
 © 2018, IJCSE All Rights Reserved 9

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol-6, Special Issue-8, Oct 2018 E-ISSN: 2347-2693

HIPI: A REVIEW ON HADOOP MAP REDUCE FRAMEWORK

USING IMAGE PROCESSING IN BIGDATA

1*
P.S. Vijayalakshmi,

2
K. Gomathy,

3
C. Kumuthini,

1,2,3

SNMV College of Arts and Science, Dr.N.G.P Arts and Science College,Tamilnadu,India

Available online at: www.ijcseonline.org

Abstract- Nowadays, Big data is growing vey faster in the world. Big data is the large volume of data that consists of both

structured and unstructured on a day-to-day basis. But it's not the amount of data. Big data is the data which includes sensor

data, biometric data, Geo-spatial, Healthcare, power grid, transport, search engine and in Social networks. Hadoop process

large amounts of data, in parallel, clusters of commodity hardware in a reliable and fault-tolerant manner. In this paper we

review the Image processing using Map reduce technique with the help of HIPI (the image processing Tool).

Keywords- Hadoop, Map reduce, Big data, Image Processing, HIPI

I. INTRODUCTION

Photo uploads are totally 300 million per day in the face

book
 [1]

.For Image processing In Big data uses several

tools. Here we are expressing Hadoop Map reduce using

HIPI.

1.1 Hadoop
Hadoop is an open source software framework, java based

and processing for large data sets in the distributed

environment
[3]

.Hadoop framework includes following

four modules:

● Hadoop Distributed File System (HDFS™): A

distributed file system that provides high-throughput

● Map Reduce: This is YARN-based system for

parallel processing of large data sets.

● Hadoop Common:It is a collection Java libraries and

utilities for supporting Hadoop modules.

● Hadoop YARN: This is a framework for job

scheduling and cluster resource management.

1.2 MapReduce

Hadoop Map Reduce is used for process large amounts

of data. The term Map Reduce performs two different

types of tasks
[2]

.

The Map Task: In this task,it takes input data and

converts the data. Then the individual elements are broken

down into tuples (key/value pairs).

● The Reduce Task: The Reduce task gets the output

from a map task as input and combines those data

tuples into a smaller set of tuples. If the map task is

over, the reduce task is performed
[4]

.

1.3Hadoop Distributed File System

HDFS uses a master/slave architecture .The Master

consists of a single Name Node that manages the file

system metadata and one or more slave Data Nodes that store

the actual data
[5]

.A file in an HDFS namespace is split into

several blocks and those blocks are stored in a set of Data

Nodes. The Name Node determines the mapping of blocks to

the Data Nodes. The Data Nodes takes care of read and write

operation with the file system. They also take care of block

creation, deletion and replication based on instruction given

by Name Node.

 Fig: 1 Hadoop Architecture

II.HIPI (Hadoop Image Processing Interface)

HIPI (Hadoop Image Processing Interface) is an API library

designed to provide efficient and high-throughput image

processing in the Apache Hadoop Map Reduce parallel

programming framework
[6]

. It also provides support for

OpenCV.

This is designed to be used with the Apache Hadoop Map

Reduce . HIPI is used for better performance image

processing. It is functioning with Map Reduce style parallel

http://opencv.org/
http://hadoop.apache.org/
http://hadoop.apache.org/

 International Journal of Computer Sciences and Engineering Vol.6(8), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 10

programs executed on a cluster environment. Large

collection of images on the Hadoop Distributed File

System (HDFS) and it is available for distributed

processing.

Fig-2 HIPI Architecture

The input object to a HIPI program is a HipiImageBundle

(HIB). A HIB is a collection of images in a single file on

the HDFS.

Culling is the first stage in HIPI program. It allows

filtering the images in a HIB based on a variety of user-

defined conditions in the spatial resolution to the image

metadata
[7]

. This is done by the Culler class. Images are

culled are not fully decoded, it is processing the saving

processing time.

The HibInputFormat class, at last individual images are

presented to the Mapper objects derived from the

HipiImage abstract base class with an associated

HipiImageHeader object.

