
 © 2018, IJCSE All Rights Reserved 96

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol-6, Special Issue-8, Oct 2018 E-ISSN: 2347-2693

A Brief Survey Onboolean Expressions in Fault Based Techniques

1*
M. Sivaranjani,

2
D. Gayathri Devi

1,2

Dept. of Computer Science Sri Ramakrishna College of Arts and Science for Women Coimbatore, India

Available online at: www.ijcseonline.org

Abstract- Boolean expressions are major focus of specifications and they are very much prone to introduction of faults, this

survey presents various fault based testing techniques.It recognizes that the methods differ in their fault detection capabilities

and creation of test suite. The various techniques like Dealing with Constraints in Boolean Expression, Minimal Fault

Detecting Test Suites, Reducing logic test set size, A logic mutation approach, SAT and SMT Solvers for Test Generation and

Boolean Expressions by Cell Covering has been considered. This survey describes the fundamental algorithms and fault

categories used by these strategies for evaluating their performance. Finally, it contains short summaries of the papers that use

Boolean expressions used to specify the requirements for detecting faults. These techniques have been empirically evaluated by

various researchers on a simplified safety related real time conditionals system.

Keywords-Boolean Expression, BOR, Test suite, MBT.

I. INTRODUCTION

Software dimension and complexity is increasing that has

made software testing a challenging exercise. The objective of

testing is to determine error, which requires dynamic

execution of test cases that consumes significant amount of

time so it is important to investigate ways of increasing the

efficiency and effectiveness of test cases.

Test case designing is one of the important factors that

influence cost and coverage of testing. The cost depends on

size of test suit and coverage on fault detection capabilities.

Much research has been aimed at achieving high efficacy and

reduced cost of testing by selecting appropriate test cases.

Boolean expressions can be used to specify the requirements

of safety-critical software like avionics, medical and other

control software. These expressions can describe certain

conditions of specifications, to model predicates and logical

expressions. Test cases are generated on Boolean expressions

which are capable of revealing faults in programs that are

developed based on such specifications.

Many testing techniques have been proposed by various

researchers to select test cases based on Boolean

specifications; moreover test case generated by these

methodologies can guarantee to detect certain type of faults.

Boolean expressions, i.e. terms that evaluate to true or false,

are frequently found in logical predicates inside programs to

model complex conditions under which some code is

executed. They are commonly used as guards for conditional

instructions and cycles. Also in model based testing, Boolean

conditions play a very important role because they can be

found as guards of transitions and actions. They constitute a

critical part also because many typical programmer and

designer errors result in faults in Boolean expressions.

In Boolean expression, Boolean Operator testing Strategy

(BOR) is a technique suitable for test generation for singular

Boolean expression. It guarantees the detection of Boolean

operator faults, including incorrect AND/OR operators and

missing or extra Not operators.[1-3] showed that a BOR test

set for a Boolean expression is effective in detecting various

types of Boolean expression faults, including Boolean

operator faults, incorrect Boolean variables and parentheses

and their combinations.

Infeasible test requirements are demands for tests that simply

do not exist. They are an unfortunate fact of life in software

testing. They confound test engineers, who must decide if a

given test requirement really is infeasible or if a more diligent

search for a suitable input is in order. They also confound

attempts by researchers to relate coverage criteria. By

definition, an infeasible test requirement for a given criterion

does not result in a test. If the corresponding test requirement

for a ‘weaker’ criterion happens to be feasible, the

infeasibility can cause an apparently ‘stronger’ criterion to fail

to subsume the ‘weaker’ one. Many well-known cases of this

phenomenon pervade the testing literature.

This paper explores strategies for Test Case Generation for

Boolean Expressions by Cell Covering models. Boolean

expressions are found in logical predicates inside programs

and specifications which model complex conditions. This

paper, various approaches has been surveyed in which test

cases are generated from Boolean expressions that target

specific fault classes and test suites is reduced with respect to

exhaustive testing. In this article, it is assumed that readers are

familiar with notations and terminologies of Boolean

expressions.

