

 © 2019, IJCSE All Rights Reserved 18

 International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Special Issue-16, May 2019 E-ISSN: 2347-2693

A Study of Virtual Machine Resource Scheduling Algorithms in Cloud

Computing Environment

Divya Tantri
1*

, Karan George
2
, S. Rajarajeswari

3

1,2,3

Department of Computer Science, Ramaiah Institute of Technology, Karnataka, India

Corresponding Author: divya.tantri@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7si16.1833 | Available online at: www.ijcseonline.org

Abstract— Cloud computing is a fast-growing technology that is being used extensively in the market today. Most cloud

service providers, provide clients with one of two things either resources or services as entitled to the client by the SLA. In

resource allocation a user may want to gain access to multiple resources at the same time, thus we require a method for the

optimal provision of resources. With the sudden massive growth in cloud computing there is no dearth of techniques and

algorithms that can be used for resource allocation. In this paper we will study the various resource scheduling algorithms

being utilized in the virtualization industry and compare them on common factors to discern the comparatively optimal

resource scheduling algorithm.

Keywords—Resources,services,optimal,virtualization,resource allocation

I. INTRODUCTION

Cloud service providers in today's world provide a large number of services which can be availed to the customers benefit.

Virtualization is one of the most beneficiary cloud application field. Virtualization today refers to the creation and the use of

resources such as storage, server, desktop and operating systems which run over an abstracted physical hardware.

Virtualization has played a major role in the of modern cloud computing technology, usually in cloud computing, users share

the data amongst themselves that is stored in the cloud., but with the advent of virtualization users no longer share data over

the cloud but also share the infrastructure. Virtualizations major benefit lies in standardizing the process of version updation.

Having a large number of machines with the standard versions installed and updating them to a newer version will be a hassle

for any company with many machines. This problem is easily overcome by using virtualization as the resources are no longer

maintained by the user but by the third-party cloud service providers who will ensure system version updates take place

seamlessly on all machines. The term resource in this paper refers to the use of the virtual machines allocated by the service

provider.

This paper will consist of meticulous investigation of the currently existing algorithms, followed by a small study depicting

the use of these algorithms in a cloud computing environment and finally a comparative study based on common comparison

factors

II. CATEGORICAL DIVISION OF THE CLOUD SCHEDULING ALGORITHMS

The existence of various cloud scheduling algorithms in the present cloud computing environment has warranted a

categorical division in order to reduce similar algorithms into a category and make the comparative study through while

eliminating an algorithm as the optimal one. Resource scheduling algorithms are needed when clients request multiple

resources at the same time. In order to prevent resource starvation and ensure allocation we use these algorithms. They

mainly aim at implementing an efficient form of load balancing in order to improve the overall resource utilization.

Resources that are allocated improperly cause a huge resource drain on the cloud service providers who will have to pay

additional amounts of money to maintain these resources. The categorical division broadly classifies the algorithms into 3

main categories

Category A: Dynamic Scheduling Algorithms

International Journal of Computer Sciences and Engineering Vol. 7(16), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 19

As the name suggest Dynamic Scheduling Algorithms involve allocating the resources not based on any predefined plan

but allocating the resources dynamically and on the run. This prevents most resource blocking that is encountered when a

plan causes a particular resource to be pre-allocated to a user thus preventing optimal resource utilization

Category B: Agent based scheduling Algorithms

Agent based scheduling Algorithms involve the use of an external third-party agent to allocate the resources. The agent will

be responsible to monitor the resources present and allocate resources according to certain predefined criteria that will have

to be met before the resource is allocated. The task will not always fall into the hands of a single third-party agent but might

involve the use of multiple agents in forming a decision about the allocation.

Category C: Cost Optimization based scheduling Algorithms These scheduling algorithms enable cost-effective elasticity by

scaling at resource level of each virtual machine. Server can apply optimal resource allocation techniques on user requests, to

gradually improve the bandwidth and processing abilities. On analyzing the deadlines for every task, we choose services with

the lowest execution cost and time.

III. DYNAMIC SCHEDULING ALGORITHMS

A. MCDA using PROMETHEE Method

Multi criteria decision analysis based on the preference ranking organization method for enrichment evaluations. This method

is mostly preferred when the resource architecture is scattered or distributed. Resource management is done by independent

nodes. These autonomous nodes perform resource management and configurations by analyzing multiple criteria. The

algorithm simply redistributed the resources if it was not being used by any other virtual machine. The initial algorithm was

implemented in C and results were observed in terms of physical machine implementations and CPU allocation. The figure

below represents the life cycle of a task using the MCDA algorithm.

