4 and
uploads in the cloud storage as in figure 1.

Now, Alice wants to share the data 1 and 2 with her friend
Bob. Alice sends the single secret key to Bob to decrypt
the data as in figure 2.

Fig 1.1: Cloud Storage having encrypted data 1,2,3,4.

Fig 1.2: Data sharing Between Alice and Bob.

But using this single secret key, Bob can decrypt all the
data that have uploaded by Alice i.e. Bob can decrypt the
data 3 and 4 which are not yet shared by Alice.

B. Case 2

We can share the encrypted data in cloud storage by
generating different keys for different data as shown in the
figure 2.1.

Fig 2.1: Cloud storage having Encrypted data 1,2,3,4 with
different keys K1, K2, K3, K4.

Let us consider, Alice wants to share the encrypted data
1,2,3 with Bob. To decrypt the data, Alice has to send the
keys K1, K2, K3 as shown in figure 2.2.

 International Journal of Computer Sciences and Engineering Vol.-4(7), Dec 2016, ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 21

Fig 2.2: Data sharing Between Alice and Bob by sending
different secret keys.

In this scenario, Alice has to send different secret keys
repeatedly for different data that to be shared by Alice.
This leads to wastage of memory and resources.

C. Case 3

We can therefore have the solution that is to encrypt the

different data with different keys but decrypt data with a

single secret key. Following example will illustrate the

mechanism.

We encrypt the data 1,2,3,4,5,6 with different keys K1, K2,

K3, K4, K5, K6 as shown in the figure 3.1.

Fig 3.1: Encrypted data 1,2,3,4,5,6 with different keys K1,

K2, K3, K4, K5, K6.

 Suppose Alice want to share the encrypted data 1,2,3 with

Bob. She will send Bob a single secret key, K123 which

can decrypt the data 1,2,3 as shown in figure 3.2.

Fig 3.2: Data sharing Between Alice and Bob by sending

single secret key, K123.

Again let us consider Alice want to share the encrypted

data 1,2,3,4,5 with Denial. She will send Denial a single

secret key, K12345 which can decrypt the data 1,2,3,4,5.

Fig 3.3: Data sharing Between Alice and Bob by sending

single secret key, K12345.

In this scenario, as the number of data to be shared is

increased, the size of the secret key is also increased. It

causes more resource allocation in the cloud storage.

So we have to obtain a secret key that will be of constant

size and able to decrypt the shared encrypted data.

III. PROPOSED SYSTEM

In propose system, we are going to focus how we can make
private key cryptography secure to share encrypted data
among users. It is very important not to share a users’
private key to other users. So we have to share the
encrypted data to users without sending the private key of
the data owner (user).

In our project, we generate different private keys for
different encrypted data using AES-128 algorithm. The
major advantage of AES is that it handles encryption of
large data efficiently and the performance is much higher
than compare to other encryption algorithms.

We have to generate an aggregate key which will be the
secret decryption key in the sense that is allowed to decrypt
multiple encrypted data without increasing its size. We
introduce a new private key cryptography algorithm where
the size of the secret key remains constant. The new
private key cryptography algorithm is called as Key
Aggregation cryptography. It provides us efficiently and
securely data sharing mechanism in our cloud storage. This
algorithm helps us to generate a constant aggregate key. By
sending this aggregate key to users, the recipients can
easily decrypt the data that are shared by the data owner.
The aggregate key will be generated for only the shared
data and other encrypted data except these shared data will
not be able to decrypt by the users.

We are going to implement this scenario by using Java
Keystore. Keystore is a specialized data structure for
managing cryptographic keys. The Keystore is consists of
a key entry contains the private key and also every entry
has a unique alias name. However Key entries are
protected by separate passwords.

Fig 4.1: Architecture of a Keystore.

In our algorithm, the Keystore works as a locker box and
each encrypted file is stored inside it as shown in figure
4.1.

When a user signs up on our system, an empty Keystore is
generated for managing his/her encrypted keys and locked
by the account’s holder password. Once the Keystore is
locked, it is encrypted by the password and we store the

 International Journal of Computer Sciences and Engineering Vol.-4(7), Dec 2016, ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 22

corresponding binary format data in database. The binary
format is called as Binary Large Object (BLOB). A BLOB
is a collection of binary data stored as a single entity in a
database management system. Blobs are typically images,
audio or other multimedia objects. The end users will not
be able to access this binary data as it contains the binary
data format of the encrypted data.

