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Abstract— In this paper, we prove the existence of proper d – lucky labeling of the arbitrary super subdivision of some new 

family of graphs (         )and [     :    
( )

 graphs and their proper d- lucky numbers are obtained. 
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I.  INTRODUCTION  

In recent years, graph labeling is one of the most popular 

active research area in  Graph Theory. It is an assignment of 

labels to the vertices or edges or both, subject to certain 

constraints. The concept of d- lucky labeling of graphs was 

introduced by Mirka Miller et al[7] . It is defined as a 

function   : V(G)  N, the vertices of G are assigned by 

positive integers. Define  c(u) =∑  ( )   ( )  + d(u) where 

d(u) denotes the degree of the vertex u and N(u) denotes the 

open neighborhood of u. The labeling is said to be d- lucky if 

c(u)   c(v) for every adjacent vertices u and v. The d-lucky 

numbers for certain graphs are obtained in [1,2,7].The proper 

lucky number of mesh and it’s derived architectures were 

studied by KinsYenoke et.al[6]. Esakkiammalet.al[3] 

introduced the concept of proper d-lucky labeling and is 

defined as follows:A d-lucky labeling is called proper if     
(u)    (v) for every adjacent vertices u and v. The proper d- 

lucky number of a graph  is the least positive integer k such 

that the graph G has a proper d- lucky labeling with  {1, 

2,…,k} as the set of labels and is denoted by ηpdl(G) . The 

proper d- lucky number for the arbitrary super subdivision of 

(         )and (    :    )  graphs were obtained[3].In this 

paper the proper d-lucky numbers for the arbitrary super 

subdivision of  (         ) and [      :    
( )

  graphsare 

obtained. The following definitions are prerequisites for the 

present investigation. 

A graph is said to be an arbitrary super subdivision of a 

graph G if it is obtained from G by replacing each edge ei by 

a complete bipartite graph      
(where   is any positive 

integer and may vary for each edge arbitrarily) in such a way 

that the ends of each edge eiare merged with the two vertices 

of  2-vertices part of      
 after removing the edge from G 

and it is denoted by ASS(G). The cubical graph Q3 is a 3-

regular graph with 8 vertices.Also the friendship graph   
( )

  

is obtained from two copies of    with the common vertex  

        , where the vertices of  first copy  are denoted by  

                  and the vertices of second copy  are denoted 

by                 . For all terminologies and notions one may 

refer [4,5]. 

II. MAIN RESULTS 

A. Structure of arbitrary super subdivision of (     :     ) 

graph 

Let (     :     ) be a graph obtained from the path graph 

   and m+1 copies of cubical   graph    by joining the 

vertex    in      with the vertex      in the i
th

 copy of    by 

an edge for 1≤ i ≤ m+1, where vertices of 

                  …      and the vertices of i
th

 copy    are 

         …       . The vertex set and the edge set of (      :  

   ) are as follows. 

V ((     :     )) = {   ,     /1≤ i ≤ m+1; 1≤ j ≤ 8}; 

E ((     :     )) = {   =     (   ) / 1≤ i ≤ m}  {     =        / 

1≤ i ≤ m+1}                =      (   )  ⁄       

            ,for j=4 the subscript j+1 reduced to 1} 

                 (   )   (   ) /1≤ i ≤ m+1; 1≤ j ≤ 4,for 

j=4 the subscript j+5 reduced to 5}   {              

      (   ) } /1≤ i ≤ m+1; 1≤ j ≤ 4}.This (     :     ) graph has 

9(m+1) vertices and 14m+13 edges. 

https://doi.org/10.26438/ijcse/v7si5.14
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Figure 1. Structure of (     :    ) graph 

The arbitrary super subdivision of (      :     ) graph is 

obtained from (     :     ) graph in such a way that each edge 

    of (     :     ) graph is replaced by       
 , where   ϵ N,  

1≤ i ≤14m+13. This graph is denoted by ASS ((     :     )). 

The vertex set and edge set are given as follows: 

V (ASS((     :     ))) = {   ,    /1≤ i ≤ m+1; 1≤ j ≤ 8}  

{  (   )
( )

 /1≤ i ≤ m; 1≤ k ≤   }  { (  ) 
( )

 /1≤ i ≤ m+1; 1≤ k 

≤     }  {    
( )

 /1≤ i ≤ m+1; 1≤ j ≤ 4  ;1≤ k ≤ 

             {    
( )

 /1≤ i ≤ m+1; 1≤ j ≤ 4 ;1≤ k ≤ 

              {  (   )
( )

/ 1≤ i ≤ m+1; 1≤ j ≤ 4;1≤ k ≤ 

           }  

E(ASS ((     :     ))) = {     (   )
( )

   (   )
( )

     / 1≤ i ≤ m; 1≤ 

k ≤    }  {    (  ) 
( )