Figure 1.0: Life cycle of a task

B. Linear Scheduling for Tasks and Resources (LSTR)

LSTR follows a very simple linear allocation of resources to the various tasks by utilization of a queue technique. The

algorithm utilizes two separate queues that maintain tasks in them according to a certain threshold value. The threshold value

is usually calculated by summing up all the needed resources for a particular task. The tasks are then split among the two

arrays as tasks that come above and below the threshold value respectively. This is then followed by linearly scheduling the

tasks and resources for completion in each individual array starting with the array that contains elements (tasks) that fall below

the threshold value. This technique is used to maximize the quality of service.

Pseudocode for underlying LSTR algorithm

1. Create array tempA[] and tempB[] to store resource requirements from resource array R[]

2. Initialize tempA[] with R[i] such that R[i] has resource length less than threshold

3. Initialize tempB[] with R[i] such that R[i] has resource length greater than threshold

4. Sort the resources from tempB[] and place into sorted list

International Journal of Computer Sciences and Engineering Vol. 7(16), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 20

5. Sort the resources from tempA[] and place into sorted list

6. Submit the resources from the sorted list to the respective Virtual machines

Figure 1.1: Scheduling in LSTR

C. Profmin VM max/min available space

In this section we present two separate algorithms that work in have similar workings except in the opposite sense.

Profmin VM max available space algorithm works to allocate tasks to virtual machines as follows. Upon arrival of a task

the algorithm first looks to see if there are any VMs available, if there are no VMs available the task is simple allocated to

the virtual machine with the largest available free storage or compute space. This allocation however has a drawback

similar to the first fit algorithm used in cache scheduling. By directly allocating the largest free space to the incoming task

we are losing out on the capability to accommodate possible larger tasks in this space that may arrive in the future.

The Profmin VM min available space works in the opposite sense that is, upon arrival of a task the task is allocated to the

virtual machine that has the least available space but can still accommodate the task. This negates the previously

mentioned drawback but has a drawback of its own. We allocate compute resources here in a miserly manner and if the

task requires additional compute resource it cannot be computed in that minimal space.

Pseudocode for Min-min algorithm is given below 1. For all the submitted tasks (ti) in Metatask (MT)

2. For all the resources (R) in metatask (MT)

3. Compute completion time j CTij= ETij + r

4. End of step 2 loop. j

5. End of step 1 loop.

//Phase 2: Assigning task ti

6. For each task in MT, find the task t with minimum completion time to the resource having minimum completion time. i

7. Assign t with minimum completion time and that resource on which it is calculated i to resource Rj

Remove task t that has m minimum completion time i

International Journal of Computer Sciences and Engineering Vol. 7(16), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 21

8. Update resource R from MT j ready time of r

9. Update completion time of all unmapped tasks in MT j

10. Repeat step 6-10, until all the tasks in metatask (MT) have been mapped

11. End of step 6 loop.

Pseudocode for Min-Max algorithm is given below

1. For all the submitted tasks (ti) in metatask (MT)

2. For all the resources (R)

3. Compute completion time j CTij= ETij + r

4. End of step 2 loop. j

5. End of step 1 loop.

//Phase 2: Assigning task ti

6. For each task in MT, find the task t with maximum completion time to the resource which gives minimum completion

time. i

7. Assign t with maximum completion time and that resource on which it is calculated i to resource Rj

8. Remove task ti from MT. that has m minimum completion time

9. Update resource Rj ready time (rj)

10. Update completion time of all unmapped tasks in (MT)

11. Repeat step 6-10, until all the tasks in metatask (MT) have been mapped

12. End of step 6 loop.

Figure 1.2: Life cycle of Profmin max/min available space

D. Dynamic Resource Allocation Using VM

This algorithm consists of several parts including a controller that is centralized and a node manager that is local and used to

control smaller number of machines when compared to the controller. The algorithm first evaluates the capabilities and

configurations of the physical machines available and sends this data to the central controller. When a VM has to be

initialized a scheduler evaluates the resource needs of the virtual machine including the storage and compute needs. This data

is obtained from the local node manager. If the resource utilization crosses a particular threshold value, the VM’s are moved

around using information from the LNM to reduce the load and enforce appropriate load balancing.

