Vol.-7, Special Issue-9, April 2019

E-ISSN: 2347-2693

# Visual analysis of leading Cancer sites using SPSS Software

## V. Manikanta<sup>1\*</sup>, N.G Yethiraj<sup>2</sup>

<sup>1</sup> SRP-Technical (CIIL), Bharathiar University, Coimbatore, Tamilnadu, India <sup>2</sup> Department of Computer Science, Maharani's Science College for Women, Bangalore, India

\*Corresponding Author: ciil.manikanta@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7si9.3846 | Available online at: www.ijcseonline.org

Abstract— Many diseases are arising depending upon the environment, culture, life style, etc. In many Diseases, Multiple types of cancer are increased in various region based on mouth, breast, cervix uteri, ovary, gall bladder, NHL, thyroid, Brain, Stomach, etc. Human of each organ is depending of the cell functionality. Each cell functionality is works our daily foods of sweet, sour, salty, etc. In our country many medical research centers are involved many research areas of Tuberculosis, Cancer, Diabetes, etc. Leading cancer sites data is one of the big tasks to region wise, gender wise, age wise, etc. The study of leading sites of cancer in various region wise, gender wise, age wise are easy to find the avoid the cancer to protect with any immediate solution. Visual analysis of data is easily exploring the details of Cancer leading site and analysis describes to how it is important to save our country for immediate treatment procedure.

Keywords— Visualization, Cancer, data mining, SPSS.

#### T. INTRODUCTION

Variation of cells are damage the immune system, tumours, impairment results and uncontrollable condition to growth arises the Cancer Disease. Cancer disease are visible state is easy to find some solution or not. But, some of the cancer diseases are not visible and identifying the cancer is also takes time. Many of the cells spread easily with more human parts like nodes of Lymph. Cancer diseases are preventable when some of the new technology with expertise doctor and spending money like Cricketer Yuvaraj Singh. Scientists and Doctors are trying to research the cancer disease for solution to resolve the diseases. Unpreventable Cancer diseases are dividing the cell to irritating control of human life. Human is focus on health issues rather than any other works and always concentration 'my health'. Cancer is one disease but due to mental preparation also another disease. Each and every cancer sites are increasing with alcohol, cigarette, quality of foods, smoking, physical exercise, etc. More and more people are died with cancer throughout the world multiple types cancer. Cells are not working every time same and varies with age. Cancer are occurs due to the age factor because cells are weak and activities of physical is less. Physical activity is very important in every aspect of diseases except some of the disease. Genetic of cells are contribute to developing cell growth with uncontrollable and cells are dividing with genes alteration with proteins production. Cells are developing and dividing due to carrying the instruction of protein. Cancer cells are generated by birth, smoking, chemical dependant, mutation process, etc.

#### II. **SPSS**

SPSS is to find knowledge enhancement functionality to produce efficient and effective manner of data with visualization. Data of huge size content is to perform easiest way of understandable solution in several steps using SPSS. SPSS is available many tools such as graph builder, Analysis data in various techniques, Define variable structure, Transformation, Valid output results, etc. SPSS is not expressing just like software and it is huge application structure oriented analysis data with complex problem to solve easily compared to any other software. Innovation of data with many aspects of medical science, business activity and industrial management field is very important tool is required for further instruction to manipulate data. In this case, SPSS is important role of software. Below tables are sample examples of dataset.

Table 1. Type of Cancer in different region from Female

group Cancer type **Place** Count **Breast** Mumbai 5620 Cervix Uteri 2480 Mumbai Ovary Mumbai 936 815 Mouth Mumbai Gall Bladder Mumbai 723 **NHL** Mumbai 647