 International Journal of Computer Sciences and Engineering Vol.6(8), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 97

II. TYPES OF FAULTY DETECTION

There are various types of faulty techniques namely,

1. Cause effect graph

2. Branch Operator Strategy (BOR)

3. BOR+MI

4. MUMCUT

5. Modified Condition/Decision Coverage (MCDC)

 Cause effect graph: It focuses on modelling dependency

relationships among program input conditions known as

causes, and output conditions known as, effects.

 Advantages:It helps us to determine the root causes

of a problem or quality using a structured approach.

 Disadvantages:The process of creating decision

table is inconsistent and ambiguous.

 BOR: It guarantees the detection of Boolean operator

faults, including incorrect AND/OR operators and

missing or extra Not operators.

 Advantages:It’sincluding Boolean operator faults,

incorrect Boolean variables and parentheses and

their combinations.

 Disadvantages:BOR strategy is not suitable for non

singular expressions.

 BOR+MI: Meaningful Impact (MI) testing

strategycombines BOR.This is hybrid algorithm

partitions an input Boolean expression in to components

such that BOR strategy can be applied to some and MI

strategy to remaining components.

 Advantages:The test constraints for individual

components are combined using BOR strategy.

 Disadvantages:It produces a smaller test constraint

set for Boolean expression.

 MUMCUT: Itintegrates the Multiple Unique True Point

(MUTP), Multiple Near False Point (MNFP) and

Corresponding Unique True Point and Near False Point

Pair (CUTPNFP).

 Advantages:It guarantees the detection of certain

faults in logical decisions in disjunctive normal.

 Disadvantages:It may still miss some faults that can

almost always be detected by test sets.

 MCDC:The pair for a condition is one that changes the

output on varying the input from “f” to “t” while keeping

the other conditions fixed.

 Advantages:MC/DC test sets are effective.

 Disadvantages:It cannot be broken down into

simpler Boolean expressions.

According to the types of faulty detection techniques,

Performance of MCDC is much better than BOR for all kinds

of Faults. The size of the test suite is also comparable to

BOR.MUMCUT detects all faults detected by MI and the test

generated is a subset of test sets generated by MI and the size

of test suit is much smaller.

III. RELATED WORK

A. Gargantini (2011)[4]proposedWhen testing a Boolean

expression, one should consider also the constraints among

the variables contained in it. Constraints model

interdependence among the conditions in the expressions. The

author presented three ways to deal with such constraints: (1)

ignoring them during test generation and removing invalid

tests later, (2) including them in the expression as conjoint

and again removing invalid tests later, and (3) considering

them during the test generation process in order to generate

only valid tests from the start. Meanwhile, introduced a

general framework in which the three policies are

implemented and compared over a set of Boolean expressions

commonly used as benchmarks. Although the third policy

requires a constraints solving technique for actual test

generation, it presents several benefits: it generates smaller

test suites and it may require less time for tests generation.

G. Fraser and A. Gargantini(2011)[5] described a method

that generates test cases directly from an expression's possible

faults, guaranteeing that faults of any chosen class will be

detected. In contrast to many previous criteria, this approach

does not require the Boolean expressions to be in disjunctive

normal form (DNF), but allows expressions in any format,

using any deliberate fault classes.

Fig.1: The basic process of generating tests

In figure 1, given a set of fault classes and Boolean

expressions, test predicates are generated (1). The test suite

generator (2) uses a SAT or SMT (Satisfiability Modulo

Theories) solver to look for a model for each of these test

predicates; if a model exists, this can serve as a test case.

G. Kaminski and P. Ammann(2011)[6] presentedminimal

Conjunctive Normal Form (CNF), and general form Boolean

expressions. With Minimal-MUMCUT, a determination is

made of which constituent criteria are feasible, and hence

necessary, at the level of individual literals and terms. An

empirical study found that Minimal-MUMCUT reduces the

test set size, without sacrificing fault detection, regardless of

the predicate format.

