

 © 2018, IJCSE All Rights Reserved 43

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol-6, Special Issue-5, Jun 2018 E-ISSN: 2347-2693

Pragmatic Aspects of Token-based Technique in Detecting Source Code

Duplicates

S. Bharti

1*
, H. Singh

2

1, 2, *

Department of Computer Science, Guru Nanak Dev University, Amritsar, India

*Corresponding Author: sarveshwar.dcsrsh@gndu.ac.in, Tel.: +91-9906129214

Available online at: www.ijcseonline.org

Abstract— Clone research community has described several techniques to detect code duplicates present in the code base,

mainly categorized into four classes viz. textual or text-based techniques, lexical or token-based techniques, syntactic

techniques (including tree-based and metrics-based approaches) and semantic techniques. Literature lists various clone detector

tools based on each category capable of detecting clones in batch mode as well as in real-time development environment. But,

most of the tools use tokens as their intermediate representation of the source code upon which clone detection algorithms are

applied. Thus, this paper will focus on this token-based intermediate representation and its pragmatic aspects towards code

duplication detection. By discussing the practical process of converting source code into tokens as an intermediate code

representation and how code duplicates are detected, authors will put light on the obscured pros and cons of this token-based

approach that will help researchers to select as well as implement, or reject this approach as an intermediate representation for

their duplication detection algorithms.

Keywords— Code Clone Detection, Clone Detection Techniques, Token-based Clone Detection Technique

I. Introduction

John Burdon Sanderson Haldane, a scientist with

contribution to the fields of Biology and Biostatistics, was

the first who invented the term clone, derived from the

Ancient Greek word ‘klon’ (i.e. “twig”-meaning a small thin

branch of a tree) and the process of creation of new plants

from a twig is referred as a klon. Over the decades of

research on software clones, several prominent authors

presented their understanding of the term clone, but the

widely utilized definition was given by Baxter et al. [1]

stating “a clone is a code fragment that [is] identical to

another fragment”. The source code fragments can be

identical based on syntactic or semantic similarity.

Semantically similar code fragments are referred to as type 4

clones whereas syntactic clones are further classified into

three types viz. type 1, type 2 and type 3 [2]. Clones are not

inducted into the software system by its own, it is the

software developer who is responsible for it. There might be

various intentional or unintentional reasons behind the

induction of clones [3]. Copy and paste activity [4]

committed by the developer so as not to ‘re-invent the wheel’

is the most eminent reason for the presence of clones in the

software system. Thus, clones are sneaked in the software as

a typical reuse approach. As per the empirical evaluation [5],

it has been established that a particular software system may

contain 9% to 17% of the cloned code. While offering few

benefits in some cases, code clones are mostly detrimental.

Thus, these duplicated code fragments should be removed

from the software system and if possible reverted to be

inducted into the software system.

Code clones can be detected by directly comparing source

code as done in textual approaches, or may require source

code to be converted into an intermediate representation to

ameliorate the efficiency of the detection algorithms.

Accordingly, researchers of the clone research community

have devised various techniques [6] to identify the duplication

in the source code viz. tracking clipboard operations, textual

comparison, metrics comparison, token-based comparison,

syntax comparison, PDG-based comparison, hash-based

comparison etc. The token-based technique, a mostly used

technique is the main concern of this paper.

The main motivation of this paper is that most of the real-

world and efficient tools for detection of code clones are

based on token-based approach, and, as the research papers

mostly focus on their proposed approach and little

information is discussed about the practical implementation of

this token-based approach, thus this paper will present the

detailed pragmatic aspect of the token-based approach and

how this technique is used for detecting code duplicates in

source code.

 International Journal of Computer Sciences and Engineering Vol.6(5), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 44

Section II will discuss few tools that are based on token-based

clone detection and section III will discuss this token based

clone detection approach in detail. Section IV will discuss

how tokens are specified during lexical analysis and section V

presents the procedure for recognition of token patterns. Then

section VI will discuss how indexing data structures are used

over token representation to identify clones. After it,

attributes (section VII), efficiency (section VIII), key

advantages (section IX) and limitations (section X) are

discussed. Finally, this paper is concluded along with

acknowledgments and references in support of this paper.