The following providesa guide to setting up HIPI on your

system and writing your first MapReduce/HIPI program.

2.1. Setup Java

HIPI is written in Java and has been tested with Java 7

and 8. Check your version of Java with the following

command:

$> java -version

Java version "1.8.0_45"

Java(TM) SE Runtime Environment (build 1.8.0_45-b14)

Java HotSpot(TM) 64-Bit Server VM (build 25.45-b02,

mixed mode)

2.2. Setup Hadoop

HIPI works with a standard installation of the Apache Hadoop

Distributed File System (HDFS) and Map Reduce. HIPI has

been tested with Hadoop version 2.7.1.Verify that the main

Hadoop script is reachable from your path: $> which hadoop

/usr/local/bin/hadoop

2.3. Setup Gradle

The HIPI distribution uses the Gradle build automation system

to manage compilation and package assembly. HIPI has been

tested with Gradle version 2.5.

Install Gradle on your system and verify that it is reachable as

well: $> which gradle /usr/local/bin/gradle

2.4. Install HIPI
In two ways l HIPI will be installed on the system:

1. HIPI distribution from GitHub and build from source.

2. Download a precompiled JAR .

2.5 Clone the HIPI GitHub Repository

The better wayis to get the latest version of HIPI is by cloning

the official GitHub repository and building it along with all of

the toolsf. This only takes a few minutes and verifies that

your system is properly setup and ready to begin developing

your own HIPI applications:

$> git clone git@github.com:uvagfx/hipi.git

2.6 Build the HIPI Library and Example Programs

Run gradle to build the HIPI library along with all of the tools

and example programs:

$> cd hipi

$> gradle

:core:compileJava

:core:processResources

:core:classes

:core:jar

:tools:downloader:compileJava

:tools:downloader:processResources

:tools:downloader:classes

:tools:downloader:jar

:tools:dumpHib:compileJava

:tools:dumpHib:processResources

:tools:dumpHib:classes

:tools:dumpHib:jar

...

:install

Finished building the HIPI library along with all tools and

examples.

BUILD SUCCESSFUL

Total time: 2.058 secs

After the build finishes, to inspect the settings.gradle file in

the root directory and the build.gradle files in each directory.

$> gradle clean tools:hibImport:jar

:core:clean

...

:core:compileJava

:core:processResources UP-TO-DATE

:core:classes

:core:jar

:tools:hibImport:compileJava

:tools:hibImport:processResources UP-TO-DATE

:tools:hibImport:classes

:tools:hibImport:jar

BUILD SUCCESSFUL

Total time: 1.197 secs

HIPI is now installed on the system.

http://hipi.cs.virginia.edu/javadoc/org/hipi/imagebundle/HipiImageBundle.html
http://hipi.cs.virginia.edu/javadoc/org/hipi/mapreduce/Culler.html
http://hipi.cs.virginia.edu/javadoc/org/hipi/imagebundle/mapreduce/HibInputFormat.html
http://hipi.cs.virginia.edu/javadoc/org/hipi/image/HipiImage.html
http://hipi.cs.virginia.edu/javadoc/org/hipi/image/HipiImageHeader.html
http://gradle.org/
https://github.com/uvagfx/hipi

 International Journal of Computer Sciences and Engineering Vol.6(8), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 11

III. First HIPI Program

This is the process of creating a very simple HIPI program

that computes the average pixel color over a set of images.

First, we need a set of images to work with. Recall that

the primary input type to a HIPI program is a

HipiImageBundle (HIB), which stores a collection of

images on the Hadoop Distributed File System (HDFS).

Use the hibImport tool to create a HIB from a collection

of images on our local file system located in the directory

~/Sample Images by executing the following command

from the HIPI root directory
[8]

:

$> tools/hibImport.sh ~/SampleImages sampleimages.hib

Input image directory: /Users/jason/SampleImages

Output HIB: sampleimages.hib

Overwrite HIB if it exists: false

HIPI: Using default blockSize of [134217728].

HIPI: Using default replication factor of [1].

