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Abstract— Consider a single server queueing system with Loss and Feedback in which customers arrive in a Poisson process 

with arrival rate λ and service time follows an exponential distribution with parameter μ. If the server is free at the time of an 

arrival of a customer, the arriving customer begins to be served immediately by the server and satisfied customer leaves the 

system with probability (1-q) after the service completion and dissatisfied customers will join the queue with probability q to 

get service once again. This is called Feedback in queueing terminology. If the server is busy, then the arriving customer will 

join the queue with probability p in front of service station. This is called Loss in queueing terminology. In this paper, we have 

derived the closed form solutions of time dependent probabilities of the single server queueing systems with Loss and 

Feedback. The corresponding Transient distributions have been obtained. We also obtain the time dependent performance 

measures of the systems. 
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  INTRODUCTION  I.

 

During the past few years a number of interesting and 

innovative research papers have appeared in the literature 

that discuss the Transient behaviour for the queue length of 

the single server queueing system at time t. This queue has 

attracted the attention of many researchers who have 

proposed its solution by a variety of techniques and have 

obtained different types of solutions. The main objective of 

this paper is to analysis the Transient behaviour of Single 

server queueing system with Loss and Feedback. 

Parthasarathy have studied a simple approach of a Transient 

solution to an M/M/1Queue [12]. The Transient behaviour of 

the M/M/1/N queue for a general N has been discussed by 

Takacs [18] and Morse [11]. Bailey [7] used Generating 

functions method to analyse the Transient behaviour of a 

simple queue. Takacs [19] introduced the concept of 

Feedback queues. Disney R.L, Gilles R and D’Avignon [8, 

9] have studied Queues with State Dependent Feedback. 

Abate et al. [1, 2] have studied the Transient behaviour of 

M/M/1 queue using Laplace transforms. Parthasarathy and 

Lenin [13] used Continued fractions to analyses the Transient 

behaviour of birth death processes. Sharma and Bunday [15] 

have investigated the Transient behaviour of M/M/1 queue 

and have obtained the state probabilities in closed form. 

Parthasarathy and Selvaraju [14] have analyzed the Transient 

behaviour of an M/M/1 queue with loss. Tarabia and et al. 

[20] have studied the exact Transient solutions to non-empty 

Markovian queues by using the Power series technique. 

Thangaraj and Vanitha [21] have considered the Transient 

analysis of M/M/1 queue with Bernoulli Feedback. Ayyapan, 

G., Muthu Ganapathi Subramanian, A. and Gopal Sekar [5] 

have discussed M/M/1 Retrial Queueing System with Loss 

and Feedback. Sharma S.K. and Kumar R. [16] have 

discussed Markovian Feedback Queues. Kaczynski WH, 

Leemis LM and Drew JH [10] have analyzed the Transient 

behaviour. Ayyappan G and Shyamala S [6] have analyzed 

the Time Dependent solution of M
[X]

/G/1 Queueing model 

with Bernoulli vacation and Balking. Singla.N and Garg PC 

[17] have studied the Transient and Numerical solutions of 

Feedback. Ammar SI [3] has examined the Transient 

behaviour of a Two Heterogeneous servers queue with 

impatient behaviour. Recently, Ammar[4] has examined the 

Transient solution of an M/M/1 Vacation queue with a 

Waiting server and impatient customers. 

 

 MODEL DESCRIPTION II.

 

Consider a single server queueing system with Loss and 

Feedback in which customers arrive in a Poisson process 

with arrival rate λ and service time follows an exponential 

distribution with parameter μ. If the server is free at the time 

of an arrival of a customer, the arriving customer begins to 

be served immediately by the server and satisfied customer 
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leaves the system with probability (1-q) after the service 

completion and dissatisfied customers will join the queue 

with probability q to get service once again. This is called 

Feedback in queueing terminology. If the server is busy, then 

the arriving customer will join the queue with probability p 

in front of service station. This is called Loss in queueing 

terminology. 