II. Related Literature

Over the decades of research on code clones, a number of

different tools and techniques were proposed. Table 1 lists

few tools from literature as an example of token-based

techniques for clone detection.

Table 1. Token-based Clone Detection Tools

Author Tool
Comparison

Technique

Referen

ce

Kamiya et

al.

CCFind

er

Suffix tree based

token matching

[7]

B. Baker Dup
Suffix tree based

token matching

[8]

Li et al.
CP-

Miner

Frequent

subsequence mining

technique

[9]

Kamiya et al. [7] came up with a tool CCFinder based on

token-based technique. The lexer is used to divide each line of

the source file under consideration into tokens, and then the

concatenation of the tokens from all the source files is done to

form a single sequence of tokens. Transformation is then done

over token sequence and identifiers are replaced by special

tokens. Finally, a sub-string matching algorithm based on

suffix tree is applied to identify similar sub-sequences from

the transformed sequence of tokens and then mapping back to

the original source code is done.

Dup [8] is another token-based tool, utilizing the functionality

of the lexer for tokenizing the source code and then

comparing the suffix-tree created for each line without

applying transformation as of CCFinder.

CP-Miner [9] is another clone detection tool based on token-

based approach. It used frequent subsequence mining

technique to identify tokenized statement sequence.

III. Token-Based Clone Detection Techniques

Area of research on software clones emerged out during early

1990’s and over the decades of research with significant

contributions from the researchers, this field of study on

software clones has become a substantive contributor towards

software quality improvement and reduced maintenance

effort. Clone research community has invented number of

different techniques and implemented them as tools to detect

and manage clones. These clone detection techniques or more

specifically these clone detection algorithms basically rely on

intermediate code representations, which give rise to different

types of clone detection techniques viz. tree-based, token-

based, text-based, graph-based, metrics comparison or even

hybrid techniques. Out of these techniques, the token-based

technique is most widely used and is discussed in detail in this

section.

The token-based approach was introduced in clone detection

to improve the efficiency of the clone detection algorithms.

This technique uses an intermediate code representation

which is in the form of a stream of tokens. Tokens are

basically an undividable sequence of characters of the

programming language. Token-based clone detection tools

identify clones by comparing these tokens rather than

comparing text or other intermediate representations. Token-

based comparison comprises of transforming the source code

into the stream of tokens through lexical analysis and then

scanning this stream of tokens for any similar subsequence of

tokens. The similar token subsequences are mapped to the

corresponding source code and reported as clones. A stream

of tokens may be used in two ways to estimate duplication,

first is to model this stream as a ‘bag of words’ for source

code and second involves structure-aware clone detection.

The process of conversion of source code (i.e. a sequence of

characters) into the stream (or sequence) of tokens is referred

to as tokenization, lexing, lexical analysis, or simply

scanning, which is performed by a program called as scanner,

lexer, or tokenizer.

Lexing basically involves two stages [10]:

 Scanning

 Evaluating

Scanning: It is the process of segmenting the input source

code (i.e. input string) into the syntactical units termed as

lexemes, and then categorizing them into token classes.

Evaluating: It refers to the conversion of lexemes into the

processed values.

Literature also mentioned that lexical analyzers may also be

specified as containing two processes [11]:

 Scanning

 Lexical analysis

Scanning: It performs densification of successive whitespaces

into one and removes comments, so it does not require

tokenization.

Lexical Analysis: It is a complex process of producing tokens

from the output of the scanner.

 International Journal of Computer Sciences and Engineering Vol.6(5), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 45

Aho et al. [11] defined lexeme as “a sequence of characters

in the source program that matches the pattern for a token

and is identified by the lexical analyzer as an instance of that

token”. They defined token as “a pair consisting of a token

name and an optional attribute value” and a pattern as “a

description of the form that the lexemes of the token may

take”.