Test predicate

generator

Test suite

generator
Test

suite
Set of test

predicates

Fault

Classes

Boolean

Expression

Model

= Test

SAT/SMT

Test

predicate

1

2

3

 International Journal of Computer Sciences and Engineering Vol.6(8), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 98

In figure 2 (a), shows a solid arrow from a source fault to a

destination fault indicates that if a test detects a source fault, it

also detects a corresponding destination fault. Figure 2 (b) a

solid arrows from a source faults to a destination faults again

indicates that if a test detects a source fault, it also detects a

corresponding destination fault.

(a) (b)

Fig.2: (a) Fault class hierarchy Modified; (b) fault class

hierarchy.

G. Kaminski, et.al.(2011)[7] explored the idea of addressing

these issues by selectively generating only specially

engineered subsuming higher order logic mutants. However,

such an approach is only useful if a test set that kills all such

mutants also kills a high percentage of general mutants.

Method: An empirical study was conducted using a tool that

generates only subsuming higher order logic mutants and

tools that generate general mutants. Both Java code and SQL

were used as the source under test.

Godefroid, P., Levin, M. Y., and Molnar, D.(2012) [8]

presented Whitebox fuzzing was first implemented in the tool

SAGE, short for Scalable Automated Guided Execution.

Because SAGE targets large applications where a single

execution may contain hundreds of millions of instructions,

symbolic execution is its slowest component. Therefore,

SAGE implements a novel directed search algorithm—

dubbed generational search—that maximizes the number of

new input tests generated from each symbolic execution.

Peleska, J.(2013)[9] presented a model-based testing (MBT)

is considered as leading-edge technology in industry. The key

factors for successful industrial-scale application of MBT are

described, both from a scientific and a managerial point of

view. With respect to the former view, to describe the

techniques for automated test case, test data and test

procedure generation for concurrent reactive real-time

systems which are considered as the most important enablers

for MBT in practice.

Fig.3: Components of the RT-Tester test case/test data

generator

The starting point for MBT is a concrete test model

describing the expected behaviour of the system under test

(SUT) and, optionally, the behaviour of the operational

environment to be simulated in test executions by the testing

environment (TE) (see Fig. 3).

P. Arcaini, A. Gargantini, and E. Riccobene(2015) [10]

discussed the context of automatic test generation, the use of

propositional satisfiability (SAT) and Satisfiability Modulo

Theories (SMT) solvers is becoming an attractive alternative

to traditional algorithmic test generation methods, especially

when testing Boolean expressions. The main advantages are

the capability to deal with constraints over the inputs, the

generation of compact test suites, and the support for fault

detecting test generation methods. However, these solvers

normally require more time and a greater amount of

memorythan classical test generation algorithms, making their

applicability not always feasible in practice.

Lian Yu and Wei-Tek Tsai(2018) [11] discussed

characterizes Boolean expression faults as changes of the

topological structures in terms of shrinking and/or expanding

regions in K-map. A cell-covering is a set of cells (test cases)

in K-map to cover the fault regions such that faults guarantee

to be detected. Minimizing cell covering can be formulated as

an Integer Linear Programming (ILP) problem. By analyzing

the structures of the constraint coefficient matrix, the original

problem can be decomposed into sub-programs that can be

solved instead of the original problem, and this significantly

reduces the time needed for ILP execution. An efficient

approximate algorithm with a tight theoretical bound is used

to address those complex Boolean expressions by

corresponding the cell-covering problem to the setcovering

problem. The optimal approach and the approximate approach

are combined into a hybrid process to identify test cases based

on the fraction analysis on the ILP relaxation.

