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Abstract- Symbolic execution techniques decrease the cost of path redundancy by choosing a separation of an existing test 

suite to use in retesting a customized program. Over the history, Eliminating Path Redundancy via Postconditioned Symbolic 

Execution techniques has been described in the literature. This paper aims to present a brief survey on symbolic executions in 

black-box and white-box regression testing under the Software testing and learning techniques that are in use in today's 

software engineering of verification and validation tasks. Number of comparative study has been performed to evaluate the 

performance of predictive accuracy on the test cases and the outcome discloses that Bidirectional Symbolic Analysis for 

Effective Branch Testing method outperforms having better performance other predictive methods are not performing well. 
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I. INTRODUCTION 
 

Testing software is a very important and challenging 

activity. Nearly half of the software production development 

cost is spent on testing. The main objective of software 

testing with clustering approach is to eliminate as many 

errors as possible to ensure that the tested software meets an 

acceptable level of quality. 

 

Software bugs pervade every level of the modern software 

stack, degrading both stability and security. Current practice 

attempts to address this challenge through a variety of 

techniques, including code reviews, higher-level 

programming languages, testing, and static analysis. While 

these practices prevent many bugs from being released to 

the public, significant gaps remain [3]. 

 

Symbolic execution has been shown to be largely successful 

in program verification, testing and analysis [1-2]. It is a 

method for program reasoning that uses symbolic values as 

inputs instead of actual data, and it represents the values of 

program variables as symbolic expressions on the input 

symbolic values. As symbolic execution reaches each 

program point along different paths, different symbolic 

states' are created. For each symbolic state, a path condition 

is maintained, which is a formula over the symbolic inputs 

built by accumulating constraints that those inputs must 

satisfy in order for execution to reach the state. A symbolic 

execution tree depicts all executed paths during the 

symbolic execution. 

 

The symbolic execution suffers from the well-known path 

explosion problem since the number of distinct execution 

paths through a program is often exponential in the number 

of if-statements or, in the worst case, infinite. Consequently, 

while symbolic execution often examines orders of  

 

magnitude more paths than traditional testing, it typically 

fails to exhaust all interesting paths. In particular, it often 

fails to reach code deep within a program due to complexities 

earlier in the program. Even when the tool succeeds in 

reaching deep code, it considers only the input values 

satisfying the few paths that manage to reach this code. 

 

Attaining the target required facing key challenges in 

scalability across several dimensions: 

● Symbolic execution: how to efficiently perform symbolic 

execution on x64 execution traces with billions of 

instructions and tens of thousands of symbolic variables 

for applications with millions of lines of code. 

● Constraint generation and solving: how to generate, 

solve and manage billions of constraints. 

● Long-running state-space searches: how to perform 

systematic state-space explorations effectively for weeks 

or months at a time. 

● Diversity: how to easily configure, check and monitor 

white box testing so that it is applicable to hundreds of 

diverse applications. 

● Fault tolerance and always-on usage: how to manage 

hundreds of machines running white box testing 24/7 

with as little down-time as possible. 

 

This paper explores strategies for Symbolic Execution test 

cases based on eliminating path Redundancy class decision 

models. Such representations have been usually used to 

partition the input domain of the system being tested, which 

in turn is used to choose and create system test cases so as to 

attain certain strategies for partition coverage. Such models 

are widely applied for black-box system testing for database 

applications and are therefore a natural and practical choice 

in our context. 
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II. RELATED WORK 
 

M. Staats and C. S. Pasareanu (2010) [4] proposed a 

technique, Simple Static Partitioning, for parallelizing 

symbolic execution. The technique uses a set of pre-

conditions to partition the symbolic execution tree, allowing 

us to effectively distribute symbolic execution and decrease 

the time needed to explore the symbolic execution tree. The 

proposed technique requires little communication between 

parallel instances and is designed to work with a variety of 

architectures, ranging from fast multi-core machines to 

cloud or grid computing environments.  