Table 2 lists informal description and some sample lexemes

for some typical tokens

Table 2. Example of Some Typical Tokens. [11]

Token Informal Description
Sample

Lexeme

if Characters I, f if

else Characters e, l, s, e else

comparison
< or > or <= or >= or == or

!=

<=, !=

id
Letter followed by letters

and digits

Pi, score, D2

number Any numeric constant
3.14159, 0,

6002e23

literal
Anything but “, surrounded

by “’s

“core dumped”

For a better understanding of token being pair of token name

and token value, table 3 presents some common token names

and example token values.

Table 3. Some Common Tokens and Example Token Value.

[10]

Token name Example of token values

identifier x, color, UP

keyword if, while, return

separator },), ;

operator +, <, =

literal true, 6.02e23, “music”

comment
//must be negative, /*Retrieves

user data*/

Out of the total token names listed in table 3, we can say that

tokens are mainly of three types, viz. identifiers i.e. variables,

operators, and literals i.e. constants.

Consider the following c expression:

 z = x + y * 2

Yielding the lexemes: { z, =, x, +, y, *, 2}

And, corresponding tokens are:

{<id, 0>,<=>, <id, 1>, <+>, <id, 2>, <*>, <id, 3>}

Let us take another statement (Fortran statement [11]) as

example to describe the concept of token names and

associated values as:

E = M * C ** 2

The sequence of pairs of the above statement can be written

as [11]:

<id, pointer to symbol table entry for E>

<assign_op>

<id, pointer to symbol table entry for M>

<mult_op>

<id, pointer to symbol table entry for C>

<exp_op>

<number, integer value 2>

In other terms, let us take an example program fragment [12]:

x = a

break

x = x

y = a

The token table for this code fragment would be (as shown in

table 4):

Table 4. Token Table. [12]

Toke

n
id =

i

d

brea

k
id = id id = id _

Inde

x
1 2 3 4 5 6 7 8 9

1

0

1

1

IV. Specification of tokens

Lexeme patterns are specified by an important notation

referred to as regular expressions. To specify patterns that we

actually need for tokens, regular expressions are very

effective despite not expressing all the possible patterns.

Context-free grammars are more powerful than regular

expressions but context-free grammars cannot express every

construct expressed by regular expressions and vice-versa. In

the specification of tokens, the frequently used terms are

defined as:

Symbol: It is the basic building block and can be a letter, digit

etc.

Alphabet: Any finite set of symbols is referred to as alphabet

e.g. letters, digits and punctuation.

String: Aho et al. [11] defines string over an alphabet as “a

finite sequence of symbols drawn from that alphabet”

Language: A language is “any countable set of strings over

some fixed alphabet” [11].

Operation on Languages: Concatenation, union, and closure

are the most significant operations on languages during

lexical analysis.

 International Journal of Computer Sciences and Engineering Vol.6(5), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 46

Regular expressions are usually used to describe all the

languages that can be built up from operators employed to the

symbols of some alphabet. The language is called regular set

if it can be defined by a regular expression. For example, to

specify (i.e. to describe) the set of valid identifiers (i.e. a

string of digits, letters, and underscore) for C language via

representing letter_ for letter or underscore and digit for digit,

the language would be [11]:

letter_ (letter_ | digit)*

And, the regular definition would be:

letter_ → A | B | … | Z | a | b | … | z | _

digit → 0 | 1 | … | 9

id → letter_ (letter_ | digit)*

V. Recognition of tokens

The previous section described how to represent patterns by

using regular expressions. This section will discuss how input

string is examined to find the matching patterns. For

describing lexical analyzers or any pattern processing

software, the notation used is a regular expression, but to

implement it requires simulation of deterministic finite

automata (DFA), sometimes non-deterministic finite automata

(NFA). To construct lexical analyzers, an intermediate step is

a conversion of patterns (i.e. regular expression patterns) to

transition diagrams. Finite automata are the formalism for

transition and similar to transition diagrams that act as

recognizers for the input string. Nondeterministic finite

automata and deterministic finite automata are two flavors for

finite automata. The literature mentions algorithms for

simulating DFA and NFA for recognizing strings as presented

below:

