

 © 2018, IJCSE All Rights Reserved 32

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol-6, Special Issue-3, Apr 2018 E-ISSN: 2347-2693

Performance Evaluation of Lazy-Funnelsort Algorithm on Multicore

System

Riaz Ahmed

1*
, Lalitsen Sharma

2

1*

Department of Computer Sciences & IT, University of Jammu, Jammu, J&K, India
2
 Department of Computer Sciences & IT, University of Jammu, Jammu, J&K, India

*Corresponding Author riaz.mirza.11@gmail.com

Available online at: www.ijcseonline.org

Abstract— Sorting is one of the basic problems that have been extensively studied. There are many sorting algorithms which

are efficient in computation but cannot use cache efficiently. Efficient use of cache is an important factor for determining the

performance of an algorithm. Cache-oblivious algorithms are designed that are both work and cache efficient. The aim of this

paper is to evaluate the performance of cache-oblivious sorting algorithm called Lazy Funnelsort on multicore processors. The

evaluation is made against the well known fast sorting algorithms: quick sort, merge sort on multicore processor machine. The

experiments are conducted against different input sizes and number of processing cores and threads using Intel Cilk Plus,

which is extension to C and C++ to express task and data parallelism. The performance of algorithms is examined in terms of

execution time, speedup, efficiency and scalability. The results show that parallel implementation of Lazy Funnelsort is better

than its sequential implementation and also scalable on multiple cores. Though it has been outperformed by quick sort and

merges sort algorithms but shows moderate promise as a parallel algorithm.

Keywords—Cache-oblivious, Funnelsort, Performance, Speedup, Efficiency, Cache-miss-ratio

I. INTRODUCTION

Since the multicore has become the default configuration of

almost all computers, every year manufacturing companies

are producing chips with increased number of cores/threads

in order to increase its performance potential. Multicore in its

simplest form is a collection of cores sharing an arbitrary

large main memory containing data and featuring one or

more level of caches which could be either private [1] or

shared among all the cores [2]. In this era of multicore,

research is on the way to develop parallel and multithreaded

algorithms so as to utilize the performance potential of

multicore hardware. As the multicore hardware is growing

fast, writing efficient and portable algorithms for exploiting

modern hardware has become important. In recent past, a

number of algorithms have been developed by researchers

which has optimal efficiency and are also oblivious to

multicore parameters like No. of cores, No. of levels of cache

or their size, block size, etc. e.g. in [3-12].

Sorting is one of the core steps of a number of algorithms.
There are number of sorting algorithms which are
computationally efficient but are not cache efficient. Cache
efficiency is an important factor for algorithmic performance.
Lazy-Funnel sort [13] in one of the sorting algorithms which
uses cache efficiently. It is the modified version of Funnel

sort algorithm introduced in [14]. This algorithm is portable
as well as cache-oblivious as it does not contain any tuning
parameter like cache size, cache line length etc. in its code for
performance improvement. The Lazy-Funnel sort algorithm
breaks down the input problem into independent sub
problems very easily, so it has the big potential for
parallelizing.

This paper deals with the performance evaluation of
multithreaded Lazy-Funnel sort algorithm on dual-core and
quad-core processor machines with varying input sizes and
threads. The performance in terms of efficiency and cache
miss ratio of Lazy-Funnel sort are calculated and analyzed.
The evaluation is made against quick sort and merge sort
algorithms.

The rest of the paper is organized as follows: Section II
briefly described the Lazy-Funnel sort Algorithm. Earlier
work is briefed in section III. Methodology of research and
experimental environment is described in section IV. Section
V presents the results and analysis of algorithms and
conclusion is drawn in section VI.

