
 © 2018, IJCSE All Rights Reserved 81

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol-6, Special Issue-8, Oct 2018 E-ISSN: 2347-2693

A BRIEF SURVEY ON SYMBOLIC EXECUTION TEST-SELECTION

TECHNIQUES

1*
K.K. Nivethithaa,

2
V. Krishnapriya

1,2

Sri Ramakrishna College of Arts and Science for Women Tamil Nadu, India

Available online at: www.ijcseonline.org

Abstract- Symbolic execution techniques decrease the cost of path redundancy by choosing a separation of an existing test

suite to use in retesting a customized program. Over the history, Eliminating Path Redundancy via Postconditioned Symbolic

Execution techniques has been described in the literature. This paper aims to present a brief survey on symbolic executions in

black-box and white-box regression testing under the Software testing and learning techniques that are in use in today's

software engineering of verification and validation tasks. Number of comparative study has been performed to evaluate the

performance of predictive accuracy on the test cases and the outcome discloses that Bidirectional Symbolic Analysis for

Effective Branch Testing method outperforms having better performance other predictive methods are not performing well.

Keywords: Symbolic execution, testing and debugging, Parallel symbolic execution, AEG.

I. INTRODUCTION

Testing software is a very important and challenging

activity. Nearly half of the software production development

cost is spent on testing. The main objective of software

testing with clustering approach is to eliminate as many

errors as possible to ensure that the tested software meets an

acceptable level of quality.

Software bugs pervade every level of the modern software

stack, degrading both stability and security. Current practice

attempts to address this challenge through a variety of

techniques, including code reviews, higher-level

programming languages, testing, and static analysis. While

these practices prevent many bugs from being released to

the public, significant gaps remain [3].

Symbolic execution has been shown to be largely successful

in program verification, testing and analysis [1-2]. It is a

method for program reasoning that uses symbolic values as

inputs instead of actual data, and it represents the values of

program variables as symbolic expressions on the input

symbolic values. As symbolic execution reaches each

program point along different paths, different symbolic

states' are created. For each symbolic state, a path condition

is maintained, which is a formula over the symbolic inputs

built by accumulating constraints that those inputs must

satisfy in order for execution to reach the state. A symbolic

execution tree depicts all executed paths during the

symbolic execution.

The symbolic execution suffers from the well-known path

explosion problem since the number of distinct execution

paths through a program is often exponential in the number

of if-statements or, in the worst case, infinite. Consequently,

while symbolic execution often examines orders of

magnitude more paths than traditional testing, it typically

fails to exhaust all interesting paths. In particular, it often

fails to reach code deep within a program due to complexities

earlier in the program. Even when the tool succeeds in

reaching deep code, it considers only the input values

satisfying the few paths that manage to reach this code.

Attaining the target required facing key challenges in

scalability across several dimensions:

● Symbolic execution: how to efficiently perform symbolic

execution on x64 execution traces with billions of

instructions and tens of thousands of symbolic variables

for applications with millions of lines of code.

● Constraint generation and solving: how to generate,

solve and manage billions of constraints.

● Long-running state-space searches: how to perform

systematic state-space explorations effectively for weeks

or months at a time.

● Diversity: how to easily configure, check and monitor

white box testing so that it is applicable to hundreds of

diverse applications.

● Fault tolerance and always-on usage: how to manage

hundreds of machines running white box testing 24/7

with as little down-time as possible.

This paper explores strategies for Symbolic Execution test

cases based on eliminating path Redundancy class decision

models. Such representations have been usually used to

partition the input domain of the system being tested, which

in turn is used to choose and create system test cases so as to

attain certain strategies for partition coverage. Such models

are widely applied for black-box system testing for database

applications and are therefore a natural and practical choice

in our context.

 International Journal of Computer Sciences and Engineering Vol.6(8), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 82

II. RELATED WORK

M. Staats and C. S. Pasareanu (2010) [4] proposed a

technique, Simple Static Partitioning, for parallelizing

symbolic execution. The technique uses a set of pre-

conditions to partition the symbolic execution tree, allowing

us to effectively distribute symbolic execution and decrease

the time needed to explore the symbolic execution tree. The

proposed technique requires little communication between

parallel instances and is designed to work with a variety of

architectures, ranging from fast multi-core machines to

cloud or grid computing environments.