Let N (t) is random variable which represents the number of 

customers in the system at time t. 

The random process is described as  

{N (t) / N (t) = 0, 1, 2, 3,} 

- Represents the time dependent probability that there 

are n customers in the system at time t. 

- Represents the time dependent probability that there 

are no customers in the system at time t. 

 ANALYSIS OF TRANSIENT PROBABILITY III.

 

The governing differential – difference equations of the 

single server queueing system are given by means of the 

chapman – Kolmogorov equations    

0 0 1( ) ( ) ( ) (1 ) ( )p t p p t q p t     
                           

(1)            

1 1( ) ( (1 )) ( ) ( ) ( ) (1 ) ( )n n n np t p q p t p p t q p t    
       

                              

for n = 1, 2, 3,……                                                               (2) 

In this section, the transient system size probabilities are 

obtained by using the Laplace transform and Generating 

functions technique. 

Define 
*

0

( )

t

st

n np p t e dt  for n = 0, 1, 2, … 

Apply the Laplace transform to the system of equations (1) 

and (2), we get 
* *

0 1( ) 1 (1 )s p p q p                                               (3) 

* * *

1 1( (1 ) ) (1 )n n ns p q p p p q p                 (4) 

for n = 1,2,3,… 

 

Theorem 1: 

The transient probabilities that the number of customers in 

the system at time t are given by 
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for n = 1,2,3,… 

    

Proof: 

Taking summation from n = 1 to ∞ for equation (4) and using 

the generating function             
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Rouche’s theorem 
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0w lies inside the disc and LHS of (5) converges, 

Cancellation of  *
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Where (.)nI  is the Modified Bessel function of order n.
 

Apply inverse Laplace transform (7), we get 
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Equation (10) represents the transient probability that there 

are no customers in the system at time t. 

Equation (5) can be written as  
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From equation (11),  
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Apply inverse Laplace transform to the equation (13), we get 
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for n = 1,2,3,…                                              
 

Equation (14) represents the transition probability that there 

are n customers in the system at time t. 

The time dependent solutions for the number of customers in 

the system at time t are given by 
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for n = 1,2,3,…    

 

REMARK 

1. As 1 and 0p q   , the equations (10) and 

(14) coincides with Parthasarathy’s [12] new 

approach for transient behavior of M/M/1 model. 

2. As  0q  , the equations (10) and (14) coincides 

with P.R. Parthasarathy and N. Selvaraju [14]. 
 
 

 ANALYSIS OF STEADY STATE PROBABILITY IV.

Theorem 2: 

The steady state probabilities that the number of customers in 

the system are given by 

10p

 n
n pp 0

              
for ....3,2,1n

 
Proof: 

The steady state probabilities can be obtained by using the 

Final value theorem on Laplace transform.  
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Equation (15) represents the steady state probability that 

there is no customer in the system.

  From equation (12), we get 
n
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The equation (16) represents the steady state probabilities of 

n customers in the system. 

 

 SYSTEM PERFORMANCE MEASURES V.

In this section, we will list some important performance 

measures along with their formulas. These measures are used 

to bring out the qualitative Transient behaviour of the 

queueing model under study. Numerical study has been dealt 

in very large scale to study the following measures. 

1. Probability that the server is idle at time t = 0 ( )P t  

2. Probability that the server is busy at time t = 

1

( )n

n

P t




  

3. M(t) = Average number of customers in the system 

at time t = 

1

( )n

n

nP t




  

4. m(t) = Average number of customers in the queue at 

time t = 

2

( 1) ( )n

n

n P t




  

5. V(t) = Variance of the number of customers in the 

system at time t                                     

        = 

2

2

1 1

( ) ( )n n

n n

n P t nP t
 

 

 
 
 

   

6. W(t) = Average waiting of a customer in the system 

at time t = M(t)/λ 

7. w(t) = Average waiting of a customer in the queue 

at time t = m(t)/λ 
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 NUMERICAL COMPUTATIONS VI.