II. LAZY-FUNNELSORT

Lazy-Funnel sort [13] is similar to merge sort [15] except the
process of merging which is performed by a device called k-
merger. In order to sort n elements, the Lazy-Funnel sort

 International Journal of Computer Sciences and Engineering Vol.6(3), Apr 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 33

algorithm firstly split input list into K=n
1/3

segments, then
recursively sort each segment and finally merges these sorted
segments using k– merger. A k-merger is a merge tree
consisting of k-1 binary mergers. The structure of k-merger
for use in Lazy-Funnel sort was described in [13]. A k-merger
is laid out recursively in memory in order to achieve input-
output efficiency.

The base of the algorithm is binary merger which intakes two
sorted arrays, merges them and outputs a sorted array. An 8-
merger

consisting of 7 binary mergers is shown in Fig. 1.

Figure 1. An 8-merger consists of 7 binary mergers

A binary merge tree is formed using binary mergers in which
mergers are at node and buffers are at edges. The arrays that
to be merged are at leaves of the merge tree. A merger is
called recursively to perform merge steps till its both input
arrays are empty or output buffer is full. The Procedure to fill
an array is shown in Fig.2 [16].

Figure 2. The Lazy Fill Algorithm

III. RELATED WORK

The first study of sorting algorithms in cache-oblivious

settings on microprocessor with a single core and multiple

levels of caching appeared in [14] where two cache-oblivious

sorting algorithms: a new funnel sort and a distribution based

sorting were described and analyzed in Ideal Cache Model

[14]. The performance of these algorithms was optimal both

in running time and cache complexity without knowing the

machine parameters in their codes. Later on, the simplified

version of funnel sort called Lazy-Funnelsort was introduced

in [13]. The performance of Lazy-Funnelsort was empirically

evaluated in [16] where the efficiency of this algorithm

remained competitive with other fast distribution based

sorting algorithms: merge sort, quick sort and cache-aware

sorting.

IV. METHODOLOGY

This section explains the experimental environment

including methodologies of implementation and

measurement as follows:

A. Experimental Setup

We performed our experiments on two multicore systems

having different specifications as shown in Table-1.

Table 1. Specifications of Experimental Machines

Model
Intel Core I-5-

240M

Intel Core I-7-

240M

CPU 2.50 GHZ 3.40 GHZ

CORES 2 4

THREADS 4 8

L1 CACHE 32 KB 256 KB

L2 CACHE 256 KB 1024 KB

L3 CACHE 3072 KB 8192 KB

MEMORY 4 GB 4 GB

OPERATING

SYSTEM
LINUX 64-BIT LINUX 64-BIT

B. Implementation and measurement

All programs are implemented using Intel Cilkplus, which

simplifies the programming efforts for shared memory

multiprocessor systems. The three keywords: cilk_for,

cilk_spawn and cilk_sync are used to express parallelism in

Intel cilkplus. The for loop is parallelized by using cilk_for

keyword, cilk_spawn specifies that no function can execute

in parallel with the remainder of the calling function and all

spawned functions must complete before execution continues

is specified by cilk_sync keyword. These keywords provide

opportunities for parallelism but the Intel cilkplus runtime

determines which portion of the program actually run in

parallel using efficient work-stealing scheduler.

 Procedure FILL (node x) {
 if (both inputs =non-empty) {

 while (output buffer of x = not full) {

 if (left input’s head < right input’s head) {

 move left input’s head to output buffer

 if (left input buffer= empty)

 FILL(x’s left child)

 }else {

 Move right input’s head to output

 If (right input buffer= empty)

 FILL(x’s right child)

 }

 }else if (only one input buffer= empty){

 move max (other’s input elements) to the output

 if (input buffer= empty)

 FILL(x’s corresponding child)

 }else

 return

}

 International Journal of Computer Sciences and Engineering Vol.6(3), Apr 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 34

Figure 4. Efficiency of Sorting Algorithms on Dual-Core Machine

a) With K = 2 a) With K = 3 c) With K = 4

We used srand function of C library to generate random list

of values. The C library function gettimeofday is used to

measure wall clock time as our performance matrix. We

performed experiments for more than 30 times and the

lowest value amongst all runs was recorded.