 ** added: 1.jpg

 ** added: 2.jpg

 ** added: 3.jpg

Created: sampleimages.hib and sample images.hib.dat

Note that import Hib actually creates two files in the

current working directory of the HDFS: sampleimages.hib

and sample images.hib.dat. Verify that this is the case

with the command: hadoop fs -ls.

We use the handy hib Info tool that comes with HIPI to

inspect the contents of this newly created HIB file:

$> tools/hibInfo.sh sampleimages.hib --show-meta

Input HIB: sampleimages.hib

Display meta data: true

Display EXIF data: false

IMAGE INDEX: 0

 640 x 480

format: 1

meta: {source=/Users/hipiuser/SampleImages/1.jpg}

IMAGE INDEX: 1

 3210 x 2500

format: 1

meta: {source=/Users/hipiuser/SampleImages/2.jpg}

IMAGE INDEX: 2

 3810 x 2540

format: 1

meta: {source=/Users/hipiuser/SampleImages/3.jpg}

Found [3] images.

Next the Gradle, create a source directory hierarchy for

the program by executing the following command in the

root directory:

$> mkdir -p examples/hello

World/src/main/java/org/hipi/examples

Next, add a Gradle build task for our new program by

creating the file examples/helloWorld/build. gradle with

the following contents:

jar {

manifest {

attributes("Main-Class": "org.hipi.examples.HelloWorld")

 }

}

We also need to update the settings .gradle file in the root

directory to tell Gradle about this new build target:

include ':core', ':tools:hibImport', ... ':examples:covar',

':examples:helloWorld'

Next, create a new Java source file at

examples/helloWorld/src/main/java/org/hipi/examples/Hello

World.java that contains the following code:

package org.hipi.examples;

import org.apache.hadoop.conf.Configured;

import org.apache.hadoop.util.Tool;

import org.apache.hadoop.util.ToolRunner;

public class HelloWorld extends Configured implements Tool

{

public int run(String[] args) throws Exception {

System.out.println("Hello HIPI!");

return 0;

 }

public static void main(String[] args) throws Exception {

ToolRunner.run(new HelloWorld(), args);

System.exit(0);

 }}

Every Java program isstart thepublic static void main()

method.In MapReduce applications, the main method in our

program uses the ToolRunner Hadoop class to call the run ()

method in this driver class.

Build this very simple program by running the command

gradle jar in the examples/helloWorld directory:

$> cd examples/helloWorld

$> gradle jar

:core:compileJava UP-TO-DATE

:core:processResources UP-TO-DATE

:core:classes UP-TO-DATE

:core:jar UP-TO-DATE

:examples:helloWorld:compileJava UP-TO-DATE

:examples:helloWorld:processResources UP-TO-DATE

:examples:helloWorld:classes UP-TO-DATE

:examples:helloWorld:jar

BUILD SUCCESSFUL

Total time: 1.191 secs

If the build is successful, it will produce the JAR file

examples/helloWorld/build/libs/helloWorld.jar directory. Run

this program using the following command from within the

examples/helloWorld directory:

 $> hadoop jar build/libs/helloWorld.jar

 Hello HIPI!

http://hipi.cs.virginia.edu/javadoc/org/hipi/imagebundle/HipiImageBundle.html

 International Journal of Computer Sciences and Engineering Vol.6(8), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 12

Use run() method in HelloWorld.java to initialize and

execute a MapReduce job and create stubs for our Mapper

and Reducer classes:

The run() method validate the arguments passed to the

program. Create the Hadoop Job object and call setter

methods on this object to specify the classes that implement

the map and reduce tasks.. The remaining lines of code setup

the path to the input file and the output directory and launch

the program.

Fig-3 HIPI Process

Fig-4 Pictures loaded in HIPI

IV.COMPUTING THE AVERAGE PIXEL COLOR

Now let's add some actual HIPI image processing code to the

program. For this example, we will be computing the average

RGB value of the pixels in the images in our input HIB. Our

mapper will compute the average pixel color over a single

image and the reducer will add these averages together and

divide by their count to compute the total average pixel color.

