

 © 2019, IJCSE All Rights Reserved 12

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Special Issue-9, April 2019 E-ISSN: 2347-2693

Efficiency Analysis of Honey Encryption Algorithm

Bhoomika R

1*
, Gowda Deepa Narsimha

2
, Abhishek V3, Bharathi H4

1, 2

Post Graduate Scholar, Dayananda Sagar of Arts Science and Commerce, Bangalore University, Bangalore, India
3, 4

Post Graduate Scholar, Dayananda Sagar of Arts Science and Commerce, Bangalore University, Bangalore, India

*Corresponding Author: bhoomika.rajshekar@gmail.com, Tel.: 9743813465/7021199726

DOI: https://doi.org/10.26438/ijcse/v7si9.1214 | Available online at: www.ijcseonline.org

Abstract: In the field of cyber security, we have many algorithms that support cryptography. These algorithms are more prone

to cyber-attacks and can be cracked easily by hash cracking tools. One of the methods to prevents these attacks is Honey

Encryption technique that has gained popularity in recent years. This method provides another layer of protection when the

intruder tries to hack an account with bogus data. In this paper, we are efficiently increasing the probability of Honey

Encryption by generating more hash keys(password)using python programming approach. Honey encryption helps in

minimization of vulnerability. We have designed an algorithm which eventually increases the buffer size for the randomly

generated passwords.

Keywords: Cryptography, Security, Password.

I. INTRODUCTION

Protecting systems, networks, and programs from digital

attacks are challenging as there are more devices than people,

and eventually attackers have also become more innovative.

These cyber-attacks are usually aimed at accessing,

changing, or damaging private data and personal

information. The common selection of passwords which are

opted by the users, which are easy to remember, is the main

reason behind the development of honey encryption

algorithm.[1] Hash algorithms are one-way cryptographic

function which turn any amount of data into a fixed length.

These algorithms have a property wherein if the input

changes by a small amount the resulting hash changes

completely from the original.

There are many techniques to crack plain hashes and obtain

the actual passwords and hence just by hashing we cannot

provide complete security for the passwords. The Rivest-

Shamir-Adleman algorithm, better known as RSA, is now

the most widely used asymmetric cryptosystem on the web

today. Asymmetric actually means that it works on two

different keys i.e. Public Key and Private Key. [2][3] A

Brute Force Attack is the simplest method to gain access to a

site or server. It tries various combinations of Usernames and

passwords again and again until it get in. This repetitive

action is like an army attacking a fort.[4]

The main aspect of cybersecurity was to protect entities like:

PC’s, smart devices, networks, and cloud. Emerging

technologies like next generation firewalls, DNS filtering,

antivirus software, primitive methods of data encryption. The

problem of these prompted us to analyse the efficiency of

honey encryption algorithm.

Honey encryption is the type of data encryption that

“produces a cipher text which when decrypted with an

incorrect key as guessed by the attacker, presents a plausible-

looking yet incorrect plain text password or encryption key”.

Instead of improvising primitive data encryption techniques,

we can implement python programming language is a

general purpose, high level programming language which

helps us to increase the efficiency of honey encryption

algorithm.[5][6][7]

II. RELATED WORK

Honey Encryption scheme was introduced by Juelz and

Ristenpart on 2014 to increase protection layer onto the

password-based RSA encryption algorithm and credit card

applications. Subsequently, extended by Tyagi and Huang to

protect the text messaging and genomic data application

respectively. More recently, Joseph enhanced the security of

this scheme to resist the message recovery attacks. Honey

encryption is also related to Format-Preserving Encryption

(FPE) and Format-Transforming Encryption (FTE).

In FPE, the plaintext message space is the same as the

ciphertext message space, whereas they differ in FTE.

A recent study reports that 1.08% of people chose the same

password. Due to the intelligence and upgradation of

innovative ideas, the time taken to crack other encryption

 International Journal of Computer Sciences and Engineering Vol. 7(9), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 13

algorithms are decreasing. Therefore, there is a need for new

encryption scheme that will improve the efficiency of honey

encryption.

III. METHODOLOGY

The concept of honey encryption is used to detect attackers

when trying to decrypt the encrypted data. In honey

encryption, there are many passwords, and only one is right

and the rest are all bogus data. These bogus data are called

honey words or decoys. The entire list of honey words is

called sweet words. This creates an ambiguity in the intruder

to distinguish between the real and fake data.