The primary Key Aggregation Algorithm is listed
below:

Step 1: Generate AES Secret Key

Ki GenerateKey()

Step 2: Encrypt Data

Cipheri Encrypt(Datai, Ki)

Step 3: Load User KeyStore

KeyStore loadKeyStore(Kpin)

Step 4: Save key

 SaveKey(indexi, Ki, Passi, KeyStore)

Step 5: Load Key

Ki GetKey(indexi, Passi,
KeyStore)

Step 6: Decrypt data

 Datai Decrypt(Cipheri , Ki)

Step 7: KeyStore extraction

 KeyStoren Extract(KeyStore,
indexn)

Step 8: Generating a unique reference key

 Kref
 getUniqueKey()

Step 9: Key aggregation generating constant size
key

 Kag generateAggregateKey(userId,
Kref)

Step 10: Lock the extracted KeyStore with the
aggregate key

 Lock(KeyStoren, Kag)

There will be two types of key aggregation scenario we are
going to implement using our primary algorithm.

A. On requesting files and approving the request by the

owner

1) User 1 Request for file 1, file 2

2) Owner Approve for file 1, file 2

3) Proceed to Step 7

4) Proceed to Step 8 and generate the aggregate key.

First, we generate a reference key by using hash of random

number, unique id and timestamp on which the owner

approves the request.

5) Proceed to Step 9 and generate the aggregate key by

using constant size key generator consisting the hash of

user email and the reference key.

6) Request approval completed.

7) User 1 will initiate download file 1

8) System check for file 1 is encrypted or not

9) System ask for Aggregate Key

10) User 1 submit the Aggregate Key

11) System check Aggregate Key

requested file 1 for user 1

12) On Matched, Get Index for file 1

13) Proceed to Step 5 by using the Index

14) Proceed to Step 6 and download the decrypted file

1.

B. On sending files to an another user of the system

1. Owner Select & Send two files- File 1, File 2

2. Proceed to Step 7

3. Proceed to Step 8 and generate the aggregate key. First,
we generate a reference key by using hash of random
number, unique id and timestamp on which the owner
sends file 1 and file 2.

4. Proceed to Step 9 and we generate the aggregate key by
using hash of recipient’s email to which the owner sends
the file 1 and file 2 and the reference key.

5. Recipient will initiate download file 1

6. System check if file 1 is encrypted or not

7. System ask for Aggregate Key

8. Recipient submit the Aggregate Key

9. System check Aggregate Key requested file 1 for
Recipient

10. On Matched, Get Index for file 1

11. Proceed to Step 5 by using the Index

12. Proceed to Step 6 and download the decrypted file
1.

In case A, we are using hash of timestamp and user
email for Aggregate key generation because there will be a
situation for the owner after receiving two different request
from a same user. Suppose the owner approves the both
requests at the same time. In this situation if we don’t use
the hash of timestamp, although we use random number
generator and a unique key generator then there may be
generation of same aggregation keys for these two
requests. In our system, we generate distinct and constant
size aggregate keys. For each and every request that an
owner receives, there will be a distinct and constant size
aggregate key.

Similarly, in case B, we are using the hash of the email of
the recipient and timestamp. If the owner sends some files
to different users at the same time, then there will be

 International Journal of Computer Sciences and Engineering Vol.-4(7), Dec 2016, ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 23

different hash for different users. Our system doesn’t allow
to create two or more account by using same email. So the
aggregate keys for different users are different.

TABLE I. Comparative analysis of previous papers

Paper

Description

1. Key-Aggregate crypto

system for Scalable

Data Sharing in Cloud

Storage

A public key cryptographic

algorithm is proposed in this

paper.

2. A review on key

aggregate crypto

system for scalable data

sharing in cloud storage

Public key cryptography is

introduced.

3. Storing Shared Data on

the Cloud via Security

Mediator

Encrypted data are shared by

using a security mediator.

4. Improving Privacy and

Security in Multi-

Authority Attribute-

Based Encryption

A key-policy based on some

attributes such as the country the

user lives or the kind of data the

user wants to share.