The efficiency of algorithms is calculated by using the
formula:

Efficiency (E) = SU / K ---(1)

where, SU is speedup and K is the number of threads.

The speedup of algorithms is calculated by using the formula:

Speedup (SU) = T1 / Tn – (2)

where, T1 is sequential execution time and Tn is execution
time with n number of processing threads.

Cache performance is measured using perf 4.10.17 Linux tool
[22] to measure cache-miss-ratio of L1 data cache for sorting
algorithms.

The overview of proposed work is shown in Figure 3.

Figure 3. Overview of proposed work

V. RESULTS AND DISCUSSION

Here we present experimental results and analysis. To

evaluate the performance, a number of experiments are

performed both on dual-core and quad-core machines with

varying input sizes. The sizes of tested lists are (10)
2
, (10)

3
,

(10)
4
, (10)

5
, (10)

6
and (10)

7.
The execution time of sorting

algorithms with varying input sizes and with available

threads both on dual-core and quad-core machines are

recorded. The efficiency and speedup of sorting algorithms is

calculated using the formulas of equations 2 & 1

respectively.

A. Pereformance on Dual-Core Machine

The calculated efficiency of sorting algorithms when executed
on dual-core machine with 2, 3 and 4 threads (K) and varying
input sizes (n) is shown in Fig.4. It is observed that:

 For small input values up to (10)
3
and with K=2, 3 &

4, the performance of quick sort algorithm is better
than other algorithms.

For input size above (10)
3
, the performance of Lazy-Funnel

sort is best except the case when n > (10)
5

and K=4 where

efficiency of Lazy-Funnel sort is just underneath the merge

sort algorithm.

 The following observations are made in all cases of
experiments:

 In 61% of all cases, the performance of Lazy-Funnel
sort remained better than merge sort algorithm.

 In 72% of all cases, the performance of Lazy-Funnel
sort remained better than quick sort algorithm.

 The Lazy-Funnel sort showed equal performance in
17% and 6% of all cases when compared with merge
sort and quick sort algorithms respectively.

 International Journal of Computer Sciences and Engineering Vol.6(3), Apr 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 35

 In 78% of all cases, the performance of Lazy-Funnel
sort remained equal to or better than merge sort or
quick sort algorithms.

 In 56% of all cases, the performance of Lazy-Funnel
sort remained equal to or better among all
algorithms.

 In 95% of all cases, the performance of Lazy-Funnel
sort remained in top two among all algorithms.

The cache performance of sorting algorithms is evaluated on
dual-core machine using perf suit tool. The cache miss ratio
of level one data cache is recorded by executing sorting
algorithms with varying input sizes (n) and threads (K) and
shown in Fig. 5.

The following observations are made in all cases of
experiments:

 In 50% of all cases, the Lazy-Funnel sort has lesser
number of cache misses than merge sort algorithm.

 In 33% of all cases, Lazy-Funnel sort has lesser
number of cache misses than quick sort algorithm.

 The Lazy-Funnel sort have equal number of cache
misses in 17% and 6% of cases when compared with
merge sort and quick sort algorithms respectively.

 In 67% of all cases, the Lazy-Funnel sort have equal
to lesser number of cache misses than merge sort
algorithm.

 In 39% of all cases, Lazy-Funnel sort has equal to or
lesser number of cache misses than quick sort
algorithm.

 In 44% of all cases, the cache misses of Lazy-Funnel
sort remained equal to or lesser among all
algorithms.

B. Pereformance on Quad-Core Machine

The calculated efficiency of sorting algorithms when executed
on quad-core machine with 2, 3, 4 5, 6 7 and 8 threads (K)
and varying input sizes (n) is shown in Fig.6. It is observed
that:

 For small input values up to (10)4

and with all cases

of K, the performance of Lazy-Funnel sort is better
except in few cases where quick sort algorithm
outperforms it.