Algorithm 1: Simulating a DFA [11]

Input: An input string x terminated by an end-of–character

eof, DFA D with start state s0, accepting states F, and

transaction function move

Output: “yes” if D accepts x, otherwise “no”

1. s = s0;

2. c = nextChar();

3. while (c != eof) {

4. s = move(s, c);

5. c = nextChar();

6. }

7. if (s is in F) return “yes”;

8. else return “no”;

Algorithm 2: Simulating a NFA [11]

Input: An input string x terminated by an end-of –character

eof, NFA N with start state s0, accepting states F, and

transaction function move

Output: “yes” if N accepts x, otherwise “no”

1. S = ϵ-closure(s0);

2. c = nextChar(); // returns next character of the input

string

3. while (c != eof) {

4. S = ϵ-closure(move(S, c));

5. c = nextChar();

6. }

7. If (S ∩ F != Ø) return “yes”;

8. else return “no”;

To recognize the collection of keywords or a single keyword,

there are Aho-Corasick algorithm and KMP algorithm

respectively. The KMP algorithm to test whether a single

keyword b1 b2 ……bn is contained in a string a1 a2 …..am as a

substring is presented below:

Algorithm 3: KMP algorithm for recognizing single

keyword in a string [11]

1. s = 0;

2. for (i = 1; i <= m; i++){

3. while (s > 0 && ai != bs + 1) s = f(s); // f(s) is a

failure function

4. if (ai == bs + 1) s = s + 1;

5. if (s == n) returns “yes”;

6. }return “no”

VI. Implementation of token-based clone Detection

Technique

Majority of the effective token-based code clone detection

techniques are fundamentally established on suffix trees that

were originally used for efficient string search. There are

other alternatives for suffix trees like suffix array, compressed

suffix trees etc. Brenda Baker extended this algorithm to

parameterized string for code clone detection. This approach

has an advantage over the original string search approach of

finding cloned token sequences containing renaming of

parameters.

Implementation of token-based clone detection involves

employment of suffix tree (or any other indexing technique

like compressed suffix trees, suffix array etc.) construction to

the tokens of the source code under consideration. Thus, this

technique involves the conversion of source code into the

intermediate representation of tokens, then on the tokens

derived from the program, the index construction algorithm is

applied and another representation is extracted. After the

construction of suffix trees or any other indexing data

structure, clones i.e. similar token sequences are identified.

For example, the suffix tree for the tokens of table 4 is

represented in figure 1 as:

 International Journal of Computer Sciences and Engineering Vol.6(5), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 47

Figure 1. Suffix Tree. [12]

To detect clones, another representation of suffix tree for

parameterized strings is as shown below in figure 2.

Figure 2. Suffix Tree for p-string. [12]

All the suffixes of a string are represented using suffix tree as

a trie. The suffix is represented in suffix tree through a root to

leaf path, where edges represent non-empty sub-strings and

paths with common prefixes share the tree edges. In suffix

trees, the clones are identified as an inner tree node of the trie

representation.

VII. Attributes of The Token-Based Clone Detection

Techniques

Roy and Cordy [3] presented 11 properties based upon which

various clone detection techniques can be efficiently

analyzed, viz. Source Transformation/Normalization, Source

Representation, Comparison, Granularity, Comparison

Algorithm, Computational Complexity, Clone Similarity,

Granularity, Language Independency, Output/Groups of

Clones, Clone Refactoring and Language Paradigm. Table 5

presents the description with reference to these dimensions

for the token-based approach.

Table 5. Properties of Token-based Clone Detection

Techniques

Dimension Token-Based Clone Detection Technique

Transformation

/Normalization

Source code is transformed into tokens

through lexical analysis omitting

whitespace & comments

Source

Representation

Intermediate representation of source code

is a sequence of tokens

Comparison

Granularity

Tokens are compared to identify the

similarity between code fragments

Computational

Complexity

Overall complexity of algorithm based on

tokens as intermediate representation is

mainly Linear

Comparison

Algorithm

Suffix Tree, Array, data mining, IR,

Sequence matching, etc.