IV.Conclusion

In this paper, we addressed an important issue of secure
data sharing on un trusted storage using private key
cryptography. We investigated the challenges pertained to
this problem and proposed data security in cloud storage
using key aggregate cryptography.

In this project, proposed system is found to be very
efficient for sharing the data on cloud storage. we are able
to avoid and provide more security by using key aggregate
algorithm with the help of Keystore and without sharing
the private keys.

In future, we are expecting the implementation of file
rating system that any user can rate a file on the cloud
storage. We also try to work in implementing a chatting
system that owner and users can interact more fluently.

References

[1]. Cheng-Kang Chu, Sherman S.M. Chow, Wen-Guey,

Tzeng, Jianying Zhou and Robert H. Deng, "Key-
Aggregate Cryptosystem for Scalable Data Sharing in
Cloud Storage” IEEE Transactions On Parallel and
Distributed System, Vol 25, No. 2 February 2014.

[2]. Mewada, Shivlal, Arti Sharivastava, Pradeep Sharma,
S. S. Gautam, and N. Purohit. "Performance Analysis
of Encryption Algorithm in Cloud Computing.",
International Journal of Computer Sciences and
Engineering Vol.-3(2), PP(83-89) Feb 2015,

[3]. Ramakrishna Jadhav1, Snehal Nargundi,"A Review
On Key-Aggregate Cryptosystem For Scalable Data
Sharing In Cloud Storage", IJRET: International
Journal of Research in Engineering and Technology,
Volume: 03 Issue: 11 | Nov-2014.

[4]. Shivlal Mewada, Sharma Pradeep, Gautam S.S.,
“Exploration of Efficient Symmetric Algorithms”,
2016 3rd International Conference on Computing for

Sustainable Global Development (INDIACom)”,
pp(663 – 666), March, 2016,

[5]. Wang, S. S. M. Chow, M. Li, and H. Li, “Storing
Shared Data on the Cloud via Security Mediator,” in
International Conferenceon Distributed Computing
Systems - ICDCS 2013. IEEE, 2013.

[6]. M.Chase and S. S. M. Chow, “Improving Privacy
and Security in Multi-Authority Attribute-Based
Encryption,” in ACM Conferenceon Computer and
communications security Pp 121-130.

[7]. Anjali Nigam, Vineet Singh, "Securing Data
Transmission in Cloud using Encryption
Algorithms", International Journal of Computer
Sciences and Engineering, Volume-04, Issue-06,
Page No (21-25), Jun -2016, E-ISSN: 2347-2693

[8]. Shivlal Mewada, Sharma Pradeep, Gautam S.S.,
“Classification of Efficient Symmetric Key
Cryptography Algorithms”, International Journal of
Computer Science and Information Security (IJCSIS)
USA, Vol. 14, No. 2, pp (105-110), Feb 2016

[9]. Sadiya Shakil and Vineet Singh, "Security of
Personal Data on Internet of Things Using AES",
International Journal of Computer Sciences and
Engineering, Volume-04, Issue-06, Page No (35-39),
Jun -2016, E-ISSN: 2347-2693

[10]. R. Durga Prasad, R.N.D.S.S Kiran, Andey Krishnaji,
"Advanced Data Encryption/Decryption using Multi
Codes for One Character", International Journal of
Computer Sciences and Engineering, Volume-03,
Issue-09, Page No (34-38), Sep -2015, E-ISSN:
2347-2693

[11]. Shivlal, P Sharma, S.S Gautam, “Exploration of
Efficient Symmetric AES Algorithm”, 2016
Symposium on Colossal Data Analysis and
Networking (CDAN), pp(1-5), Mar, 2016. Doi:
10.1109/CDAN.2016.7570921

Author Profile

Mr. Tulip Dutta has done his BE in
Computer Science & Engineering from
NITS MIRZA under Gauhati University
and completed M.Tech from GIMT
Guwahati under ASTU. His research
interest is on Cloud Computing and
Cryptography.

Mr. Amarjyoti Pathak has completed
his B.E. from VTU, Karnataka and
M.Tech in Information Technology from
Tezpur central University, Napaam. He is
currently working as an Assistant
Professor in the department of Computer
Science & Engineering, GIMT Guwahati.
He has more than 6 years of experience in
academic as well as in research. His research interest is on
system and network security.