| Thyroid           | Mumbai    | 607  | Brain, NS         | Chennai          | 103  |
|-------------------|-----------|------|-------------------|------------------|------|
| Lung              | Mumbai    | 524  | Hypopharynx       | Chennai          | 406  |
| Oesophagus        | Mumbai    | 510  | Rectum            | Chennai          | 302  |
| Tongue            | Mumbai    | 452  | Corpus Uteri      | Chennai          | 342  |
| Myeloid Leukaemia | Mumbai    | 405  | Breast            | Thiruvanthapuram | 5354 |
| Stomach           | Mumbai    | 333  | Cervix Uteri      | Thiruvanthapuram | 1743 |
| Brain, NS         | Mumbai    | 253  | Ovary             | Thiruvanthapuram | 950  |
| Hypopharynx       | Mumbai    | 192  | Mouth             | Thiruvanthapuram | 889  |
| Rectum            | Mumbai    | 311  | Gall Bladder      | Thiruvanthapuram | 76   |
| Corpus Uteri      | Mumbai    | 343  | NHL               | Thiruvanthapuram | 516  |
| Breast            | Bangalore | 2052 | Thyroid           | Thiruvanthapuram | 2095 |
| Cervix Uteri      | Bangalore | 3585 | Lung              | Thiruvanthapuram | 521  |
| Ovary             | Bangalore | 778  | Oesophagus        | Thiruvanthapuram | 293  |
| Mouth             | Bangalore | 1354 | Tongue            | Thiruvanthapuram | 548  |
| Gall Bladder      | Bangalore | 67   | Myeloid Leukaemia | Thiruvanthapuram | 721  |
| NHL               | Bangalore | 254  | Stomach           | Thiruvanthapuram | 287  |
| Thyroid           | Bangalore | 449  | Brain, NS         | Thiruvanthapuram | 391  |
| Lung              | Bangalore | 224  | Hypopharynx       | Thiruvanthapuram | 123  |
| Oesophagus        | Bangalore | 666  | Rectum            | Thiruvanthapuram | 393  |
| Tongue            | Bangalore | 163  | Corpus Uteri      | Thiruvanthapuram | 624  |
| Myeloid Leukaemia | Bangalore | 337  | Breast            | Dibrugarh        | 336  |
| Stomach           | Bangalore | 280  | Cervix Uteri      | Dibrugarh        | 266  |
| Brain, NS         | Bangalore | 254  | Ovary             | Dibrugarh        | 200  |
| Hypopharynx       | Bangalore | 169  | Mouth             | Dibrugarh        | 116  |
| Rectum            | Bangalore | 192  | Gall Bladder      | Dibrugarh        | 175  |
| Corpus Uteri      | Bangalore | 215  | NHL               | Dibrugarh        | 33   |
| Breast            | Chennai   | 3921 | Thyroid           | Dibrugarh        | 23   |
| Cervix Uteri      | Chennai   | 4462 | Lung              | Dibrugarh        | 36   |
| Ovary             | Chennai   | 921  | Oesophagus        | Dibrugarh        | 237  |
| Mouth             | Chennai   | 914  | Tongue            | Dibrugarh        | 51   |
| Gall Bladder      | Chennai   | 114  | Myeloid Leukaemia | Dibrugarh        | 18   |
| NHL               | Chennai   | 301  | Stomach           | Dibrugarh        | 133  |
| Thyroid           | Chennai   | 467  | Brain, NS         | Dibrugarh        | 27   |
| Lung              | Chennai   | 409  | Hypopharynx       | Dibrugarh        | 75   |
| Oesophagus        | Chennai   | 559  | Rectum            | Dibrugarh        | 60   |
| Tongue            | Chennai   | 305  | Corpus Uteri      | Dibrugarh        | 32   |
| Myeloid Leukaemia | Chennai   | 478  | Breast            | Guwahati         | 674  |
| Stomach           | Chennai   | 646  | Cervix Uteri      | Guwahati         | 764  |