 International Journal of Computer Sciences and Engineering Vol.6(8), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 99

Fig.4: The process to generate test cases for Boolean

expressions

IV. BOOLEAN EXPRESSION SOLVING PROCEDURE

A. Boolean Operator testing Strategy

A test set T(E) is said to be a BOR test set for E if T(E)

satisfies the BOR testing strategy for E. If E is a simple

Boolean expression then the minimum BOR test set for E is

given by {(t),(f)}. If E is a compound Boolean expression,

then E can be represented as E1 op E2, where op could be

either or +, and E1, E2 are either simple or compound

Boolean expressions.Seven test cases selected for N7 by

applying

aproach{(t,f,t,t)(f,t,t,t)(f,f,t,t)(t,f,t,f)(t,f,f,t)(t,f,f,f)(f,f,f,f)}onfig

ure5.

 N1 N2 N3 N4

Fig. 5: A cause Effect Graph

Example: a two lowest test sets created for node N7 of

figure 1 by applying BORstrategy

St (N7)={(t,f,t,t)(f,t,t,t)}

Sf(N7)={(f,f,t,t)(t,f,t,f) or {f,f,t,t)(f,t,t,f)(f,t,f,t)}

B. BOR+MI

The BOR+MI strategy and MI strategy have comparable fault

detection capability.

Algorithm for BOR+MI

Step 1: separation Boolean expression BE into equally

singular components.

Step 2: Create test cases using BOR for every singular

component.

Step 3: Create test cases using MI for non singular

components.

Step 4: Join the conditions generated above

Example: Let BE=a(bc+¬bd) the generated test cases by

BOR+MI are

S
t
BE={(t,t,t,f)(t,f,t,t)

S
f
BE ={(f,t,t,f)(t,f,t,f)(t,t,f,t)

C. Minimal-MUMCUT

The minimal-MUMCUT selectsthe test points in Unique True

Point UTP(i) such that every truth value of every missing

variable is covered.

Example: Let E= ab + cd

Set of test cases generated using MUMCUT

By applying MUTP strategy{(t,t,f,t)(t,t,t,f)(f,t,t,t)(t,f,t,t)

By applying MNFP strategy{(f,t,f,t)(f,t,t,f)(t,f,f,t)(t,f,t,f)

Byapplying CUTPNFP strategy

{(t,t,f,t)(f,t,f,t)(t,f,f,t)(f,t,t,t)(f,t,f,t) f,,t,t,f)}

The efficiency of above revealed strategies is mostly assessed

in terms of their ability in identifying faulty mutations.

V. COMPARISON ANALYSIS

This article, it is assumed that readers are familiar with

notations and terminologies of Boolean expressions. This

survey aims at presenting such techniques at one place and

form a basis for comparison among these techniques.Many

different approaches have been projected to assistBoolean

Expressions, Fault based Techniques, which has mentioned in

a body of literature that is spread over a wide variety of fields

and periodicallocations. The comparison of this survey study

has been evaluated and particularly in the software testing and

software maintenance literature. The table 1 shows the

comparative study of Boolean expressions.

Table 1: COMPARISON OF BOOLEAN EXPRESSIONS FAULT BASED METHODS

Title Algorithm Key-Idea Techniques Results Performance

Using Logic Criterion

Feasibility to Reduce

Test Set Size While

Guaranteeing Fault

Detection(2009) [12]

Minimal-

MUMCUT

To reduce test

set size without

sacrificing fault

detection.

Disjunctive

Normal Form.

The approach was

examined on a

sample of

predicates (having

from 5 to 13

unique literals) in

80% of these

predicates were in

minimal DNF.

N7

 AND

N8

OR

N5

OR
N6

 AND

 International Journal of Computer Sciences and Engineering Vol.6(8), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 100

avionics software.

Using Logic Criterion

Feasibility to Reduce

Test Set Size While

Guaranteeing Double

Fault Detection (2009)

[13]

Minimal-

MUMCUT and

heuristicalgorithm.

To detect

double faults

and kill

second-order

mutants.

Logic Testing,

Logic Criteria

and Fault

Coupling.

Parent criterion

without sacrificing

fault detection.

Double fault types

99.91% of the

double faults were

detected.

Applications of

Optimization to Logic

Testing(2010) [14]

Greedy algorithm To minimize

test set size

subject to

guaranteeing

fault detection.