International Journal of Computer Sciences and Engineering Vol. 7(16), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 22

Figure 1.3: DRA-VM life cycle

E. Round Robin Based Resource Selection

The algorithm as the name suggests utilizes a round robin mechanism for resource selection a scheduling. The request for

the virtual machine resource allocation begins at the end user who uses cloud service abstractions to transfer high level

resource details to the resource manager. Upon receiving these requests, the resource manager allocates a weight based on

burst time and puts the request into a queue. This is followed by the round robin execution of all the tasks in the queue

that assumes a weighted format which gives more time to higher weighted tasks in comparison to the other tasks. Round

robin is mainly utilized to enforce load balancing and load migration.

Figure 1.4: Round Robin resource allocation framework

International Journal of Computer Sciences and Engineering Vol. 7(16), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 23

IV. AGENT BASED SCHEDULING ALGORITHMS

A. Negotiation Strategy for Buyer and Seller

A widely used strategy in the cloud computing environment today that is employed even for amazon's EC2 instances it

consists of interactions between 2 entities as the name suggests which are the buyers and the seller's respectively. The

procedure is similar to that of a typical negotiation where the buyer will try to negotiate a good offer to propose to the

seller. If the offer is accepted by the seller then a contract is drafted. This mechanism has been automated nowadays and

involves agents on both the sides performing a negotiation for the contract price and other such details.

Figure 2.0: FSM for the negotiation

B. Agent Based Scheme Architecture

An Agent based technique that is primarily used in the wireless resource platforms. It is used to optimize the QOS factors

and to provide optimal resource scheduling. The architecture is similar to previously described agent-based algorithms

where the user agent collects the requirements for virtualization including the compute and storage virtualization. This is

followed by an agent-based server that gathers the information from various service providers and selects the optimal one

based on the request made by the user agent. The application service provider that is selected by the agent then provides

the requested resources.

Figure 2.2: Agent Based scheme for wireless cloud

C. Multi Agent System Architecture

The multi-agent system features (dynamic, flexibility, autonomy, and learning) are features a Cloud Computing System

needs for the self-management of its resources.

There is a Consumer Agent (CA) that notes down a consumer’s requirements. A Broker Agent (BA) acts as a mediator

International Journal of Computer Sciences and Engineering Vol. 7(16), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 24

between Consumer Agent and Service Provider Agent (SPA) and sends the estimates to the consumer for agreement,

once agreed it forwards it to the SPA.SPA is composed of multiple RA’s. Resource Agent accepts request from SPA,

manages web service by providing requirements to the end user.

Figure 2.4: Multi-Agent System Architecture

D. Agent based Resource Allocation Model (ARAM) A Resource Allocation Model is like a mechanism designed to

ensure that the requirements of an application are taken into account correctly by the provider’s infrastructure. This model

consists of a local cluster server and a master cluster server.

E.

The local cluster server sends resource information status to master cluster server, which in turn checks with the grid

information server to make a new database containing information on the status and cost of resources. These requirements

arrive at a Resource Broker. If demands of these requirements cannot be fulfilled by the broker, it moves to another broker.

The allocation information is sent to the master cluster server, and then subsequently to the local cluster server.

Figure:2.5.ARAM System model

F. Adaptive Resource Allocation Model

As the customers and the data centers are located across areas, when a customer requests for a service, his request is

allocated to the appropriate data center based on parameters like execution response time and fast allocation time. We

propose an adaptive resource allocation model that allocates the customer’s job to a data center. Finding an appropriate

data center might be a challenge, hence we adopt two methods:

a) the distance (network delay) between a customer and data centers, and 2) the workload of each data center.

This promises us faster and apt allocation of customers’ requests.

International Journal of Computer Sciences and Engineering Vol. 7(16), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 25

Figure:2.6. Adaptive Resource Allocation model using network delay

G. Market Based Model

In this model, there isn’t much scalability. Buyers and service providers communicate through trade exchange procedures.

Service providers use k-pricing and buyers place their bids. In the system, the winners of the bidding round are

determined to efficiently allocate resources on the basis of job urgency based on execution time deadline.