 , (  ) 
( )

    / 1≤ i ≤ m+1; 1≤ k ≤ 

    }  {       
( )

    
( )

  (   ) /1≤i≤m+1; 1≤ j ≤ 3 ; 1≤ k ≤ 

            }   {        
( )

    
( )

   /1≤ i ≤ m+1; 1≤ k ≤ 

         }  {  (   )   (   )
( )

    (   )
( )

  (   )  /1≤ i ≤ m+1; 1≤ 

k ≤            , 1≤ j ≤ 3} {       
( )

    
( )

    /1≤ i ≤ m+1; 

1≤ k ≤          } {       
( )

    
( )

  (   ) /1≤ i ≤ m+1; 1≤ j 

≤ 4 ;1≤ k ≤            }.  

This graph has 9(m+1) + ∑   
      
     vertices and 

2(∑   
      
   ) edges.  

 
Figure 2. Structure of ASS((     :    )) graph 

Here m = 2 ,  = 2,   = 2,   = 1,   = 1,  = 1,   = 3, 

  = 2,   = 3,  = 2,    = 1,         = 2,    = 1,   = 2, 

   = 1,    = 1,    = 3,   = 2,    = 2,    = 3,   = 

2,   = 2,    = 2,    = 1,   = 2,    = 1,    = 1,    = 

2,   = 2,    = 1,    = 2,    = 3,   = 2,    = 3,    = 2, 

   = 1,   = 2,    = 1,    = 1,    = 2,   = 2,   = 1. 

Algorithm 2.1.Proper d-lucky labeling of ASS ((      :  

   )) graph 

Procedure. Vertex labeling of ASS ((     :     )) graph 

Input. ASS ((     :     )) graph 

 V {   ,    /1≤ i ≤ m+1; 1≤ j ≤ 8}  {  (   )
( )

 /1≤ i ≤ m; 1≤ k 

≤   }   {(  ) 
( )

 /1≤ i ≤ m+1;      1≤ k ≤     }  {   
( )

 /1≤ 

i ≤ m+1; 1≤ j ≤ 4  ;1≤ k ≤             } {  (   )
( )

/ 1≤ i ≤ 

m+1;        1≤ j ≤ 4 ; 1≤ k ≤            }   {    
( )

 /1≤ i ≤ 

m+1; 1≤ j ≤ 4  ;1≤ k ≤            } 

fori = 1 to m do 

for k = 1 to     do 

  (   )
( )

  k+1; 

end for 

end for 

fori = 1 to m+1 do 

     1; 

for j = 1 to 8 do 

       1; 

end for 
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for k = 1 to       do 

 (  ) 
( )

  k+1; 

end for 

for j = 1 to 4 do 

 for k = 1 to               do 

     
( )

  k+1; 

 end for 

 for k = 1 to              do 

    (   )
( )

  k+1; 

 end for 

 for k = 1 to              do 

     
( )

  k+1; 

 end for 

end for 

end for 

end procedure 

Output: The vertex labeled ASS ((     :     )) graph. 

Theorem 2.1.The arbitrary super subdivision of (     :     ) 

graph admits proper d- lucky   labeling and the proper d- 

lucky number is  

ηpdl(ASS((   :   ))) = max{                        

Proof. Consider ASS ((      :     )) , the arbitrary super 

subdivision of (     :     ) graph whose vertices and edges 

are given as in structure 2.1. The vertices of ASS ((      :  

   )) graph are labeled by defining a function  :V(ASS((     :  

   )))  N as given in the algorithm 2.1. Clearly all the 

adjacent vertices have distinct labels. Hence the graph is 

properly labeled. The degrees of the vertices are:  

d (   ) =   +     ;d (     ) =   +      ; 

For 2≤ i ≤ m, d (   ) =     +  +    ;  

For 1≤ i ≤ m, 1≤ k ≤    , d (  (   )
( )

) = 2; 

For 1≤ i ≤ m+1, 1≤ k ≤       , d ((  ) 
( )

) = 2;  

For 1≤ i ≤ m+1, d (    ) =      +            +          + 

         ; 

For 1≤ i ≤ m+1, 2≤ j ≤ 4, d (     ) =              + 

            + +            ; 

For 1≤ i ≤ m+1, 6≤ j ≤ 8, d (     ) =              + 

            +           ; 

For 1≤ i ≤ m+1, d (     ) =            + 

         +         ; 

For 1≤ i ≤ m+1, 1≤ j ≤ 8, 1≤ k ≤              ; d (   
( )

) = 2 

; 

For 1≤ i ≤ m+1, 1≤ j ≤ 4, 1≤ k ≤             ; d (   
( )