| Ovary             | Guwahati   | 228 |
|-------------------|------------|-----|
| Mouth             | Guwahati   | 251 |
| Gall Bladder      | Guwahati   | 544 |
| NHL               | Guwahati   | 60  |
| Thyroid           | Guwahati   | 60  |
| Lung              | Guwahati   | 140 |
| Oesophagus        | Guwahati   | 487 |
| Tongue            | Guwahati   | 135 |
| Myeloid Leukaemia | Guwahati   | 25  |
| Stomach           | Guwahati   | 201 |
| Brain, NS         | Guwahati   | 46  |
| Hypopharynx       | Guwahati   | 127 |
| Rectum            | Guwahati   | 86  |
| Corpus Uteri      | Guwahati   | 71  |
| Breast            | Chandigarh | 341 |
| Cervix Uteri      | Chandigarh | 385 |
| Ovary             | Chandigarh | 166 |
| Mouth             | Chandigarh | 18  |
| Gall Bladder      | Chandigarh | 138 |
| NHL               | Chandigarh | 45  |
| Thyroid           | Chandigarh | 14  |
| Lung              | Chandigarh | 47  |
| Oesophagus        | Chandigarh | 106 |
| Tongue            | Chandigarh | 38  |
| Myeloid Leukaemia | Chandigarh | 55  |
| Stomach           | Chandigarh | 18  |
| Brain, NS         | Chandigarh | 94  |
| Hypopharynx       | Chandigarh | 11  |
| Rectum            | Chandigarh | 23  |
| Corpus Uteri      | Chandigarh | 80  |

Table 2. Type of Cancer in different region from Male group

| Cancer type | Place  | Count |
|-------------|--------|-------|
| Mouth       | Mumbai | 2776  |
| Lung        | Mumbai | 1808  |
| Tongue      | Mumbai | 1603  |
| NHL         | Mumbai | 1381  |
| Oesophagus  | Mumbai | 1045  |

| Myeloid Leukaemia  | Mumbai    | 880  |
|--------------------|-----------|------|
| Hypopharynx        | Mumbai    | 869  |
| Larynx             | Mumbai    | 841  |
| Stomach            | Mumbai    | 783  |
| Lymphoid Leukaemia | Mumbai    | 662  |
| Brain, NS          | Mumbai    | 540  |
| Liver              | Mumbai    | 318  |
| Thyroid            | Mumbai    | 329  |
| Tonsil             | Mumbai    | 251  |
| Rectum             | Mumbai    | 605  |
| Gall Bladder       | Mumbai    | 530  |
| Oth. Oropharynx    | Mumbai    | 271  |
| Mouth              | Bangalore | 731  |
| Lung               | Bangalore | 790  |
| Tongue             | Bangalore | 754  |
| NHL                | Bangalore | 520  |
| Oesophagus         | Bangalore | 887  |
| Myeloid Leukaemia  | Bangalore | 442  |
| Hypopharynx        | Bangalore | 946  |
| Larynx             | Bangalore | 447  |
| Stomach            | Bangalore | 620  |
| Lymphoid Leukaemia | Bangalore | 390  |
| Brain, NS          | Bangalore | 398  |
| Liver              | Bangalore | 281  |
| Thyroid            | Bangalore | 172  |
| Tonsil             | Bangalore | 228  |
| Rectum             | Bangalore | 265  |
| Gall Bladder       | Bangalore | 63   |
| Oth. Oropharynx    | Bangalore | 213  |
| Mouth              | Chennai   | 1351 |
| Lung               | Chennai   | 1404 |
| Tongue             | Chennai   | 1061 |
| NHL                | Chennai   | 655  |
| Oesophagus         | Chennai   | 892  |
| Myeloid Leukaemia  | Chennai   | 715  |
| Hypopharynx        | Chennai   | 765  |
| Larynx             | Chennai   | 599  |
| Stomach            | Chennai   | 1446 |