Figure:2.7. Bidding mechanism of market-based model

V. COST OPTIMIZATION BASED SCHEDULING ALGORITHMS

A. Lightweight Scaling Algorithm

Lightweight Scaling algorithm provides elasticity by scaling at resource level of virtual machine by configuring them. It

offers automatic scaling up or down resource allocation at run time which leads to the load balancer to redistribute the

resources upon every incoming request. The most practical approach is managing elasticity based on allocation and

deallocation of the virtual machine instances to the application.

International Journal of Computer Sciences and Engineering Vol. 7(16), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 26

Figure 3.1: Lightweight Scaling steps

B. Optimal Resource Allocation Technique (ORAT) Based on the proposed architecture, the incoming requests were

optimally allocated resources by the server. This gradually improves bandwidth and resource utilization at every step. This

algorithm can vastly reduce the request loss possibility and therefore, decrease the total resource obligatory, compared to any

predictable allocation method. Optimal server consolidation depends on resource provisioning that meets workloads needs.

Slow runs of a system can be avoided by utilization of resources in the cloud. This also helps in load balancing.

C.

Figure 3.2: Optimal Resource Allocation Technique cycle

D. Compromised Time Scheduling Algorithm

This algorithm takes into consideration cost of execution and execution time. The pre-step is to schedule any incomplete

tasks. The deadline for every task is calculated and the execution time and cost of a service is estimated. Based on the lowest

cost and execution time, a task is assigned to a resource.

This algorithm tries to accommodate instance-intensive cost- constrained workflows by compromising execution time and

cost with user enabled input as they come, after considering cloud computing characteristics.

International Journal of Computer Sciences and Engineering Vol. 7(16), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 27

Figure 3.3: CTC workflow

VI. COMPARATIVE ANALYSIS

Since most of the above algorithms are deployed using diverse parameters the comparative study will be based on certain

common factors including resource utilization, cost load balancing.

Resource utilization: An optimal resource scheduling algorithm should make use of resources given to it in an optimal

manner

Virtual Machine Cost: Per user cost of VM should be minimized by using proper sharing strategy

Load Balancing: Balancing load among available VM’s reduces the chance of deadlocks and increases system

throughput

VII. ANALYSIS OF CATEGORY I ALGORITHMS

MCDA using PROMETHEE method

Resource Utilization: Due the use of multiple criteria decision analysis the algorithm takes into account all the factors

involved in optimization only the allocation and utilization of resources. It does this by making sure the outcome of each

decision maximizes number of iterations and number of physical machine resources being used.

Virtual Machine Cost: As the VM’s are allocated purely on the basis of maximizing resource utilization it does not take

into account cost of each physical machine being used hence VM cost is high

Load Balancing: MCDA does not apply weighted preference for any of the tasks to allocate the resources it does not

implement any form of load balancing.

LSTR

Resource Utilization: LSTR is a linear scheduling algorithm and as such makes sure that the tasks that require the most

resources according to time of execution are executed first thus allowing for optimal resource utilization. The linear

algorithm first executes the task that utilizes resources greater than a threshold and thus allows high resource utilization

Virtual Machine Cost: Yet again being a linear algorithm the focus of LSTR is on maximizing the physical resource usage

according to time required for a task. As such it doesn't take into account VM cost.

Load Balancing: The algorithm does not implement any form of load balancing except scheduling the tasks in a particular

linear order for execution based on a threshold value.

Profmin VM max/min available space

Resource Utilization: The algorithm is characterized by allocation of space onto physical machines for optimal resource

utilization using caching algorithms. Resource utilization is relatively optimal as larger tasks are allocated to machines

with more space thus boosting utilization

International Journal of Computer Sciences and Engineering Vol. 7(16), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 28

VM cost: The algorithm makes maximum use of available space and scans all the VM’s looking for available space to

allocate task. As such VM’s with optimal cost are the ones with just enough space to accommodate the task. These are the

VM’s selected and thus cost is kept to an optimal value

Load Balancing: The algorithm maximizes space utilization on each and every one of the virtual machines but does not

implement any methodology for load balancing

Dynamic Resource Allocation Using VM

Resource Utilization: Since the local node manager collects enough information from all the physical resources locally

attached to it and relays it to a central system, the central system has sufficient information to optimize resource utilization by

optimizing factors such as CPU load and utilization time.