 For input size above (10)
4
, the performance of Lazy-

Funnel sort is underneath the merge sort algorithm.

The following observations are made in all cases of
experiments:

 In 60% of all cases, the performance of Lazy-Funnel
sort remained better than merge sort algorithm.

 In 83% of all cases, the performance of Lazy-
Funnel sort remained better than quick sort
algorithm.

 The Lazy-Funnel sort shows equal performance in
7% and 5% of all cases when compared with merge
sort and quick sort algorithms respectively.

 In 67% of all cases, the performance of Lazy-Funnel
sort remained equal to or better than merge sort
algorithm.

 In 88% of all cases, the performance of Lazy-Funnel
sort remained equal to or better than quick sort
algorithm.

 In 59% of all cases, the performance of Lazy-Funnel
sort remained equal to or better among all
algorithms.

 In almost all cases, the performance of Lazy-Funnel
sort remained in top two among all algorithms.

a) With K = 2 b) With K = 3 c) With K = 4

Figure 5. Cache Miss Ratio of Sorting Algorithms on Dual-Core Machine

 International Journal of Computer Sciences and Engineering Vol.6(3), Apr 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 36

b) With K = 2 c) With K = 3 d) With K = 4 e) With K = 5

Figure 6. Efficiency of Sorting Algorithms on Quad-Core Machine

a) With K = 2 b) With K = 3 c) With K = 4 a) With K = 5

e) With K = 6 f) With K = 7 g) With K = 8

Figure 7. Cache Miss Ratio of Sorting Algorithms on Quad-Core Machine

 International Journal of Computer Sciences and Engineering Vol.6(3), Apr 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 37

The cache performance of sorting algorithms is evaluated
on quad-core machine using perf suit tool. The cache miss
ratio of level one data cache is recorded by executing sorting
algorithms with varying input sizes (n) and threads (K) and
shown in Fig. 7. The following observations are made in all
cases of experiments:

 In 43% of all cases, the Lazy-Funnel sort has lesser
number of cache misses than merge sort algorithm.

 In 38% of all cases, Lazy-Funnel sort has lesser
number of cache misses than quick sort algorithm.

 The Lazy-Funnel sort have equal number of cache
misses in 33% and 14% of cases when compared
with merge sort and quick sort algorithms
respectively.

 In 78% of all cases, the Lazy-Funnel sort have equal
to lesser number of cache misses than merge sort
algorithm.

 In 52% of all cases, Lazy-Funnel sort has equal to or
lesser number of cache misses than quick sort
algorithm.

 In 47% of all cases, the cache misses of Lazy-Funnel
sort remained equal to or lesser amongst all
algorithms.

VI. CONCLUSION and Future Scope

The performance of cache-oblivious sorting algorithm called
Lazy-Funnel sort has been empirically studied with respect to
efficiency and cache misses. The efficiency is evaluated by
executing the multithreaded Lazy-Funnel sort program both
on dual-core and qua-core processor machines with varying
input sizes and threads. It is seen in the experimental studies
that on dual-core machine, the performance of Lazy-Funnel
sort remained equal to or greater than merge sort or quick sort
algorithms in 78% of all cases. It is also shown that in 56%
of all cases, the Lazy-Funnel sort outperformed all
algorithms. In general, it is shown that Lazy-Funnel sort
remained at top two algorithms in 95% of all cases as for as
performance is concerned on dual-core machine. On quad-
core machine, in 67% and 88% of all cases the performance
of Lazy-Funnel sort remained equal to or better than merge
sort and quick sort algorithms respectively. It is also shown
that in 59% of all cases, the Lazy-Funnel sort outperformed
all algorithms. In general, it is shown that Lazy-Funnel sort
remained on top two algorithms in almost all cases as for as
performance is concerned on quad-core machine. The cache
miss ratio is evaluated through use of hardware performance
counter both on dual-core and qua-core processor machines. It
is also observed from the experiments that performance of
sorting algorithms is influenced by cache performance.