 

T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley 

(2011) [5] discussed the automatic exploit generation 

challenge is given a program, automatically find 

vulnerabilities and generate exploits for them. The authors 

presented AEG, the first end-to-end system for fully 

automatic exploit generation. They used AEG to analyze 14 

open-source projects and successfully generated 16 control 

flow hijacking exploits. Two of the generated exploits 

(expect-5.43 and htget-0.93) are zero-day exploits against 

unknown vulnerabilities. The AEG challenge consists of six 

components: 

 
 

Fig.1: Components of AEG 

 

Duc-Hiep Chu and Joxan Jaffar (2012) [6] presented a 

general method for its application, restricted to verification 

of safety properties, but without any prior knowledge about 

global symmetry. They started by using a notion of weak 

symmetry which allows for more reduction than in previous 

notions of symmetry. This notion is relative to the target 

safety property. The key idea is to perform symmetric 

transformations on state interpolation, a concept which has 

been used widely for pruning in SMT and CEGAR. The 

method naturally favors “quite symmetric” systems: more 

similarity among the processes leads to greater pruning of 

the tree. 

 

 
Fig.2: (a) A parameterized system (b) Its 2-process 

concretization 

 

In Figure 2(a). Note the (local) program points in angle 

brackets. Figure 2(b) “concretizes” the processes explicitly. 

Note the use in the first process of a local variable id1 which 

is not writable in the process, and whose value is 1. Similarly 

for id2 in the other process. 

 

E. Bounimova, P. Godefroid, and D. A. Molnar (2013) [7] 

described the key challenges with running whitebox fuzzing 

in production. To given principles for addressing these 

challenges and describe two new systems built from these 

principles: SAGAN, which collects data from every fuzzing 

run for further analysis, and JobCenter, which controls 

deployment of our whitebox fuzzing infrastructure across 

commodity virtual machines. The architecture of SAGE 

(Scalable, Automated, Guided Execution) in figure 3. 
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Fig.3: Scalable, Automated, Guided Execution 

 

Duc-Hiep Chu et.al (2014) [8] presented a systematic 

method which speculates that infeasibility may be 

temporarily ignored in the pursuit of better information about 

the path in question. This speculation does not lose the 

intrinsic benefits of symbolic execution because its operation 

shall be bounded. They argued that the trade-off between this 

‘enhanced learning’ and incurring additional cost (which in 

principle may not be productive) is in fact in favor of 

speculation. Finally, they demonstrated with a state-of-the-art 
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system on realistic benchmarks that this method enhances 

symbolic execution by a factor of 2 or more. 

 

D. A. Ramos and D. R. Engler (2015) [9] presented UC-

KLEE, a novel, scalable framework for checking C/C++ 

systems code, along with two use cases. First, we use UC-

KLEE to check whether patches introduce crashes. To 

checked over 800 patches from BIND and OpenSSL and 

find 12 bugs, including two OpenSSL denial-of-service 

vulnerabilities. They also verified (with caveats) that 115 

patches do not introduce crashes. Second, we use UC-KLEE 

as a generalized checking framework and implement 

checkers to find memory leaks, uninitialized data, and 

unsafe user input. To evaluate the checkers on over 20,000 

functions from BIND, OpenSSL, and the Linux kernel, find 

67 bugs, and verify that hundreds of functions are leak free 

and that thousands of functions do not access uninitialized 

data. 

 

 
Fig. 4: Example code fragment analyzed by UC-KLEE. 

 

The authors illustrated lazy initialization by explaining how 

UC-KLEE executes the example function listSum in Figure 

4(a), which sums the entries in a linked list. Figure 4(b) 

summarizes the three execution paths we explore. For 

clarity, we elide error checks that UC-KLEE normally 

performs at memory accesses, division/remainder 

operations, and assertions. 

 

M. Baluda, G. Denaro, and M. Pezze (2016) [10] proposed 

a new approach that combines symbolic execution and 

symbolic reachability analysis to improve the effectiveness 

of branch testing. The approach embraces the ideal 

definition of branch coverage as the percentage of 

executable branches traversed with the test suite, and 

proposed a new bidirectional symbolic analysis for both 

testing rare execution conditions and eliminating infeasible 

branches from the set of test objectives. The approach is 

centered on a model of the analyzed execution space. The 

model identifies the frontier between symbolic execution 

and symbolic reachability analysis, to guide the alternation 

and the progress of bidirectional analysis towards the 

coverage targets. 