VM cost: Since the algorithm uses a central agent to collect resource data, it primarily focuses on allocation of these

resources to appropriate virtual machines to maximize utilization and as such does not account for whether the VM being

allocated is properly shared or not

Load Balancing: The presence of the Hotspot solver and the Coldspot solver to migrate the loads, the algorithm has a

provision for appropriate load balancing. The hotspot solver causes load migration when heavy loads are on the same system

while the coldspot solver does the exact opposite. Hence implementing sufficient load balancing.

Round Robin Based Resource Selection

Resource Utilization: The round robin algorithm executes the tasks in a circular fashion after they are initially arranged

according to the resource utilization of each task. Hence the provides a sub optimal resource utilization . It does this by

improving parameters such as response time and number of services being used by each virtual machine.

VM Cost: The absence of a central database creates a lack of centralized data of all the VM’s the cost cannot be optimized

using round robin algorithm.

Load Balancing: The initial task performed by the algorithm is an allocation of weights to the individual tasks . Tasks that are

highly weighted are usually the ones with more load and hence and executed more often providing load balancing.

VIII. ANALYSIS OF CATEGORY II ALGORITHMS

Negotiation Buyer and Seller

Resource Utilization: Negotiation between automated agents will cause the resources to be allocated from the cloud service

providers side based on client requirements stated in an SLA. As such the seller’s agent knows the resource requirements

beforehand and optimizes the utilization of each resource.

VM cost: Most sellers such AWS make sure the user has an optimal experience and in doing so always acquires a profit for

the resources provided. Hence VM cost is not optimal

Load Balancing: The negotiations between the buyer and seller do not implement implicit load balancing unless

specifically mentioned in the requirements as stated in the service level agreement.

Agent Based Scheme Architecture

Resource Utilization: Since it is primarily used in wireless platforms the methodology uses a central agent that focuses on

factors such as providing optimal resource scheduling but doesn't focus on utilization of the resources. Hence resource

utilization is sub-optimal.

VM cost: he absence of a central database creates a lack of centralized data of all the VM’s cannot be properly shared

among all the tasks and therefore VM cost is not optimal.

Load Balancing: The entire purpose of an agent server is to obtain the needs for individual users as an abstract and

perform resource scheduling while distributing the load and providing better quality of service. Hence the algorithm

provides load balancing.

International Journal of Computer Sciences and Engineering Vol. 7(16), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 29

Multi Agent System Architecture

Resource Allocation: This algorithm self manages resources by noting down the consumers requests by being dynamic,

flexibility, autonomy, and learning. The SPA sends estimates to the CA and only if the consumer accepts, the allocation

occurs successfully.

VM Cost: The cost for having a consumer agent, a broker agent as a mediator and a service provider agent is high and not cost

efficient.

Load Balancing: Load Balancing doesn’t occur because the service provider sends out estimates to consumer agent for

agreement and therefore reallocation.

Agent Based Resource Allocation Model

Resource Allocation: The requirements of applications are correctly made note of and as the requirements arrive, the database

is checked with respect to every resource broker. If one resource broker cannot satisfy the requirement, it migrates to the next

one for successful allocation

VM Cost: VM cost is low because the resource brokers allow migration in case they can’t satisfy a requirement of an

application

Load Balancing: Load balancing isn’t efficient because of migration and not re distribution of tasks.

Adaptive Resource allocation model

Resource utilization: Here resource utilization occurs because the consumer requests are systematically distributed to

different data centers and make sure resources are utilized efficiently.

VM Cost: The distance between the consumer and a data center can play a factor in increasing the cost if they are far apart

and a closer data center isn’t available for resource allocation of the consumer’s job.

Load Balancing: The consumers job sometimes gets congested at nearer data center’s rather than farther ones, hence load

balancing doesn’t occur

Market Based Model

Resource utilization: In market-based model, bidding mechanism occurs. The job with shortest time deadline occurs first and

is calculated as the winner of the k pricing mechanism offered by the service providers and the others are not.

VM Cost: There isn’t much scalability in this algorithm with respect to cost because only the winner of the bidding process is

allocated resources and the others have to keep waiting. This doesn’t provide an optimal cost solution.

Load Balancing: Load Balancing occurs because there is no congestion of workload on the servers and each winner is

allocated a resource systematically. This provides an efficient load balancing technique for the servers.