Software Logic

Testing, Logic

Criteria,

MUMCUT,

Disjunctive

Normal Form.

Maximizing the

number of faults

detected subject to

a test set size.

Fault detection

percentage for the

worst case

(0.35%), random

case (6.13%), and

best case

(15.97%) for a

single test.

Dealing with

Constraints in Boolean

Expression

Testing(2011) [4]

Test generation

algorithm.

Dealing with

Constraints

variables.

Ignoring the

constraints(IGN),

Including the

constraints (INC)

and Generating

only valid tests

(VAL).

VAL policy

presents several

benefits: reduced

test suite size,

complete fault

detection.

Increases the test

size by 48%.

Generating Minimal

Fault Detecting Test

Suites for General

Boolean Specifications

(2011) [5]

Disjunctive

normal form

(DNF).

Test cases

directly from

an expression's

possible faults,

guaranteeing

that faults of

any chosen

class will be

detected.

Fault-based

testing and SMT

solvers.

Clearly improves

over state of the art

criteria for general

form Boolean

expressions.

Reduce the test

suite size by 81%.

Reducing logic test set

size while preserving

fault detection (2011)

[6]

Minimal-

MUMCUT.

Reducing test

set size without

sacrificing

single or

double fault

detection.

Minimal DNF

and Minimal

CNF.

The result in an

equivalent fault in

that no input can

distinguish the

original predicate

from the faulty

version.

Double fault type,

99.91% of the

faults was

detected.

A logic mutation

approach to selective

mutation for programs

and queries (2011) [7]

Term Insertion

Fault (TIF)/Literal

Omission Fault

(LOF) algorithm.

Addressing the

specific miss

detection

issues.

Logic faults and

mutation

analysis.

Higher order logic

mutation is an

effective approach

to selective

mutation for

programs and

queries.

Mutation score of

84.57%.

Industrial-Strength

Model-Based Testing -

State of the Art and

Current Challenges

(2013) [9]

Model-based

testing (MBT)

Techniques for

automated test

case, test data

and test

procedure

generation.

Satisfiability

modulo theory

(SMT)

Performed by

adding constraints

identified during

test observations.

70% reduced

Model Coverage

Test Cases.

How to Optimize the

Use of SAT and SMT

Solvers for Test

Generation of Boolean

greedy,

Propositional

satisfiability

(SAT) and

To deal with

constraints over

the inputs.

Test computation

and Coverage

evaluation.

The final results

may strongly

depend on the

choices done at the

Test suite is

maximum 10%

bigger than the

(optimal) smallest

 International Journal of Computer Sciences and Engineering Vol.6(8), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 101

Expressions (2015) [10] Satisfiability

Modulo Theories

(SMT).

input level. test suite

Test Case Generation

for Boolean Expressions

by Cell Covering (2018)

[11]

Approximate

algorithm.

Analyzing the

structures of

the constraint

coefficient

matrix.

Boolean

expression

testing, fault

characterization.

Obtains optimal

solutions quickly,

and produces near-

optimal solutions

rapidly for those

rare and complex

expressions.

Time consumption

is not more than 4

seconds.

Table 2: COMPARISON OF SPEED, COST AND QUALITY BOOLEAN EXPRESSIONS FAULT TECHNIQUES

TECHNIQUES SPEED COST QUALITY

Disjunctive Normal

Form (DNF)

Only 3% of these

predicates contained

five or more unique

High Fault detection of 1.30% of

the size needed if feasibility

is not considered.

SMT 40% speed up the test

case and test data

generation process.

High

computational.

Better quality.

Boolean expression

testing (BET)

High Low High

In table 2 represents a comparison of Boolean expression techniques of speed, cost and quality measures. According to this

comparison the Boolean expression by cell covering techniques performs better prediction than other existing techniques.