) = 2 

Now c (u)  s are calculated as follows: 

c (   ) = 
 

 
 (  

  +      
  + 5(   +     )) ;  

c (     ) = 
 

 
 (  

  +       
  + 5(   +      )) ;  

For 2≤ i ≤ m, c (   ) = 
 

 
 (    

  +   
      

  + 5(     +     

+    )) ; 

For 1≤ i ≤ m,           c (  (   )
( )

) = 4;   

For 1≤ i ≤ m+1, 1≤ k ≤      ,c ((  ) 
( )

) = 4 ; 

For 1≤ i ≤ m+1,  

c (    ) = 
 

 
 (    

 +           
  +         

 +          
 +  

5(    +             +         +         )); 

For 1≤ i ≤ m+1, 2≤ j ≤ 4,  

c (    ) =  
 

 
 (            

   +             
  +            

 + 

 5(             +             +            )); 

For 1≤ i ≤ m+1, 6≤ j ≤ 8,  

c (    ) =  
 

 
 (            

   +             
  +            

  

+  

5(             +                +           )); 

For 1≤ i ≤ m+1,  

c (    ) =  
 

 
 (         

   +          
  +          

  + 

 5(          +          +         )); 

For 1≤ i ≤ m+1, 1≤ j ≤ 8,1≤ k ≤                c (   
( )

) = 4 ; 

For 1≤ i ≤ m+1, 1≤ j ≤ 4,1≤ k ≤            , c (   
( )

) = 4 ; 

Thus c (u)   c (v) for every uv   E, Therefore ASS ((     :  

   )) is a proper d- lucky labeled graph and ηpdl(ASS ((     :  

   )))  = max{                    
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Example

 
Figure 3. The proper d-lucky labeled ASS ((     :     )) 

B. Structure of arbitrary super subdivision of       :    
( )

  

Let [    :    
( )

   be a graph obtained the path graph    and  

m+1 copies of friendship graph   
( )

 , where the 

vertex     in                    the vertex            in the 

i
th

 copy of   
( )

for 1≤ i ≤ m+1,where the vertices of the path 

graph     are         ,…,      and the vertices of  i
th

 copy 

  
( )

 are     =         ,                         .The 

vertex set and the edge set of [     :    
( )

   are as follows.   

V ( [    :    
( )

  ) = {    =    =         ,     /1≤ i ≤ m+1; 2≤ j 

≤ n}. 

E ( [      :    
( )

  ) = {    =     (   ) /1≤ i ≤ m}                                  

{     (   )          (   ) / 1≤ i ≤ m+1; 1 ≤ j ≤ n}                                  

{    (    )          (   ) / 1≤ i ≤ m+1; 1 ≤ j ≤ n},where 

the subscript j=n+1 reduces to modulo n  This [    :    
( )

  
graph has (m+1) (2n-1) vertices and 2n (m+1)+ m edges. 

 
Figure 4. Structure of [     :    

( )
  graph 

The arbitrary super subdivision of [      :   
( )

  graph is  

obtained from [     :    
( )

  graph in such a way that each 

edge     of [     :    
( )

] graph is replaced by       
 , where 

  ϵ N, 1≤ i ≤ 2n(m+1)+m. The vertex set and edge set are 

given as follows: 

V (ASS( [      :    
( )

  )) = {  (   )
( )

 /1≤ i ≤ m; 1≤ k ≤     

} {   =    =    ,     ,    / 1≤ i ≤ m+1; 2 ≤ j ≤ n} {   
( )

 /1≤ i 

≤ m+1;1≤ j ≤ n; 1≤ k ≤      (   )  }   {   
( )

 / 1≤ i ≤ 

m+1;1≤ j ≤ n;  1≤ k ≤     (    )  }. 

E( ASS ( [     :    
( )

  ) )= {     (   )
( )

    (   )
( )

 (   )  /   1≤ i ≤ 

m; 1≤ k ≤    }  {       
( )

,    
( )

  (   ) / 1≤ i ≤ m+1;1≤ j ≤ n; 

1≤ k ≤      (   )   }   {      
( )

    
( )

  (   )/1≤ i ≤m+1;1≤ 

j≤ n;1≤k≤     (    )  },  where the  subscript j=n+1 

reduces to modulo n . This graph is denoted by ASS ( [     :  

  
( )

  ) and has (m+1) (2n-1)+∑   
  (   )  
     vertices and 

2(∑   
  (   )  
     ) edges. 

 
Figure 5. Structure of ASS( [     :    

( )
  ) graph 

Here m = 1, n =4, ,  = 3,   = 1,   = 3,   = 3,  = 1,   = 

1,   = 3,   = 3,   = 1,     = 1,     = 3,    = 3,    = 1, 

   = 1,    = 3,    = 3,    = 1.  