IX. ANALYSIS OF CATEGORY III ALGORITHMS

Lightweight scheduling

Resource utilization: This algorithm provides elasticity at resource level by scaling up or down resources as the requests arrive.

This fails to provide efficient resource utilization.

VM Cost: This is a cost-efficient algorithm because it calculates the cost for every server and hence re- allocates requests by

scaling them up or down as the requests arrive.

Load Balancing: Load balancing occurs efficiently because once the cost of servers is calculated and the requests arrive, the

resource allocation is scaled up or down and asks the load balancer to redistribute the resources upon every incoming request.

Optimal Resource Allocation Technique

Resource Utilization: As the name suggests this is an optimal resource allocation technique which optimally allocates the

resource as the request arrives and at every step it increases the bandwidth and processing capabilities

International Journal of Computer Sciences and Engineering Vol. 7(16), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 30

VM Cost: The cost to increase bandwidth at every step and its processing abilities along with allocating an optimal resource

allocation method to every request as it arrives is a lot.

Load Balancing: Load balancer doesn’t re allocate resources but assigns each resource to a request optimally with respect to

resource utilization instead.

Cost Compromised Technique

Resource Utilization: In cost compromised technique, the resource utilization doesn’t occur efficiently because this algorithm

seeks to improve cost and execution time.

VM Cost: The execution cost is calculated along with the execution time and the task with lowest execution time and cost is

assigned a resource. This algorithm considers cost constrained workflows.

Load Balancing: This algorithm aims to be cost efficient and instance intensive, hence the load balancer assigns tasks with least

cost an execution time to a resource.

Table 1

Resource

Scheduling Algorithm

Algorithm Parameters Resource

Utilization

VM

cost

Load

Balancing

Category

LSTR Time, Resource Utilization ✓ X X I

Profminvmmax Avaispace,

ProfminvmMin Avaispace

Response time, Service Initiation,

Number of Initiation
✓ ✓ X I

Round Robin Based Algorithm Response Time, No. of services, CPU

Usage
✓ X ✓ I

MCDA using PROMETHEE

Method

No. of iterations, No. of Physical

Machines
✓ X X I

DRM-VM CPU Load, Time, Number of

VM’s
✓ X ✓ I

Negotiation Strategy of buyer &

seller

Success rate of buyer, No. of resource

to acquire
✓ X X II

Agent Based Scheme Architecture No. of Users, No. of successful

request

X X ✓ II

Multi Agent System

Architecture

Probability of Failure, No. of

successful completion
✓ X X II

ARAM Resource utilization, No. of JA’s ✓ ✓ X II

Agent – based Adaptive

Resource Allocation

Number of Consumer, Success

Rate, Average Allocation Time
✓ X X II

Market Based Model Trading Between buyer and Seller X X ✓ II

Lightweight Scaling Number of Server, Bandwidth, Time, X ✓ ✓ III

ORAT Resource Utilization, Data

Transfer Rate, Number of

Requests, Request Loss

Probability

✓ X ✓ III

CTC Execution Cost, Execution Time X ✓ ✓ III

X. PROPOSED IMPROVED ALGORITHM

As clearly reviewed by the comparative analysis algorithms that focus on resource utilization often fail to implement load

balancing. The system we intend to propose will be a slightly more optimal version of the LSTR linear algorithm. The fact

that it is a linear algorithm prevents it from implementing effective load balancing. We propose an improved version of

LSTR in the following section.

The algorithm proposed will be combination of LSTR and round robin method.

Pseudocode for proposed improved algorithm

International Journal of Computer Sciences and Engineering Vol. 7(16), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 31

1. Create array tempA[] and tempB[] to store resource requirements from resource array R[]

2. Initialize tempA[] with R[i] such that R[i] has resource length less than threshold

3. Initialize tempB[] with R[i] such that R[i] has resource length greater than threshold

4. Sort the resources from tempB[] and place into sorted list

5. Sort the resources from tempA[] and place into sorted list

6. Allocate weights to the elements in the sorted list based on other algorithm parameters.

7. Pass the sorted and weighted list through a round robin implementation to achieve load balancing

The proposed algorithm will further improve the initial LSTR algorithm. Linear algorithms are often overlooked for

optimization due to their simplicity. In the proposed method LSTR though being a simple method will perform comparatively

better with lesser compute resources in comparison to other heavier agent and cost-based optimization algorithms.