| Lymphoid Leukaemia | Chennai          | 450  | Tonsil             | Dibrugarh  | 98   |
|--------------------|------------------|------|--------------------|------------|------|
| Brain, NS          | Chennai          | 142  | Rectum             | Dibrugarh  | 80   |
| Liver              | Chennai          | 479  | Gall Bladder       | Dibrugarh  | 62   |
| Thyroid            | Chennai          | 180  | Oth. Oropharynx    | Dibrugarh  | 54   |
| Tonsil             | Chennai          | 210  | Mouth              | Guwahati   | 545  |
| Rectum             | Chennai          | 462  | Lung               | Guwahati   | 503  |
| Gall Bladder       | Chennai          | 155  | Tongue             | Guwahati   | 472  |
| Oth. Oropharynx    | Chennai          | 273  | NHL                | Guwahati   | 127  |
| Mouth              | Thiruvanthapuram | 1593 | Oesophagus         | Guwahati   | 1020 |
| Lung               | Thiruvanthapuram | 2847 | Myeloid Leukaemia  | Guwahati   | 36   |
| Tongue             | Thiruvanthapuram | 1214 | Hypopharynx        | Guwahati   | 807  |
| NHL                | Thiruvanthapuram | 954  | Larynx             | Guwahati   | 382  |
| Oesophagus         | Thiruvanthapuram | 798  | Stomach            | Guwahati   | 439  |
| Myeloid Leukaemia  | Thiruvanthapuram | 948  | Lymphoid Leukaemia | Guwahati   | 26   |
| Hypopharynx        | Thiruvanthapuram | 490  | Brain, NS          | Guwahati   | 106  |
| Larynx             | Thiruvanthapuram | 766  | Liver              | Guwahati   | 85   |
| Stomach            | Thiruvanthapuram | 914  | Thyroid            | Guwahati   | 36   |
| Lymphoid Leukaemia | Thiruvanthapuram | 739  | Tonsil             | Guwahati   | 334  |
| Brain, NS          | Thiruvanthapuram | 573  | Rectum             | Guwahati   | 141  |
| Liver              | Thiruvanthapuram | 452  | Gall Bladder       | Guwahati   | 258  |
| Thyroid            | Thiruvanthapuram | 635  | Oth. Oropharynx    | Guwahati   | 205  |
| Tonsil             | Thiruvanthapuram | 130  | Mouth              | Chandigarh | 94   |
| Rectum             | Thiruvanthapuram | 595  | Lung               | Chandigarh | 243  |
| Gall Bladder       | Thiruvanthapuram | 95   | Tongue             | Chandigarh | 192  |
| Oth. Oropharynx    | Thiruvanthapuram | 451  | NHL                | Chandigarh | 114  |
| Mouth              | Dibrugarh        | 257  | Oesophagus         | Chandigarh | 164  |
| Lung               | Dibrugarh        | 103  | Myeloid Leukaemia  | Chandigarh | 113  |
| Tongue             | Dibrugarh        | 164  | Hypopharynx        | Chandigarh | 52   |
| NHL                | Dibrugarh        | 83   | Larynx             | Chandigarh | 140  |
| Oesophagus         | Dibrugarh        | 380  | Stomach            | Chandigarh | 61   |
| Myeloid Leukaemia  | Dibrugarh        | 47   | Lymphoid Leukaemia | Chandigarh | 155  |
| Hypopharynx        | Dibrugarh        | 441  | Brain, NS          | Chandigarh | 200  |
| Larynx             | Dibrugarh        | 106  | Liver              | Chandigarh | 69   |
| Stomach            | Dibrugarh        | 197  | Thyroid            | Chandigarh | 2    |
| Lymphoid Leukaemia | Dibrugarh        | 27   | Tonsil             | Chandigarh | 58   |
| Brain, NS          | Dibrugarh        | 44   | Rectum             | Chandigarh | 41   |
| Liver              | Dibrugarh        | 28   | Gall Bladder       | Chandigarh | 101  |
| Thyroid            | Dibrugarh        | 17   | Oth. Oropharynx    | Chandigarh | 30   |

Table 3. Age wise in various regions from Male group

| Place            | 0-14 | 15-34 | 35-64 | 65+  |
|------------------|------|-------|-------|------|
| Mumbai           | 1331 | 3001  | 13904 | 4344 |
| Bangalore        | 762  | 1178  | 6510  | 2823 |
| Chennai          | 475  | 1717  | 9716  | 3823 |
| Thiruvanthapuram | 1098 | 1627  | 10982 | 5512 |
| Dibrugarh        | 67   | 194   | 1807  | 827  |
| Guwahati         | 114  | 378   | 4266  | 2045 |
| Chandigarh       | 289  | 286   | 1459  | 609  |