Algorithm 2.2.  Proper d- lucky labeling of ASS ( [     :  

  
( )

  ) graph 

Procedure.Vertex labeling of ASS ( [     :    
( )

  ) graph 
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Input. ASS ( [    :    
( )

  ) graph 

V {   =     =    ,     ,    /1≤ i ≤ m+1; 2 ≤ j ≤ n} {   
( )

 /1≤ 

i ≤ m+1; 1 ≤ j ≤ n; 1≤ k ≤      (   )  } {   
( )

/1≤i≤ m+1;1 

≤j≤ n;1≤k≤     (    )  }  {  (   )
( )

 /1≤ i ≤ m;        1≤ k ≤ 

  }. 

for i = 1 to m+1 do 

     1; 

for j = 2 to n do 

        1;      1 

 end for 

for j = 1 to n do 

  for k = 1 to       (   )   do 

      
( )

  k+1; 

end for    

for k = 1 to      (    )   do 

      
( )

  k+1; 

end for 

 end for 

end for 

fori = 1 to m   

for k = 1 to     do 

     
( )

  k+1; 

 end for 

end for 

end procedure. 

Output: The vertex labeled ASS ( [     :    
( )

  ) graph. 

Theorem 2.2. The arbitrary super subdivision of [    :   
( )

  
graph admits proper d- lucky labeling and the proper d- lucky 

number number is 

ηpdl(ASS( [    :   
( )

  )) is max{            (   )  
     . 

Proof.Consider ASS ( [      :    
( )

  ) , the arbitrary super 

subdivision of [     :    
( )

  graph, where each edge      of 

[     :  
( )

  graph is subdivided by       
,   ϵ N, 1 ≤ i ≤ 

2n(m+1)+m. The vertices  of ASS( [     :    
( )

  ) graph are 

labeled by defining a function  :V(ASS( [   :  
( )

])   N as 

given in the algorithm 2.2.Since all the adjacent vertices have 

distinct labels, the vertices are properly labeled. The degrees 

of the vertices are:  

d(    =      =     ) =     +      +     +        + 

     ; 

d(  (   )   (   ) =  (   ) ) =   +   (    )   

+  (    )   +   (    )     + 

   (   )   ; 

For 2 ≤ i ≤ m,  

d (       =   )=     +    +      (   )   +            + 

     (    )   +       ; 

For 1≤ i ≤ m+1,2≤ j ≤ n , d (     ) =       (   )     

+     (   )  ; 

d (    ) =      (    )     +     (    )  ; 

For 1≤ i ≤ m , 1≤ k ≤   , d (  (   )
( )

) = 2 ; 

For 1≤ i ≤ m+1, 1≤ j ≤ n ;1≤ k ≤      (   )   , d (   
( )

) = 2 ; 

For 1≤ i ≤ m+1, 1≤ j ≤ n, 1≤ k ≤     (    )   , d (   
( )

) = 2. 

Now c (u) s  are calculated as follows: 

c (    =      =     ) = 
 

 
 (  

  +      
  +    

 +       
  + 

     
  + 

5(   +      +      +       +      )); 

c (       (   )  =  (   )  ) =  
 

 
 (  

  +    (    )  
  + 

  (    )  
  +  (    )    

 + 

   (   )  
 +5(   +   (    )  +   (    )  +

  (    )    +   (   )  )); 

For 2 ≤ i ≤ m,  

c (    =     =     ) =  
 

 
 (    

  +    
  +      (   )  

   + 

        
  +  +        

 + 5(     +    +      (   )  + 

         +     (    )  +       )); 

For 1≤ i ≤ m+1, 2≤ j ≤ n, 

c (     ) = 
 

 
 (      (   )    

  +      (   )  
    + 

5(     (   )     +      (   )  )) ; 

c (     ) = 
 

 
 (     (    )    

  +     (    )  
    + 

5(    (    )      +     (    )  )) ; 

For 1≤ i ≤ m,1≤ k ≤    , c (  (   )
( )

) = 4 ; 

For 1≤ i ≤ m+1, 1≤ j ≤ n, 1≤ k ≤      (   )   , c (   
( )

) = 4; 
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For 1≤ i ≤ m+1, 1≤ j ≤ n, 1≤ k ≤     (    )   , c (   
( )

) = 4; 

Thus all the adjacent vertices have distinct c (u)’s. Hence 

ASS ([    :   
( )

 ) is a proper d- lucky labeled graph and the 

proper d – lucky number is 

ηpdl(ASS ([    :   
( )

 ))  = max{            (   )  
     . 

Example. 

 
Figure 6. The proper d-lucky labeled ASS([     :    

( )
 ) 

III. CONCLUSION  

In this paper, we have proved the existence of proper d- lucky 

labeling of arbitrary super subdivisions of  (         )and 

[      :    
( )

  graphs and obtained their proper d- lucky 

numbers . 
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