T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley

(2011) [5] discussed the automatic exploit generation

challenge is given a program, automatically find

vulnerabilities and generate exploits for them. The authors

presented AEG, the first end-to-end system for fully

automatic exploit generation. They used AEG to analyze 14

open-source projects and successfully generated 16 control

flow hijacking exploits. Two of the generated exploits

(expect-5.43 and htget-0.93) are zero-day exploits against

unknown vulnerabilities. The AEG challenge consists of six

components:

Fig.1: Components of AEG

Duc-Hiep Chu and Joxan Jaffar (2012) [6] presented a

general method for its application, restricted to verification

of safety properties, but without any prior knowledge about

global symmetry. They started by using a notion of weak

symmetry which allows for more reduction than in previous

notions of symmetry. This notion is relative to the target

safety property. The key idea is to perform symmetric

transformations on state interpolation, a concept which has

been used widely for pruning in SMT and CEGAR. The

method naturally favors “quite symmetric” systems: more

similarity among the processes leads to greater pruning of

the tree.

Fig.2: (a) A parameterized system (b) Its 2-process

concretization

In Figure 2(a). Note the (local) program points in angle

brackets. Figure 2(b) “concretizes” the processes explicitly.

Note the use in the first process of a local variable id1 which

is not writable in the process, and whose value is 1. Similarly

for id2 in the other process.

E. Bounimova, P. Godefroid, and D. A. Molnar (2013) [7]

described the key challenges with running whitebox fuzzing

in production. To given principles for addressing these

challenges and describe two new systems built from these

principles: SAGAN, which collects data from every fuzzing

run for further analysis, and JobCenter, which controls

deployment of our whitebox fuzzing infrastructure across

commodity virtual machines. The architecture of SAGE

(Scalable, Automated, Guided Execution) in figure 3.

Input 0

Coverage data

Conditions

Input 0

Input 1 …

Input N

Fig.3: Scalable, Automated, Guided Execution

Duc-Hiep Chu et.al (2014) [8] presented a systematic

method which speculates that infeasibility may be

temporarily ignored in the pursuit of better information about

the path in question. This speculation does not lose the

intrinsic benefits of symbolic execution because its operation

shall be bounded. They argued that the trade-off between this

‘enhanced learning’ and incurring additional cost (which in

principle may not be productive) is in fact in favor of

speculation. Finally, they demonstrated with a state-of-the-art

COMPONENTS OF AEG

SRC-ANALYSIS

PRE-PROCESS

BUG-FIND

DBA

EXPLOIT-GEN

VERIFY

Check for

Crashes
Code

Average
Generate

Conditions
Solve

Conditions

 International Journal of Computer Sciences and Engineering Vol.6(8), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 83

system on realistic benchmarks that this method enhances

symbolic execution by a factor of 2 or more.

D. A. Ramos and D. R. Engler (2015) [9] presented UC-

KLEE, a novel, scalable framework for checking C/C++

systems code, along with two use cases. First, we use UC-

KLEE to check whether patches introduce crashes. To

checked over 800 patches from BIND and OpenSSL and

find 12 bugs, including two OpenSSL denial-of-service

vulnerabilities. They also verified (with caveats) that 115

patches do not introduce crashes. Second, we use UC-KLEE

as a generalized checking framework and implement

checkers to find memory leaks, uninitialized data, and

unsafe user input. To evaluate the checkers on over 20,000

functions from BIND, OpenSSL, and the Linux kernel, find

67 bugs, and verify that hundreds of functions are leak free

and that thousands of functions do not access uninitialized

data.

Fig. 4: Example code fragment analyzed by UC-KLEE.

The authors illustrated lazy initialization by explaining how

UC-KLEE executes the example function listSum in Figure

4(a), which sums the entries in a linked list. Figure 4(b)

summarizes the three execution paths we explore. For

clarity, we elide error checks that UC-KLEE normally

performs at memory accesses, division/remainder

operations, and assertions.