Clone

Similarity
Exact Match, Renamed match, Near miss

Clone

Granularity
Granularity can be Free or Fixed

Language

Independency

Lexer for the language under consideration

is needed to convert the source code written

in any language to the stream of tokens

Output/Groups

of Clones

Output of the token-based clone detection

approach is Clone pair or Clone class

Clone

Refactoring

Post processing is needed involving

mapping of tokens back to source code to

refactor the code

Language

Paradigm

This approach can be applied to language

paradigms like Procedural, OOP

VIII. Efficiency of token-based techniques

To emulate the efficiency of token-based techniques, several

frequently used evaluation metrics are Precision, Recall, and

F-measure. Precision tells us about the relevant instances out

of all the retrieved clones whereas recall points to the relevant

instances detected by the algorithm out of all the clones

present in the code base. F-measure depicts the harmonic

mean of precision and recall. Table 6 presents precision and

recall calculated by researchers (few studies from literature)

for token-based approaches.

 Table 6. Efficiency of Token-based Techniques
Author Recall Precision Reference

Bellon et al. High Low [2]

Bailey and Burd High Low [13]

Baxter et al. Low High [1]

 International Journal of Computer Sciences and Engineering Vol.6(5), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 48

IX. Key Advantages of Token-based Approach over

other Approaches

Token-based approach for detecting code clones has various

advantages over other approaches, but few key advantages are

as:

 Token-based technique has linear complexity in both

time and space, thus can scale for large software

systems [12]

 Even syntactically incorrect and incomplete code

can be converted into stream of tokens as parsing is

not necessary [12]

 Compared to other approaches, this approach can be

easily adjustable to any new language [14]

 This approach is independent of the layout [12]

 Token-based (lexical) approaches are more robust

than text-based approaches over minor changes in

code such as renaming, spacing, and formatting [15]

 Writing lexical analyzer require less effort as

compared to the developing syntactic analyzer [12]

X. Limitations of Token-based Approach

In spite of having dominant advantages over other techniques,

it also has some limitations as listed below:

 Token-based code clone detection approach may

detect clones as per lexical view but may not be

clones from developer point of view

 To detect syntactic clones, token-based approach

requires post-processing of sequence identified

 Separation of non-parameter and parameter tokens is

another limitation of token-based techniques that

cause false negatives to be identified during code

clone detection

The limitations of token-based approaches are not permanent,

but require extra effort to resolve, thus can still act as a better

technique for detection clones with better precision and recall

than other approaches.

XI. Conclusion

This paper discussed token-based intermediate representation

as code representation and its pragmatic aspects towards code

clone detection. The detailed discussion is presented on how

tokens are produced, how tokens are specified, how token

recognition is done and how clone detection is performed

using token-based techniques. Then attributes, efficiency, key

advantages, and limitations are discussed. This paper

specified how indexing data structures are used in clone

matching based on token-based code representation. Talking

about the process of tokenization i.e. practical procedure of

converting source code into tokens as an intermediate code

representation and how code duplicates are discovered by

utilizing various indexing data structures applied over token

representation will help researchers in selecting,

implementing or rejecting this technique as an intermediate

representation for their duplication detection algorithms.

XII. Acknowledgment

Authors would like to acknowledge the financial, scholastic

and infrastructural support from UGC and Department of

Computer Science, Guru Nanak Dev University, Amritsar.

References

[1] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant'

Anna, and Lorraine Bier, "Clone Detection Using Abstract Syntax

Tree," in Proceedings of 14th International Conference on

Software Maintenance(ICSM'98), Bethesda, Mayland, 1998, pp.

368 - 377.

[2] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke,

and Ettore Merlo, "Comparision and Evaluation of Clone

Detection Tools," IEEE Transaction on Software Engineering,

vol. 33, no. 9, pp. 577 - 591, 2007.