Table 4. Age wise in various regions from Female group

| Place            | 0-14 | 15-34 | 35-64 | 65+  |
|------------------|------|-------|-------|------|
| Mumbai           | 622  | 2121  | 13163 | 2622 |
| Bangalore        | 477  | 1262  | 9175  | 2211 |
| Chennai          | 313  | 1665  | 12692 | 2829 |
| Thiruvanthapuram | 776  | 2232  | 12046 | 3755 |
| Dibrugarh        | 46   | 227   | 1690  | 313  |
| Guwahati         | 87   | 406   | 3414  | 772  |
| Chandigarh       | 133  | 214   | 1398  | 347  |

# III. STUDIES TO CANCER DISEASE VISUALIZATION

SPSS visualizations are explored the data effectively with various parameters. Our dataset consists of region wise, gender wise and age wise data (Table I to IV). Each region has described the number of people who suffering from type of the cancer and age of the person is carried out.

Table 5: Age wise Descriptive

| DESCRIPTIVE |                      |                |            |               |  |
|-------------|----------------------|----------------|------------|---------------|--|
| Age         |                      |                | Statistic  | Std.<br>Error |  |
| 0-14        | Mean                 |                | 470.71     | 108.039       |  |
|             | 95%<br>Confidence    | Lower<br>Bound | 237.31     |               |  |
|             | Interval for<br>Mean | Upper<br>Bound | 704.12     |               |  |
|             | 5% Trimmed<br>Mean   |                | 446.52     |               |  |
|             | Median               |                | 394        |               |  |
|             | Variance             |                | 163412.681 |               |  |
|             | Std.<br>Deviation    |                | 404.243    |               |  |
|             | Minimum              |                | 46         |               |  |
|             | Maximum              |                | 1331       |               |  |
|             | Range                |                | 1285       |               |  |

|       | Interquartile          |       | 658         |          |
|-------|------------------------|-------|-------------|----------|
|       | Range                  |       | 000         | 505      |
|       | Skewness               |       | 880         | 597      |
|       | Kurtosis               |       | 34          | 1.154    |
| 15-34 | Mean                   |       | 1179.14     | 244.651  |
|       | 95%                    | Lower | 650.61      |          |
|       | Confidence             | Bound |             |          |
|       | Interval for           | Upper | 1707.68     |          |
|       | Mean                   | Bound | 1122.66     |          |
|       | 5% Trimmed             |       | 1132.66     |          |
|       | Mean<br>Median         |       | 1220        |          |
|       |                        |       |             |          |
|       | Variance               |       | 837955.67   |          |
|       | Std.                   |       | 915.399     |          |
|       | Deviation              |       | 10.1        |          |
|       | Minimum                |       | 194         |          |
|       | Maximum                |       | 3001        |          |
|       | Range                  |       | 2807        |          |
|       | Interquartile<br>Range |       | 1547        |          |
|       | Skewness               |       | 0.468       | 0.597    |
|       | Kurtosis               |       | -0.835      | 1.154    |
| 35-64 | Mean                   |       | 7301.57     | 1300.933 |
|       | 95%                    | Lower | 4491.08     |          |
|       | Confidence             | Bound |             |          |
|       | Interval for           | Upper | 10112.07    |          |
|       | Mean                   | Bound |             |          |
|       | 5% Trimmed             |       | 7262.75     |          |
|       | Mean<br>Median         |       | 7842.5      |          |
|       | Variance               |       | 23693986.26 |          |
|       |                        |       |             |          |
|       | Std.<br>Deviation      |       | 4867.647    |          |
|       | Minimum                |       | 1398        |          |
|       | Maximum                |       | 13904       |          |
|       | Range                  |       | 12506       |          |
|       | Interquartile<br>Range |       | 10430       |          |
|       | Skewness               |       | -0.009      | 0.597    |
|       | Kurtosis               |       | -1.823      | 1.154    |
| 65+   | Mean                   |       | 2345.14     | 437.018  |
|       | 95%                    | Lower | 1401.02     |          |
|       | Confidence             | Bound |             |          |
|       | Interval for           | Upper | 3289.26     |          |
|       | Mean                   | Bound |             |          |
|       | 5% Trimmed<br>Mean     |       | 2282.1      |          |