 

Bidirectional Test Case Generation (BiTe) exploits 

bidirectional symbolic analysis to improve and refine branch 

coverage, by both covering not-yet-covered branches and 

identifying infeasible branches to be pruned from the 

coverage domain.  

 

 
 

 

To execute the many program branches that depend on the 

inputs that match the value of the keyword, the symbolic 

execution must solve the path condition that leads to 

executing the then branch of the if statement at line after 

returning from the invocation of strcmp(kw, word), for each 

invocation of function GetKeyword. 

 

III. COMPARISON ANALYSIS 
 

This paper aims to collect and consider papers that deal with 

different Symbolic Execution testing techniques. Our 

objective is not to undertake a constraints review, but quite 

to provide a broad state-of-the-art view on these related 

fields. Many different approaches have been projected to 

assist Symbolic execution, testing and debugging, testing 

tools, which has mentioned in a body of literature that is 

spread over a wide variety of fields and periodical locations. 

The majority of comparison study has been available in the 

software engineering domain, and particularly in the 

software testing and software maintenance literature. 

However, the Eliminating Path Redundancy via Post-

conditioned Symbolic Execution testing literature also 

overlaps with those of programming language analysis, 

empirical software engineering and software metrics. 

 

Table 1: SUMMARY TABLE FOR COMPARISON OF ELIMINATING PATH REDUNDANCY VIA 

POSTCONDITIONED SYMBOLIC EXECUTION TECHNIQUES 

Title Algorithm Key-Idea Techniques Results Performance 

Parallel symbolic Parallelizing Java Parallel symbolic Simple Static Analysis time and Speedups of 30% to 
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execution for structural test 

generation (2010) [4] 

Pathfinder execution Partitioning. Modified 

Condition/Decision 

Coverage test 

generation time using 

six case examples. 

90% of the 

maximum speed up. 

AEG: Automatic Exploit 

Generation (2011)  [5] 

AEG exploit 

generation 

algorithm and 

Stack-Overflow 

Return-to-Stack 

Exploit Predicate 

Generation 

Algorithm. 

Four different 

preconditions for 

efficient exploit 

generation. 

(None, Known 

Length, Known 

Prefix and 

Concolic 

Execution) 

Traditional 

Symbolic 

Execution for 

Bug Finding. 

Successfully 

generated 16 

controlflow hijack 

exploits, two of 

which were against 

previously unknown 

vulnerabilities. 

The quickest 

generated an exploit 

was 0.5s for 

iwconfig (with a 

length precondition) 

A Complete Method for 

Symmetry Reduction in 

Safety Verification (2012) 

[6] 

Symmetry 

Reduction 

Algorithm. 

To exploit weak 

symmetry 

completely. 

Top-down 

techniques. 

The coverage relation 

as the form of 

backward learning in 

a recursive manner. 

The technique is 

more efficient both 

in space and time. 

Billions and Billions of 

Constraints: Whitebox 

Fuzz Testing in Production 

(2013) [7] 

White box fuzz 

testing. 

Several data 

analyses which 

led to short-term, 

concrete actions 

that improved 

white box 

fuzzing. 

Scalable, 

Automated, 

Guided Execution 

(SAGE) 

To run whitebox fuzz 

testing for weeks, and 

now even months, 

with low effort and 

cost. 

99.21% of tasks 

took less than 2000 

seconds to solve all 

their constraints. 

Lazy Symbolic Execution 

for Enhanced Learning 

(2014) [8] 

Lazy algorithm. Forward 

symbolic 

execution. 

Symbolic 

Execution and 

Enhanced 

Learning. 

The number of 

decisions seems to be 

a good possibility. 

The verification 

time  10919 (in 

seconds)  

Under-Constrained 

Symbolic Execution: 

Correctness Checking for 

Real Code (2015) [9] 

Under-constrained 

symbolic 

execution. 

Finding bugs, 

symbolic 

execution, 

considers all 

possible inputs 

to a program. 

 

Path pruning. To examine a 

program’s execution 

at runtime and flag 

errors. 

To found a total of 

79 bugs, including 

two OpenSSL 

denial-of-service 

vulnerabilities. 

Bidirectional Symbolic 

Analysis for Effective 

Branch Testing (2016) [10] 

Symbolic 

Execution Step and 

Symoblic 

Reachability 

Analysis Step. 