Fig.5: Comparison chart of Boolean expressions faulty techniques

VI. CONCLUSION

This paper presentsa brief survey about Test Case Generation

for Boolean Expressions by Cell Covering discussed with the

different categories.Much of the published research in fault

class analysis was based on empirical evidences, an empirical

evaluation of the Boolean expressions and fault detection

capabilities based approach has been performed. Boolean

expressions from literature various performance and

effectiveness of the testing techniques based on fault based

analysis. Logic Mutation expressions were generated from the

given Boolean expressions by making syntactic change based

on particular type of fault. The results were in favour of cell-

covering Method for detection of all fault classes, but the size

of test suite is large. Boolean expressionapproximate

technique has been originally designed for the detection of

missing/extra negation operators; therefore, it does not

guarantee the detection of other faults.

 International Journal of Computer Sciences and Engineering Vol.6(8), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 102

The further work enhancedand expandedfor the Boolean

expressions technique for Depth first Searching algorithm to

detect the faults conditions analysis can make the more

efficient algorithm.

REFERENCES

[1] K.C. Tai. Theory of Fault Based Predicate Testing for Computer

Programs, IEEE Transactions of Software Engineering, vol 22, no

8, pp 552-562, 1996

[2] K.C Tai. M.A Vouk., A. Paradkar., Lu P. , "Predicate Based

Testing," IBM Systems Journal, Vol 33 (3), p 445, 1994

[3] M. A. Vouk, K. C. Tai, and A. Paradkar. Empirical Studies of

Predicate-based Software Testing. In 5th International Symposium

on Software Reliability Engineering, pages 55–64. IEEE, 1994.

[4] A. Gargantini, “Dealing with constraints in boolean expression

testing,” in Proc. 3rd Workshop Constraints Softw. Testing

Verification Anal., Mar. 25, 2011, pp. 322- -327.

[5] G. Fraser and A. Gargantini, “Generating minimal fault detecting

test suites for boolean expressions,” in Proc. 3rd Int. Conf. Softw.

Testing Verification Validation Workshops, Apr. 2010, pp. 37–45.

[6] G. Kaminski and P. Ammann, “Reducing logic test set size while

preserving fault detection,” Softw. Testing, Verification Rel., vol.

21, pp. 155–193, 2011.

[7] 21] G. Kaminski, U. Praphamontripong, P. Ammann, and J.

Offutt, “A logic mutation approach to selective mutation for

programs and queries,” Inf. Softw. Technol., vol. 53, pp. 1137–

1152, 2011.

[8] Godefroid, P., Levin, M. Y., and Molnar, D. (2012) SAGE:

Whitebox fuzzing for security testing. Commun. ACM, 55, 40-44.

[9] Peleska, J. (2013) Industrial-strength Model-Based Testing - state

of the art and current challenges. In Petrenko, A. K. and Schlinglo,

H. (eds.), Proceedings Eighth Workshop on Model-Based Testing,

MBT 2013, Rome, Italy, 17th March 2013, EPTCS, 111, pp. 3-28.

[10] P. Arcaini, A. Gargantini, and E. Riccobene, “How to optimize the

use of SAT and SMT solvers for test generation of boolean

expressions,” Comput. J., vol. 58, pp. 2900–2920, Jan. 21, 2015.

[11] Lian Yu and Wei-Tek Tsai, "Test Case Generation for Boolean

Expressions by Cell Covering", IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 44, NO. 1, JANUARY

2018.

[12] Kaminski G, Ammann P. Using logic criterion feasibility to reduce

test set size while guaranteeing fault detection. Proceedings of the

2nd International Conference on Software Testing, Verification

and Validation, Denver, CO, April 2009; 167–176.

[13] Kaminski G, Ammann P. Using logic criterion feasibility to reduce

test set size while guaranteeing double fault detection. Proceedings

of the Mutation Workshop at the 2nd International Conference on

Software Testing, Verification and Validation, Denver, CO, April

2009.

[14] G. Kaminski and P. Ammann, “Applications of optimization to

logic testing,” in Proc. Softw. Testing, Verification Validation

Workshops, 2010, pp. 331–336.