Because the map tasks are executed in parallel, if our Hadoop

cluster has more than one compute node we will perform this

entire operation faster than if we were using a single machine.

This is the key idea behind parallel computing in Map

Reduce. Here is what our map() method looks like

 International Journal of Computer Sciences and Engineering Vol.6(8), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 13

:

The first two arguments of the map() method are a

key/value pair (often called a "record" in Map Reduce

terminology) that are constructed by the

HibInputFormatHibRecordReader classes
[9]

. In this case,

these two arguments are a HipiImageHeader (the "key")

and a FloatImage (the "value"), respectively. In HIPI, the

first argument of the map() method must always be a

HipiImageHeader, but the second argument can be any

type that extends the abstract base class HipiImage.

Note that this map() method produces a record for each

image in the HIB which is sent to the reduce processing

stage using the context.write() method. These records

consist of an IntWritable (that is always equal to 1) and

another HIPI Float Image object that contains the image's

computed average pixel value. These records are collected

by the Map Reduce framework and become inputs to the

reduce() method as an Iterable list of Float Image objects

where they are added together and normalized to obtain

the final result:

Whenever a Map Reduce program successfully finishes, it

creates the file _SUCCESS in the output directory along with

a part-r-XXXXX file for each reduce task. The average pixel

value can be retrieved using the cat command:

$> hadoop fs -cat sampleimages_average/part-r-00000

1 Average pixel value: 0.321921 0.224995 0.150284

V. CONCLUSION

This paper has described HIPI for image processing and

vision applications on a Map Reduce framework. It is created

with the intent to operate on large sets of images. We provide

a format for storing images for efficient access within the

Map Reduce pipeline, and simple methods for creating such

file. By providing a culling stage before the mapping stage,

we give the user a simple way to filter image sets and control

the types of images being used in their Map Reduce tasks.

http://hipi.cs.virginia.edu/javadoc/org/hipi/imagebundle/mapreduce/HibInputFormat.html
http://hipi.cs.virginia.edu/javadoc/org/hipi/imagebundle/mapreduce/HibInputFormat.html
http://hipi.cs.virginia.edu/javadoc/org/hipi/image/HipiImageHeader.html
http://hipi.cs.virginia.edu/javadoc/org/hipi/image/FloatImage.html
http://hipi.cs.virginia.edu/javadoc/org/hipi/image/HipiImage.html

 International Journal of Computer Sciences and Engineering Vol.6(8), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 14

REFERENCES

[1] https://zephoria.com/top-15-valuable-facebook-statistics

[2]Hadoop map reduce

framework.http://hadoop.apache.org/mapreduce/.

[3]Customizing input file formats for image processing in hadoop.

Arizona State University. Online at:

 http://hpc. asu. edu/node/97.

[4]DEAN, J.,AND GHEMAWAT,S.2008. Mapreduce: Simplified

data processing on large clusters. Communications of the ACM

51, 1,107–113.

[5] PDF: HIPI: A Hadoop Image Processing Interface for Image-

based Map Reduce Tasks. Available from:

https://www.researchgate.net/publication/266464321_HIPI_A_Ha

doop_Image_Processing_Interface_for_Image-

based_MapReduce_Tasks [accessed Jul 18 2018].

[6] http://hipi.cs.virginia.edu/

[7] https://github.com/uvagfx/hipi

[8] http://hipi.cs.virginia.edu/gettingstarted.html

[9] http://hipi.cs.virginia.edu/examples.html

https://www.researchgate.net/publication/266464321_HIPI_A_Hadoop_Image_Processing_Interface_for_Image-based_MapReduce_Tasks
https://www.researchgate.net/publication/266464321_HIPI_A_Hadoop_Image_Processing_Interface_for_Image-based_MapReduce_Tasks
https://www.researchgate.net/publication/266464321_HIPI_A_Hadoop_Image_Processing_Interface_for_Image-based_MapReduce_Tasks
http://hipi.cs.virginia.edu/
https://github.com/uvagfx/hipi
http://hipi.cs.virginia.edu/gettingstarted.html