From our study, we arrived at the conclusion that the Lazy-
Funnel sort shows fairly good parallel performance as its
efficiency remained in top two algorithms in almost all cases
of experiments performed both on dual-core and quad-core

processor machines. The reason for good performance of
Lazy-Funnel sort is due to the fact that it has better data
locality. The poor performance in some cases is due to the
parallel scheduling overheads.

We have performed experiments on dual-core and quad-core

systems but the work could be extended too many core

systems. In this paper, we have evaluated one cache

parameter of level 1 data cache and in future we aimed to

evaluate other cache parameters like L2, L3, dTLB, etc

REFERENCES

[1] L. Arge, M. Goodrich, M. Nelson, and N.Sitchinava, “Fundamental
parallel algorithms for private-chip multiprocessors”, In the
Proceedings of the 20th ACM SPAA, pp. 197-206, 2008.

[2] G. Blelloch and P. Gibbons, “Effectively sharing a cache among
threads”, In the Proceedings of the 16th ACM SPAA, pp. 235-244,
2004.

[3] U. A. Acar, G. E. Blelloch, and R. D. Blumofe, “The data locality of
work stealing”, Theory of Computing Systems, vol. 35, pp.3, 2002.

[4] G. Bilardi, A. Pietracaprina, G. Pucci, and F. Silvestri, “Network-
oblivious algorithms”, In the Proceedings of the 21st IEEE IPDPS,
2007.

[5] R. A. Chowdhury and V. Ramachandran, “The cache-oblivious
Gaussian elimination paradigm: Theoretical framework,
parallelization and experimental evaluation”, In the Proceedings of
the 19th ACM SPAA, pp. 71–80, 2007.

[6] R. A. Chowdhury and V. Ramachandran, “Cache-oblivious dynamic
programming”, In the Proceedings of the 17th ACM-SIAM SODA,
pp. 591–600, 2006.

[7] G. Blelloch, R. Chowdhury, P. Gibbons, V. Ramachandran, S. Chen,
and M. Kozuch, “Provably good multicore cache performance for
divide-and-conquer algorithms”, In the Proceedings of the SODA, pp.
501–510, 2008.

[8] M. Frigo and V. Strumpen, “The cache complexity of multithreaded
cache oblivious algorithms”, Theory Compute. Syst., vol. 45, no. 2,
pp. 203–233, 2009.

[9] R. Cole and V. Ramachandran, “Resource oblivious sorting on
multicores”, In the Proceedings of the ICALP, Track A, 2010.

[10] Richard Cole and Vijaya Ramachandran, “Efficient Resource
Oblivious Algorithms for Multicores with False Sharing”, In the
Proceedings of the IEEE 26th IPDPS, pp. 201 – 214, 2012.

[11] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava,
“Fundamental parallel algorithms for private-cache chip
multiprocessors”, In the Proceedings of the ACM SPAA, pp. 197–206,
2008.

[12] G. Belloch, P. Gibbons and H. Simhadri, “Brief announcement: Low
depth cache-oblivious sorting”, In the Proceedings of the ACM
SPAA, ACM, 2009.

[13] G. S. Brodal and R. Fagerberg, “Cache-oblivious distribution
sweeping”, In the Proceedings of the 29th International Colloquium on
Automata, Language and Programming, ICALP, vol. 2518, Springer,
New York, pp. 426-438, 2002.

[14] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran, “Cache-
oblivious algorithms”, In the Proceedings of the 40th IEEE FOCS ,
pp.285-297, 1999.

[15] A. Aggarwal and J. S. Vitter, “The input/output complexity of sorting
and related problems”, Comm. ACM 31, 9, 1116-1127, 1988.

G. S. Brodal, R. Fagerberg and K. Vinther, “Engineering Cache-Oblivious
Sorting Algorithm”, Journal of Experimental Algorithmics, vol. 12,
ACM, New York, 2008