The system performance measures and Transient 

probabilities of this model have been done and expressed in 

the form of tables, which are shown below for various values 

λ, μ, p, q and t. 

Table 1,Table 2 and Table 3shows Transient probabilities of 

number of customers in the system for various values of λ, μ 

and t.We infer the following  

 As the value of t increases the Transient 

probabilities ( )n np t p where np  is the steady 

state probability that there are n customers in the 

system. 

 The sequence  ( ) 0np t  as n for all values 

of t 

Table 1: Transient probability distribution of number of 

customers in the system for various values of t, when  

λ =1, µ=10, p=0.3 and q=0.4 

t P0 (t) P1 (t) p2 (t) p3 (t) p4 (t) p5 (t) 

1 0.9489 0.0487 0.0024 0.0000 0.0000 0.0000 

2 0.9500 0.0475 0.0024 0.0001 0.0000 0.0000 

3 0.9500 0.0475 0.0024 0.0001 0.0000 0.0000 

4 0.9500 0.0475 0.0024 0.0001 0.0000 0.0000 

5 0.9500 0.0475 0.0024 0.0001 0.0000 0.0000 

6 0.9500 0.0475 0.0024 0.0001 0.0000 0.0000 

7 0.9500 0.0475 0.0024 0.0001 0.0000 0.0000 

8 0.9500 0.0475 0.0024 0.0001 0.0000 0.0000 

9 0.9500 0.0475 0.0024 0.0001 0.0000 0.0000 

10 0.9500 0.0475 0.0024 0.0001 0.0000 0.0000 

Table 2: Transient probability distribution of number of 

customers in the system for various values of t, when  

λ =5, µ=10, p=0.3 and q=0.4 

t P0 (t) P1 (t) p2 (t) p3 (t) p4 (t) p5 (t) 

1 0.7566 0.1863 0.0444 0.0101 0.0021 0.0004 

2 0.7507 0.1874 0.0467 0.0115 0.0028 0.0007 

3 0.7501 0.1875 0.0468 0.0117 0.0029 0.0007 

4 0.7500 0.1875 0.0469 0.0117 0.0029 0.0007 

5 0.7500 0.1875 0.0469 0.0117 0.0029 0.0007 

6 0.7500 0.1875 0.0469 0.0117 0.0029 0.0007 

7 0.7500 0.1875 0.0469 0.0117 0.0029 0.0007 

8 0.7500 0.1875 0.0469 0.0117 0.0029 0.0007 

9 0.7500 0.1875 0.0469 0.0117 0.0029 0.0007 

10 0.7500 0.1875 0.0469 0.0117 0.0029 0.0007 

 

Table 3: Transient probability distribution of number of 

customers in the system for various values of t, when 

 λ =9, µ=10, p=0.3 and q = 0.4 

t P0 (t) P1 (t) p2 (t) p3 (t) p4 (t) p5 (t) 

1 0.5790 0.2527 0.1051 0.0411 0.0149 0.0050 

2 0.5574 0.2494 0.1104 0.0481 0.0206 0.0086 

3 0.5524 0.2482 0.1111 0.0495 0.0219 0.0096 

4 0.5509 0.2478 0.1113 0.0499 0.0223 0.0099 

5 0.5504 0.2476 0.1114 0.0500 0.0225 0.0101 

6 0.5501 0.2475 0.1114 0.0501 0.0225 0.0101 

7 0.5501 0.2475 0.1114 0.0501 0.0225 0.0101 

8 0.5500 0.2475 0.1114 0.0501 0.0225 0.0101 

9 0.5500 0.2475 0.1114 0.0501 0.0226 0.0101 

10 0.5500 0.2475 0.1114 0.0501 0.0226 0.0101 

 