[3] Chanchal K. Roy and James R. Cordy, "A Survey on Software

Clone Detection Research," Queen's University, Kingston,

Technical Report 2007-541, 2007.

[4] Miryung Kim, Lawrence Bergman, Tessa Lau, and David Notkin,

"An Ethnographic Study of Copy and Paste Programming

Practices in OOPL," in Proceedings of the 2004 International

Symposium on Empirical Software Engineering (ISESE’04),

Redondo Beach, CA, USA, USA, 2004.

[5] Minhaz F. Zibran, Ripon K. Saha, Muhammad Asaduzzaman, and

Chanchal K. Roy, "Analysing and Forecasting Near-miss Clones

in Evolving Software: An Empirical Study," in Proceedings of the

16th IEEE International Conference on Engineering of Complex

Computer Systems, Las Vegas, USA, 2011, pp. 295-304.

[6] M. F. Zibran and Chanchal Kumar Roy, "The Road to Software

Clone Management: A Survey," Department of Computer

Science, University of Saskatchewan, Canada, Technical Report

2012.

[7] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue,

"CCFinder: A Multilinguistic Token-Based Code Clone Detection

System For Large Scale Source Code," IEEE Transactions on

Software Engineering, vol. 28, no. 7, pp. 654-670, July 2002.

[8] Brenda Baker, "On Finding Duplication and Near Duplication in

Large Software Systems," in Proceedings of the 2nd Working

Conference on Reverse Engineering (WCRE'95), 1995, pp. 86 -

95.

 International Journal of Computer Sciences and Engineering Vol.6(5), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 49

[9] Zhenmin Li, Shan mar, Yuanyuan ZohuLu, and Suvda Myag,

"CP-Miner: Finding Copy Paste and Related Bugs in Large Scale

Software Code," IEEE Transaction on Software Engineering, vol.

32, no. 3, pp. 176 - 192, March 2006.

[10] Wikipedia.[Online].

https://en.wikipedia.org/wiki/Lexical_analysis

[11] Alfred V. Aho, Monica S. Lam, and Jeffrey D. Ullman Ravi Sethi,

Compilers: Principles, Techniques, and Tools, 2nd ed.: Pearson.

[12] Raimer Falke, Pierre Frenzel, and Rainer Koschke, "Empirical

Evaluation of Clone Detection using Syntax Suffix Trees,"

Empirical Software Engineering, vol. 13, no. 6, pp. 601 - 643, July

2008.

[13] Elizabeth Burd and John Bailey, "Evaluating Clone Detection

Tools for Use during Preventative Maintenance," in Proceedings

of the Second IEEE International Workshop on Source Code

Analysis and Manipulation (SCAM '02), Montreal, Canada, 2002,

pp. 36-43.

[14] M. Rieger, "Effective Clone Detection without Language

Barriers," University of Bern, Switzerland, Dissertation 2005.

[15] Chanchal Kumar Roy, James Cordy, and Rainer Koschke,

"Comparison and Evaluation of Code Clone Detection Techniques

and Tools: A Quantitative Approach," Science of Computer

Programming, vol. 74, no. 7, pp. 470 - 495, March 2009.

Authors Profile

Mr. Sarveshwar Bharti is presently working at the

Department of Computer Science, Guru Nanak Dev

University, Amritsar, India, as a Ph.D. Research Fellow

(Senior Research Fellow). He has received his Master of

Computer Applications (MCA) degree from University of

Jammu, Jammu, India. He is a Software Engineering

Researcher with research interests including Software

Clones, Integrated Clone Management, and Clone

Management Plug-in.

Dr. Hardeep Singh, Ph.D., is a Professor and Head at the

Department of Computer Science, Guru Nanak Dev

University, Amritsar, India. His research interests lie within

Software Engineering and Information Systems. He has been

awarded with various prestigious awards including Dewang

Mehta Award for best Professor in Computer Engineering,

ISTE Award for Best Teacher in Computer Science and

Rotract International Award for best Teacher.

https://en.wikipedia.org/wiki/Lexical_analysis