| Median                 | 2416.5     |       |
|------------------------|------------|-------|
| Variance               | 2673790.44 |       |
| Std. Deviation         | 1635.173   |       |
| Minimum                | 313        |       |
| Maximum                | 5512       |       |
| Range                  | 5199       |       |
| Interquartile<br>Range | 3041       |       |
| Skewness               | 0.349      | 0.597 |
| Kurtosis               | 0.778      | 1.154 |

In Graphs, Graph Builder to choose Boxplot and classification analysis using classify and tree method.

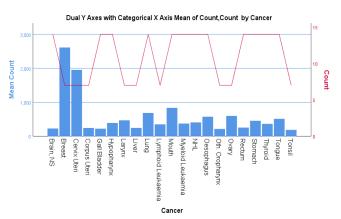



Figure 1: Cancer types of mean value

Breast Cancer, Cervix Uteri are increased to other type of cancer in graph representation of various regions. Tonsil, Oropharynx, Gall Bladder are less type of cancer in graph representation of various regions.

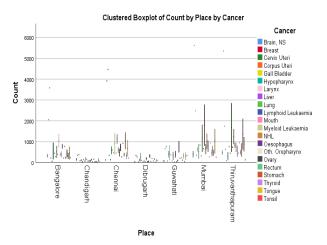



Figure 2: Region wise of Cancer types

Breast Cancer is increased in Thiruvanthapuram, Mumbai and Chennai. Cervix Uteri is increased in Chennai and Bangalore.

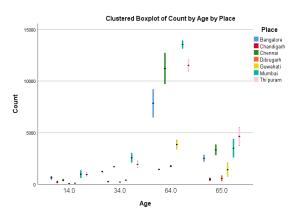



Figure 3: Age wise of various region

Cancer patients of age 35 to 64 people are large compare to any other age group in various regions.

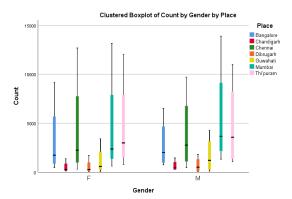



Figure 4: Gender wise distribution of various regions

In Male, Cancer patients are increased in Mumbai, Thiruvanthapuram and more compared to Female. In Female, Chennai and Bangalore places cancer patients are increased to more than Male Gender.

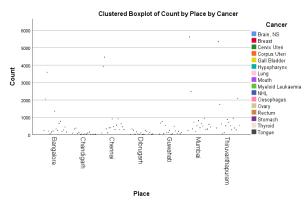



Figure 5: Region wise of cancer types from Female

In Female, Breast, Cervix Uteri, Thyroid cancer patients increased in various regions.

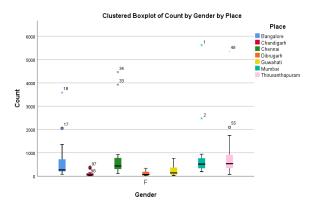



Figure 6: Region wise count from Female Group

From Female group Thiruvanthapuram, Mumbai, Chennai are more number of cancer patients.

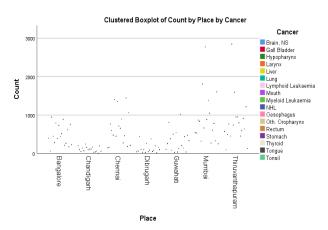



Figure 7: Region wise cancer types from Male Group

In Male group, Lung, Mouth, Tongue, Stomach type of cancer increased in various locations.