Table 4, Table 5 and Table 6 shows Transient System 

performance measures for various values of λ, μ and t.We 

infer the following  

 ( )idlep t  decreases as arrival rate λ increases for all 

values of t 

 ( )busyp t increases as arrival rate λ increases for all 

values of t 

 ( )W t and ( )w t increases as arrival rate λ increases 

for all values of t 

 As t increases, ( )idle idlep t p , ( )busy busyp t p ,

( ) , ( )s qM t L m t L   , ( ) , ( )s qW t W w t W   

Table 4: System performance measures for various 

values of t, when λ = 1, µ = 10, p = 0.3 and q = 0.4 

 

t Pidle(t) Pbusy(t) M (t) m (t) W(t) w (t) 

1 0.9489 0.0510 0.0536 0.0025 0.0536 0.0025 

2 0.9500 0.0499 0.0526 0.0026 0.0526 0.0026 

3 0.9500 0.0500 0.0526 0.0026 0.0526 0.0026 

4 0.9500 0.0500 0.0526 0.0026 0.0526 0.0026 

5 0.9500 0.0500 0.0526 0.0026 0.0526 0.0026 

6 0.9500 0.0500 0.0526 0.0026 0.0526 0.0026 

7 0.9500 0.0500 0.0526 0.0026 0.0526 0.0026 

8 0.9500 0.0500 0.0526 0.0026 0.0526 0.0026 

9 0.9500 0.0500 0.0526 0.0026 0.0526 0.0026 

10 0.9500 0.0500 0.0526 0.0026 0.0526 0.0026 

 

Table 5: System performance measures for various 

values of t, when λ = 5, µ = 10, p = 0.3 and q = 0.4 

 

t Pidle(t) Pbusy(t) M (t) m (t) W(t) w (t) 

1 0.7566 0.2434 0.3165 0.0731 0.0633 0.0146 

2 0.7507 0.2493 0.3314 0.0820 0.0663 0.0164 

3 0.7501 0.2499 0.3331 0.0831 0.0666 0.0166 

4 0.7500 0.2500 0.3333 0.0833 0.0667 0.0167 

5 0.7500 0.2500 0.3333 0.0833 0.0667 0.0167 

6 0.7500 0.2500 0.3333 0.0833 0.0667 0.0167 

7 0.7500 0.2500 0.3333 0.0833 0.0667 0.0167 
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8 0.7500 0.2500 0.3333 0.0833 0.0667 0.0167 

9 0.7500 0.2500 0.3333 0.0833 0.0667 0.0167 

10 0.7500 0.2500 0.3333 0.0833 0.0667 0.0167 

 

Table 6: System performance measures for various 

values of t, when λ = 9, µ = 10, p = 0.3 and q = 0.4 

 

t Pidle(t) Pbusy(t) M (t) m (t) W(t) w (t) 

1 0.5790 0.4210 0.6845 0.2635 0.0761 0.0293 

2 0.5574 0.4426 0.7764 0.3338 0.0863 0.0371 

3 0.5524 0.4476 0.8029 0.3553 0.0892 0.0395 

4 0.5509 0.4491 0.8121 0.3630 0.0902 0.0403 

5 0.5504 0.4496 0.8157 0.3660 0.0906 0.0407 

6 0.5501 0.4499 0.8171 0.3673 0.0908 0.0408 

7 0.5501 0.4499 0.8177 0.3678 0.0909 0.0409 

8 0.5500 0.4500 0.8180 0.3680 0.0909 0.0409 

9 0.5500 0.4500 0.8181 0.3681 0.0909 0.0409 

10 0.5500 0.4500 0.8181 0.3681 0.0909 0.0409 

        

 CONCLUSION VII.

 

In this paper, Loss and Feedback queueing model is 

considered in which customers, whose arrival times are 

governed by a Markovian arrival process and exponential 

service times. The closed form solutions of Transient 

probability distribution and system performance measures 

are determined analytically.  
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