A second proposal is an optimization to the Profminvmmax Avaispace, ProfminvmMin Avaispace algorithm. The algorithms

function by fitting the VM onto the physical device with the largest or smallest possible fit respectively. This results in sub-

optimal performance as once the VM is allocated to the physical machine the space is consumed entirely and cannot be used to

fit a larger more optimal process that could provide more resource utilization. This is very similar to the problem initially faced

when caching was developed as a solution to boost memory speed. We can apply a similar solution to this problem using the

best fit algorithm to allocate space on the VM.

Figure 4.0: Proposed Algorithmic Workflow

Best Fit : This policy allocates the process to the host in which the process gets best fit and every time checks from

the first host.

Step 1: User request for virtual machine.

Step 2: Cloud provider ask about configuration required by the consumer.

Step 3: Calculate the load of VM that we are going to allocate: Vm_l.

Step 4: Calculate the load of each host: host_l

Step 5: Calculate total load of each host Total_l = Vm_l

+ host_l

Step 6: Find Lowest Total Load

Step 7: If Total_l = <85 % Yes: Allocate Vm on this host and stop No: Find next lowest load.

Example:

Best fit algorithm will allocate VM to data centers for fulfilling the requirement of user

International Journal of Computer Sciences and Engineering Vol. 7(16), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 32

RESOURCE REQUIREMENTS FOR VMS

10 0.34

1 0.15

7 0.15

6 0.13

9 0.07

ALLOCATION OF VMs

server consolidation time server 1 server 2 server 3 server 4

t-1 v1,v9 v6,v8 v5,v10 v2,3

t-1

v4,7

t

v4(m)

t

v8(m)

v8

t

v3

v3(m)

t v2(M) v2

t v5(b) v5(b)

t

v10

t v1(m) v1

t

v7(b)

t

v6(N)

t v9(m)

v9

Vi Vi Rt(i)

4 0.49

8 0.48

3 0.47

2 0.43

0.5 0.35

International Journal of Computer Sciences and Engineering Vol. 7(16), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 33

m-profmin algorithm used

N-new server space created after

saturation b-best fit algorithm used

M-profmax algorithm used

XI. CONCLUSION

On comparing various cloud resource scheduling algorithms based on their nature and point of focus, we can see that there is

no algorithm which satisfies all three parameters taken into consideration for the analysis and hence there is always room for

improvement.

We proposed optimization technique for two algorithms and have future plans to implement the same. We need to be able to

satisfy diverse needs of the user to allocate resources. The different types of agent-based resource allocation techniques seem

more reliable than the others. It can efficiently solve the real-time task scheduling problem in cloud.

REFERENCES

[1] J. K. Author, “Title of dissertation,” Ph.D. dissertation, Abbrev. Dept.,

[2] Peter Sempolinski, Douglas Thain, “A Comparison And Critique Of Eucalyptus, Open Nebula And Nimbus”, Cloud Computing

Technology And Science (CloudCom),DOI 10.1109/CloudCom.2010,Page(s):417-426

[3] Ms.NITIKA, “Comparative Analysis Of Load Balancing Algorithms In Cloud Computing ”, International Journal Of Engineering And

Science, 2011,ISSN:2319- 1813,Page(s): 34-38

[4] Shridhar G.Domanal and G.Ram Mohana Reddy “Load Balancing In Cloud Computing Using Modified Throttled Algorithm”, IEEE

International Conference on Cloud Computing in Emerging Markets, Oct, 2013,Page(s): 1-5

[5] Hamid Shoja ,Hossein Nahid, Reza Azizi “ A Comparative Survey On Load Balancing Algorithms In Cloud Computing”, International

Conference On Computing, Communication And Networking Technologies, July,2014 , Page(s):1-5

[6] Veerawali Behal, Anil Kumar, “Cloud Computing: Performance Analysis Of Load Balancing Algorithms In Cloud Heterogeneous

Environment”, 5th International Conference Confluence The Next Generation Information Technology Summit, Sept,2014,Page(s): 200-

205

[7] George Chang, Shan Malhotra, Paul Wolgast, “Leveraging The Cloud For Robust And Efficient Lunar Image Processing”,IEEE, 2011,

Page(s):1-8