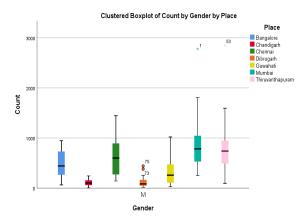



Figure 8: Region wise count from Male Group

In Male group, Places of cancer patients are increased in Mumbai, Thiruvanthapuram, Chennai, Bangalore, etc.

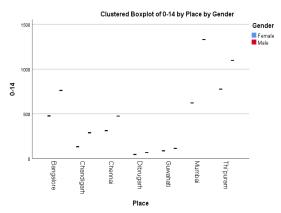



Figure 9: Gender wise of various regions in 0-14 age groups

In the childhood cancer patients are more in Mumbai (1953 cancer patients), Thiruvanthapuram (1874 cancer patients), Bangalore (1239 cancer patients), etc.

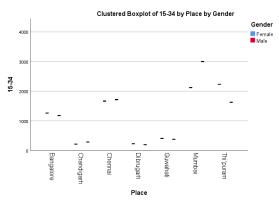



Figure 10: Gender wise of various regions in 15-34 age groups

More number of cancer patients in Thiruvanthapuram, Mumbai, and Chennai regions.

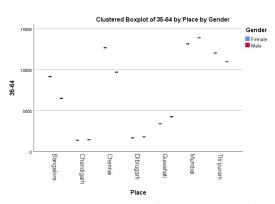



Figure 11: Gender wise of various regions in 35-64 age groups

More number of cancer patients in Thiruvanthapuram, Mumbai, and Chennai regions. In Guwahti and Chandigarh is varied in 15-34 years and 35-64 age groups.

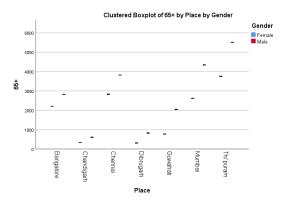



Figure 12: Gender wise of various regions in 65+ age groups

Number of cancer patients is increased in Thiruvanthapuram, Mumbai, Chennai, Bangalore, etc.

CHAID Decision tree in SPSS is support decision making values in the gender wise list of Cancer patients in different type of cancer are mentioned in the below figure. Total Percentage between male and female are 51.5 and 48.5. The decision tree describes the type of cancer in male and female with their percentage.

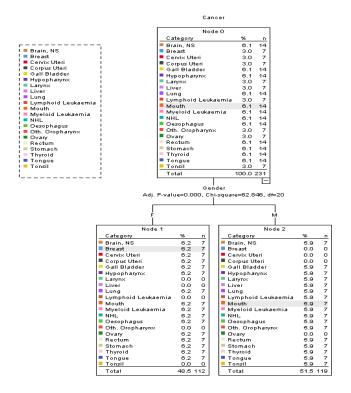



Figure 13: Gender wise comparison with cancer type

Classification of cancer patients in various regions using range values of parameters. The parameters are 1-500, 501-1000, 1001-2000, 2001-3000, 3001-4000, 4001-5000, 6000+using Recode into Different Variables from SPSS and values are 1,2,3,4,5,6,7 respectively. From this decision graph all cancer type patients occurs in all regions. But Breast cancer, Cervix Uteri, Lung and Mouth cancer are more number of patients in regions.

Cancer patients are increased in various regions with respect to their cancer type in the following.

Breast Cancer-> Mumbai, Thiruvanthapuram, Bangalore

Cervix Uteri Cancer -> Chennai, Bangalore, Mumbai

Lung Cancer -> Thiruvanthapuram, Mumbai

Mouth Cancer -> Mumbai

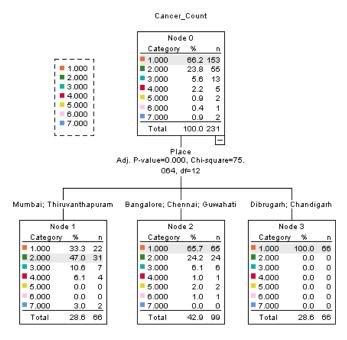



Figure 14: Range wise analysis of various regions in types of cancer

### IV. RESULT AND CONCLUSION

SPSS is representing the graph builder to generate graph based on user requirement analysis and it is clearly influences the value to get inferential results with datasets. Graph builder creates the graph of Dual axes, Box Plot, Scatter Plot, etc are easily represented the dataset with effective manner. Datasets consists of groups based on gender wise, region wise, and age wise of multiple type of