To measure the 

thoroughness of 

test cases. 

Generalized 

Control Flow 

Graph (GCFG). 

To increase the 

likelihood of 

revealing subtle 

failures and to 

provide consistent 

data for managing the 

overall quality 

process. 

To cover most 

feasible branches 

(from 66% to 99%). 

 

III. CONCLUSION 
 

This paper presents a brief survey about Symbolic Execution 

techniques for Eliminating Path Redundancy testing 

discussed with the different categories. This survey can be 

classified into Parallel symbolic execution, AEG, Symmetry 

Reduction in Safety Verification, Whitebox Fuzz Testing, 

Lazy Symbolic Execution Under-Constrained Symbolic 

Execution and Bidirectional Symbolic Analysis for Effective 

Branch Testing. To concluded the discussion on symbolic 

execution algorithms with Path Redundancy testing by a 

comparative study with black-box and white box regression 

category. It also discussed the concept of finding bugs and 

symbolic execution, considers all possible inputs to a 

program measures which proves to be the most important 

criteria for Eliminating Path Redundancy. 

 

The further work enhanced and expanded for the Symbolic 

execution technique for heuristics based on static program 

analysis can make the pruning more efficient algorithm.  

 

IV. REFERENCES 
 

[1] J.Jaar, A. E. Santosa, and R. Voicu. An interpolation method for 

clp traversal. In CP, 2009. 

[2] K. L. McMillan. Lazy annotation for program testing and 

verification. In CAV, 2010. 

[3] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: 

Unassisted and automatic generation of high-coverage tests for 

complex sys tems programs. In Proc. of Symp. on Operating 

Systems Design and Impl (OSDI) (2008). 

[4] M. Staats and C. S. Pasareanu, “Parallel symbolic execution for 

structural test generation,” in Proc. Int. Symp. Softw. Testing 

Anal., 2010, pp. 183–194. 

[5] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG: 

Automatic exploit generation,” in Proc. USENIX Symp. Netw. 

Distrib. Syst. Secur., Feb. 2011, pp. 283–300. 



   International Journal of Computer Sciences and Engineering                                      Vol.6(8), Oct 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        85 

[6] D.-H. Chu and J. Jaffar, “A complete method for symmetry 

reduction in safety verification,” in Proc. Int. Conf. Comput. Aided 

Verification, 2012, pp. 616–633. 

[7] E. Bounimova, P. Godefroid, and D. A. Molnar, “Billions and 

billions of constraints: Whitebox fuzz testing in production,” in 

Proc. 35th Int. Conf. Softw. Eng., 2013, pp. 122–131. 

[8] D. Chu, J. Jaffar, and V. Murali, “Lazy symbolic execution for 

enhanced learning,” in Proc. 5th Int. Conf. Runtime Verification, 

2014, pp. 323–339. 

[9] D. A. Ramos and D. R. Engler, “Under-constrained symbolic 

execution: Correctness checking for real code,” in Proc. 24th 

USENIX Secur. Symp., 2015, pp. 49–64. 

[10] M. Baluda, G. Denaro, and M. Pezze, “Bidirectional symbolic 

analysis for effective branch testing,” IEEE Trans. Softw. Eng., 

vol. 42, no. 5, pp. 403–426, May 2016.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Authors Profile 

Ms. K.K.Nivethithaa, Pursuing Mphil 

Research Degree in Sri Ramakrishna College 

of Arts and Science for Women at 

Coimbatore. She did her UG and PG degree in 

Sri Ramakrishna College of Arts and Science 

for Women at Coimbatore.  

 

Dr. V.KrishnaPriya is presently, the Professor 

and Head-PG,School of Computing at Sri 

Ramakrishna College of Arts and Science at 

Coimbatore. She received her Ph.D. in 

Computer Science from Mother Theresa 

University, Kodaikanal. She holds her Masters in Computer 

Science (MCA) and Bachelors in Chemistry from Bharathiar 

University. She has published papers in 15 International 

journals and 15 National Journals and has more than 15 

presentations in International and National conferences to her 

credit. Has 21 years of academic experience and has held 

various positions at Sri Ramakrishna College of Arts and 

Science for Women. 