M. Baluda, G. Denaro, and M. Pezze (2016) [10] proposed

a new approach that combines symbolic execution and

symbolic reachability analysis to improve the effectiveness

of branch testing. The approach embraces the ideal

definition of branch coverage as the percentage of

executable branches traversed with the test suite, and

proposed a new bidirectional symbolic analysis for both

testing rare execution conditions and eliminating infeasible

branches from the set of test objectives. The approach is

centered on a model of the analyzed execution space. The

model identifies the frontier between symbolic execution

and symbolic reachability analysis, to guide the alternation

and the progress of bidirectional analysis towards the

coverage targets.

Bidirectional Test Case Generation (BiTe) exploits

bidirectional symbolic analysis to improve and refine branch

coverage, by both covering not-yet-covered branches and

identifying infeasible branches to be pruned from the

coverage domain.

To execute the many program branches that depend on the

inputs that match the value of the keyword, the symbolic

execution must solve the path condition that leads to

executing the then branch of the if statement at line after

returning from the invocation of strcmp(kw, word), for each

invocation of function GetKeyword.

III. COMPARISON ANALYSIS

This paper aims to collect and consider papers that deal with

different Symbolic Execution testing techniques. Our

objective is not to undertake a constraints review, but quite

to provide a broad state-of-the-art view on these related

fields. Many different approaches have been projected to

assist Symbolic execution, testing and debugging, testing

tools, which has mentioned in a body of literature that is

spread over a wide variety of fields and periodical locations.

The majority of comparison study has been available in the

software engineering domain, and particularly in the

software testing and software maintenance literature.

However, the Eliminating Path Redundancy via Post-

conditioned Symbolic Execution testing literature also

overlaps with those of programming language analysis,

empirical software engineering and software metrics.

Table 1: SUMMARY TABLE FOR COMPARISON OF ELIMINATING PATH REDUNDANCY VIA

POSTCONDITIONED SYMBOLIC EXECUTION TECHNIQUES

Title Algorithm Key-Idea Techniques Results Performance

Parallel symbolic Parallelizing Java Parallel symbolic Simple Static Analysis time and Speedups of 30% to

BiTe Initialization Step

BiTe Symbolic

Execution Step

BiTe Symbolic

Reachability Analysis

Step

BiTe Coarsening Step

 International Journal of Computer Sciences and Engineering Vol.6(8), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 84

execution for structural test

generation (2010) [4]

Pathfinder execution Partitioning. Modified

Condition/Decision

Coverage test

generation time using

six case examples.

90% of the

maximum speed up.

AEG: Automatic Exploit

Generation (2011) [5]

AEG exploit

generation

algorithm and

Stack-Overflow

Return-to-Stack

Exploit Predicate

Generation

Algorithm.

Four different

preconditions for

efficient exploit

generation.

(None, Known

Length, Known

Prefix and

Concolic

Execution)

Traditional

Symbolic

Execution for

Bug Finding.

Successfully

generated 16

controlflow hijack

exploits, two of

which were against

previously unknown

vulnerabilities.

The quickest

generated an exploit

was 0.5s for

iwconfig (with a

length precondition)

A Complete Method for

Symmetry Reduction in

Safety Verification (2012)

[6]

Symmetry

Reduction

Algorithm.

To exploit weak

symmetry

completely.

Top-down

techniques.

The coverage relation

as the form of

backward learning in

a recursive manner.

The technique is

more efficient both

in space and time.

Billions and Billions of

Constraints: Whitebox

Fuzz Testing in Production

(2013) [7]

White box fuzz

testing.

Several data

analyses which

led to short-term,

concrete actions

that improved

white box

fuzzing.

Scalable,

Automated,

Guided Execution

(SAGE)

To run whitebox fuzz

testing for weeks, and

now even months,

with low effort and

cost.

99.21% of tasks

took less than 2000

seconds to solve all

their constraints.

Lazy Symbolic Execution

for Enhanced Learning

(2014) [8]

Lazy algorithm. Forward

symbolic

execution.

Symbolic

Execution and

Enhanced

Learning.

The number of

decisions seems to be

a good possibility.

The verification

time 10919 (in

seconds)

Under-Constrained

Symbolic Execution:

Correctness Checking for

Real Code (2015) [9]

Under-constrained

symbolic

execution.

Finding bugs,

symbolic

execution,

considers all

possible inputs

to a program.