cancer in our country. From these datasets easily explored the graphical representation in multiple view analysis are explored. SPSS classification is one of the decision support system applications to express the representation in visualization. Cancer leading sites are increased in our world based several factors of life style. According to visualization statistical data is easy to find the solution in various parameters of food based criteria, avoid tobacco, immediate treatment to recognize the cancer type, region people adaptation, population strength, cancer test based on age factor, cancer type of identification in region wise, gender wise calculation, childhood cancer type, age based cancer type occurrence, etc. From these all phenomenon, diseases are mainly involved in our biological cell activity. How to protect our health based on maintenance of cell activity is crucial thing any of the country. Research and Development projects are very important to avoid the cancer disease of multiple types. Cancer is not like one disease and it consists of many types. Today in the world, how it is different types of cancer occurred is one of the risk task and several types of cancer. Research is required for many people of clinical trials are required to find the cause or treatment of the cancer.

### ACKNOWLEDGMENT

The authors thank Director, Bharathiar University, and Coimbatore for his encouragement in undertaking this study for R and D Development.

### REFERENCES

- [1] S. Krishnaveni ans Dr. M. Hemalatha, "A perspective analysis of Traffic Accident Using Data Mining Techniques", International Journal of Computer Application.
- [2] Jusoh Shaidah and Alfawareh Hejab M., "Techniques Applications and Challenging Issue in Text Mining uses, Applications", IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012.
- [3] Aarti Sharma, Rahul Sharma, Vivek Kr. Sharma, Vishal Shrivastava, "Application of Data Mining – Computer Science and Information Technologies", Vol. 5, Issue 2, Pg. no. 2023-2025. 2014.
- [4] A Multimodal SVM Approach for Fused Biometric Recognition Geethu S Kumar Jyothirmati Devi Department of Computer Science and Engineering College of Engineering, Chengannur, Kerala.
- [5] D. Barbara, J. Couto, S. Jajodia, L. Popyack, and N. Wu, "ADAM: Detecting intrusions by data mining," in Proc. 2nd Annu. IEEE Workshop Inf. Assur.Secur., New York, Jun. 2001, pp. 11-16.
- [6] Mohammad Khubeb Siddiqui and Shams Naahid, "Analysis of KDD CUP 99 dataset using Clustering based Data Mining", International Journal of Database Theory and Application, Vol. 6, No.5, 2013, pp. 23-34
- [7] Sarfraz Ahmed, "Global cancer statistics," CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011.
- [8] Xingquan Zhu, Ian Davidson, "Knowledge Discovery and Data Mining: Challenges and Realities", ISBN 978- 1-59904- 252, Hershey, New York, 2007.
- [9] Lior Rokach and Oded Maimon, "Data Mining with Decision Trees: Theory and Applications (Series in Machine Perception and Artificial

Intelligence)", ISBN: 981-2771- 719, World Scientific Publishing Company, , 2008.

### **Authors Profile**

Mr. Manikanta V MS in Computer Science and Technology from University of Mysore. He is currently working as Senior Resource Person (Technical) in Central Institute of Indian Languages, Mysore. He is expertised in Microsoft Technology, ArcGIS, MOSS, PHP, MYSQL, OPEN SOURCE Softwares, Data Mining, Matlab, .Net, VB, JAVA, ANDROID Development, BIG Data Analyis, etc. He is published 6 research articles and 4 International conference papers.

*Dr N G Yethiraj* was working as Assistant Professor in Department of Computer Science, Maharani's Arts and Science College, Bangalore.