In the improvised version of honey encryption algorithm, we

take the last six digits of the debit card and the pin number as

an input from the user. It creates two dictionary(lists) to store

these inputs. So, the program generates ten random 6-digit

pin numbers of the card. This is done to create an ambiguity

in the intruder’s mind as to what the actual password is. The

first dictionary is mapped to the 6-digit of the card number,

and the second dictionary stores the pin number. Then it

generates additional password prefixing original password

and essential validations are performed. When the hacker

tries to hack the user account, he gets a randomly generated

list of fake passwords. [8] Once the hacker guesses the right

password from the randomly generated list then he gets the

actual pin. If the hacker guesses the password wrong from

the list then he gets a wrong pin, and the user gets an intruder

alert for the security purposes. And if he gives any other

input apart from the list then a randomly generated pin is

returned to the hacker which he assumes to be the actual pin

number. Every time the hacker tries to hack an account a

fake 4-digit pin is returned if he guesses the wrong account

number which creates ambiguity.

IV. RESULTS AND DISCUSSIONS

Here the program prompts the user to enter their card details,

and the pin number.

And when intruder tries to hack he’s given a list of password

to guess among. If he guesses the password wrong it prompts

the account is hacked and the user receives an alert but not in

reality because the intruder believes that to be the right

password.

Once when the intruder guesses the password then he

actually gets the pin number of the card. Therefore the

account is hacked.

Algorithm for improvised honey encryption method:

Step 1: Input last 6-digit card number & pin code from user

Step 2: create 2 lists to store these

Step 3: generate random integer

Step4: map passwordToSeed = {userpass: trueSeed} and

SeedToPassword = {trueSeed: Message}

Step4: then it generates additional password prefixing

original password

Step 5: Validation

Cipher = int (passwordsToSeeds[userPass]) XOR with

trueSeed

Step 6: check password------ // hacker prompt

Query = input ("Enter a password to crack: ")

Step 7: if hacker guesses the right password from the

randomly generated list

Then he gets the actual pin

Else

If hacker guesses the password wrong from the list

Then

He gets a wrong pin and user gets an intruder alert

Else if he gives any other input apart from the list then a

random pin is returned to the hacker.

Here the program prompts the user to enter their card details

and the pin number.

And when intruder tries to hack he’s given a list of password

to guess among. If he guesses the password wrong it prompts

the account is hacked and the user receives an alert but not in

reality because the intruder believes that to be the right

password.

Once when the intruder guesses the password then he

actually gets the pin number of the card. Therefore the

account is hacked.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 14

V. CONCLUSION

All the existing encryption techniques are unique and rely on

password-based encryption. These are vulnerable to attacks

as these passwords can be hacked by hash cracking tools.

Honey encryption stands out of many encryption methods

and is optimal as it provides an extra layer of protection to

the user data. Also, this program increases its efficiency by

extending the buffer size for randomly generated data. It can

be also applied to secure IOT devices and other computer

peripherals as well.

REFERENCES

[1] Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro. Multi-

instance security and its application to password-based cryptography.

In Advances in Cryptology–CRYPTO 2012, pages 312–329.

Springer Berlin Heidelberg, 2012.

[2] M. Preetha et al, International Journal of Computer Science and

Mobile Computing Vol.2 Issue. 6, June- 2013, pg. 126-130

[3] M. Bakker and R. V. D. Jagt, “GPU-based password cracking.

Technical report,” Univ. of Amsterdam, 2010

[4] Joseph Jaeger, Thomas Ristenpart, Qiang Tang. Honey Encryption

Beyond Message Recovery Security. Presented in

EUROCRYPT2016 pages 1 and 2, 2016.

[5] TIOBE Software Index (2011). "TIOBE Programming Community

Index Python". 1

[6]"Programming Language Trends - O'Reilly

Radar". Radar.oreilly.com. 2 August 2006.

[7] "The RedMonk Programming Language Rankings: January 2011 –

ecosystems". Redmonk.com.

[8] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh. Kamouflage:

loss-resistant password management. In ESORICS, pages 286–302,

2010.

AUTHORS PROFILE

Bhoomika.R, PG scholar, studying MCA at

Dayanada Sagar institutions, interested in

certification, data science and researches.

Gowda Deepa Narasimha, PG scholar,

studying MCA at Dayanada Sagar

institutions, interested in data science and data

analysis.

Abhishek.V, PG scholar, studying MCA at

Dayanada Sagar institutions, interested in

coding, android studio, data science and data

analysis, ethical hacking, linux, raspberry, pi

network security.

Bharathi.h, pg scholar, studying mca at

dayanada sagar institutions, interested in

webpages designing, webapp development

and coding.

http://radar.oreilly.com/