Path pruning. To examine a

program’s execution

at runtime and flag

errors.

To found a total of

79 bugs, including

two OpenSSL

denial-of-service

vulnerabilities.

Bidirectional Symbolic

Analysis for Effective

Branch Testing (2016) [10]

Symbolic

Execution Step and

Symoblic

Reachability

Analysis Step.

To measure the

thoroughness of

test cases.

Generalized

Control Flow

Graph (GCFG).

To increase the

likelihood of

revealing subtle

failures and to

provide consistent

data for managing the

overall quality

process.

To cover most

feasible branches

(from 66% to 99%).

III. CONCLUSION

This paper presents a brief survey about Symbolic Execution

techniques for Eliminating Path Redundancy testing

discussed with the different categories. This survey can be

classified into Parallel symbolic execution, AEG, Symmetry

Reduction in Safety Verification, Whitebox Fuzz Testing,

Lazy Symbolic Execution Under-Constrained Symbolic

Execution and Bidirectional Symbolic Analysis for Effective

Branch Testing. To concluded the discussion on symbolic

execution algorithms with Path Redundancy testing by a

comparative study with black-box and white box regression

category. It also discussed the concept of finding bugs and

symbolic execution, considers all possible inputs to a

program measures which proves to be the most important

criteria for Eliminating Path Redundancy.

The further work enhanced and expanded for the Symbolic

execution technique for heuristics based on static program

analysis can make the pruning more efficient algorithm.

IV. REFERENCES

[1] J.Jaar, A. E. Santosa, and R. Voicu. An interpolation method for

clp traversal. In CP, 2009.

[2] K. L. McMillan. Lazy annotation for program testing and

verification. In CAV, 2010.

[3] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE:

Unassisted and automatic generation of high-coverage tests for

complex sys tems programs. In Proc. of Symp. on Operating

Systems Design and Impl (OSDI) (2008).

[4] M. Staats and C. S. Pasareanu, “Parallel symbolic execution for

structural test generation,” in Proc. Int. Symp. Softw. Testing

Anal., 2010, pp. 183–194.

[5] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG:

Automatic exploit generation,” in Proc. USENIX Symp. Netw.

Distrib. Syst. Secur., Feb. 2011, pp. 283–300.

 International Journal of Computer Sciences and Engineering Vol.6(8), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 85

[6] D.-H. Chu and J. Jaffar, “A complete method for symmetry

reduction in safety verification,” in Proc. Int. Conf. Comput. Aided

Verification, 2012, pp. 616–633.

[7] E. Bounimova, P. Godefroid, and D. A. Molnar, “Billions and

billions of constraints: Whitebox fuzz testing in production,” in

Proc. 35th Int. Conf. Softw. Eng., 2013, pp. 122–131.

[8] D. Chu, J. Jaffar, and V. Murali, “Lazy symbolic execution for

enhanced learning,” in Proc. 5th Int. Conf. Runtime Verification,

2014, pp. 323–339.

[9] D. A. Ramos and D. R. Engler, “Under-constrained symbolic

execution: Correctness checking for real code,” in Proc. 24th

USENIX Secur. Symp., 2015, pp. 49–64.

[10] M. Baluda, G. Denaro, and M. Pezze, “Bidirectional symbolic

analysis for effective branch testing,” IEEE Trans. Softw. Eng.,

vol. 42, no. 5, pp. 403–426, May 2016.

Authors Profile

Ms. K.K.Nivethithaa, Pursuing Mphil

Research Degree in Sri Ramakrishna College

of Arts and Science for Women at

Coimbatore. She did her UG and PG degree in

Sri Ramakrishna College of Arts and Science

for Women at Coimbatore.

Dr. V.KrishnaPriya is presently, the Professor

and Head-PG,School of Computing at Sri

Ramakrishna College of Arts and Science at

Coimbatore. She received her Ph.D. in

Computer Science from Mother Theresa

University, Kodaikanal. She holds her Masters in Computer

Science (MCA) and Bachelors in Chemistry from Bharathiar

University. She has published papers in 15 International

journals and 15 National Journals and has more than 15

presentations in International and National conferences to her

credit. Has 21 years of academic experience and has held

various positions at Sri Ramakrishna College of Arts and

Science for Women.

