The Nonsplit Bondage Number of Graphs

R. Jemimal Chrislight ${ }^{1 *}$, Y. Therese Sunitha Mary ${ }^{2}$
${ }^{1}$ Dept. of Mathematics, St. Xavier's College (Autonomous), Palayamkottai - 627 002, Tamil Nadu, INDIA
${ }^{2}$ Dept. of Mathematics, St. Xavier's College (Autonomous), Palayamkottai - 627 002, Tamil Nadu, INDIA
Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, INDIA

Corresponding Author: jemimachrislight@gmail.com, Tel.: +91-99946-35396
DOI: https://doi.org/10.26438/ijcse/v7si5.7476 | Available online at: www.ijcseonline.org

Abstract

A set D of vertices in a graph $G=(V, E)$ is a nonsplit dominating set if the induced subgraph $<V-D>$ is connected. The minimum cardinality of a nonsplit dominating set is called the nonsplit domination number of G and denoted $\gamma_{n s}(G)$. In this paper, we define the nonsplit bondage number $b_{n s}(G)$ of a graph G to be the minimum cardinality of a set E of edges for which $\gamma_{n s}(G-E)>\gamma_{n s}(G)$. We obtain sharp bounds for $b_{n s}(G)$ and obtain the exact values for some standard graphs.

Keywords- Nonsplit dominating set, Nonsplit domination number, Bondage number, Nonsplit bondage number.

I. Introduction

In this paper, the graphs $G=(V, E)$ considered here are finite and undirected without loop or multiple edges. The order and size of G are denoted by p and q respectively. For graph theoretic terminology we refer to Harary [2] and for domination we refer Haynes et al. [3].

For any vertex $p \in V$, the open neighbourhood of p, denoted by $N(p)$, is the set of vertices adjacent to p and the closed neighbourhood of p is $N[p]=N(p) \cup p$. A set D subset of V is a dominating set of G if every vertex $p \in V$ is either an element of D or is adjacent to an element of D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. Kulli V. R. et al. [4] introduced the concept of nonsplit domination in graphs. A dominating set D of a graph G is a nonsplit dominating set if the induced graph $\langle V-D\rangle$ is connected. The nonsplit domination number $\gamma_{n s}(G)$ is the minimum cardinality of a nonsplit dominating set.

In 1990, J. F. Fink et al. [1] introduced the notion of bondage number of a graph. The bondage number $b(G)$ of a nonempty graph G is the minimum cardinality among all sets of edges E for which $\gamma(G-E)>\gamma(G)$.
The purpose of this paper is to introduce the concept of nonsplit bondage number $b_{n s}(G)$ of a graph G. The nonsplit bondage number $b_{n s}(G)$ of a graph G be the minimum cardinality of a set E of edges for which $\gamma_{n s}(G-E)>$ $\gamma_{n s}(G)$. In this paper, we obtain the exact values of the nonsplit bondage number for some standard graphs.

We need the following theorem in [4].
Theorem 1.1 For any complete bipartite graph $K_{m, n}$ with $2 \leq m \leq n, \gamma_{n s}\left(K_{m, n}\right)=2$.

2. Main Results

Theorem 2.1. For any complete graph with $p \geq 2$, $b_{n s}(G)=\left\{\begin{array}{l}\left\lfloor\frac{p}{2}\right\rfloor \text { if } p \leq 3 \\ \left|\frac{p}{2}\right| \text { otherwise }\end{array}\right.$.
Proof. If G is K_{2}, Clearly $b_{n s}(G)=\left\lfloor\frac{p}{2}\right\rfloor=1$.
Let H is a spanning subgraph of K_{p}. If $p=3$, then H is obtained by removing $\left\lfloor\frac{p}{2}\right\rfloor$ edges of K_{3} which increase the nonsplit domination number. Thus, $b_{n s}\left(K_{3}\right)=\left\lfloor\frac{p}{2}\right\rfloor$.
If $p \geq 4$, then H is obtained by removing less than $\left[\frac{p}{2}\right\rceil$ edges from K_{p} and so H contains a vertex of degree $p-1$, whence the nonsplit dominating set of H is not increasing. Thus $b_{n s}\left(K_{p}\right) \geq\left\lceil\frac{p}{2}\right\rceil$.
Suppose p is even, the removing $\frac{p}{2}$ independent edges from K_{p} decrease the degree of each vertex to $p-2$ and therefore gives a connected graph H with the nonsplit domination number $\gamma_{n s}(H)=2$.
Let v be a vertex of K_{p} and suppose p is odd, then removing $\frac{p-1}{2}$ independent edges from K_{p} leaves a graph having exactly one vertex of degree $p-1$ say v by eliminating one
edge incident with v. So H is a connected graph with $\gamma_{n s}(H)=2$.
In both cases, we obtain the graph H after the removal of $\left\lceil\frac{p}{2}\right\rceil$ edges from K_{p} and so $b_{n s}\left(K_{p}\right) \leq\left\lceil\frac{p}{2}\right\rceil$. Thus, $b_{n s}\left(K_{p}\right)=\left\lceil\frac{p}{2}\right\rceil$.

Theorem 2.2. For any complete bipartite graph $K_{m, n}$ with $2 \leq m \leq n$, then $b_{n s}(G)=m$.
Proof. Let H be the spanning subgraph of $K_{m, n}$. Suppose the graph H is obtained by removing m edges of $K_{m, n}$ and we get two components of H namely $K_{m, n-1}$ and a isolated vertex. Clearly $\gamma_{n s}\left(K_{m, n-1}\right)=2$ by theorem 1.1. So $\gamma_{n s}(H)=3$. Since, $\gamma_{n s}(G)<\gamma_{n s}(H)$. Thus, $b_{n s}(G)=m$.

Theorem 2.3. For any wheel graph $W_{p}, b_{n s}\left(W_{p}\right)=1$.
Proof. Let v be the center vertex of Wheel graph. Let u be any adjacent vertex of v such that $\operatorname{deg}(v)=\Delta(G)$. The removal of any edge $u v$ from W_{p} which increase the nonsplit domination number of H. Thus, $b_{n s}(G)=1$.

Theorem 2.4. If T is a tree which is not a star with $p \geq 4$, then $b_{n s}(T)=1$.
Proof. Since every edge of tree is a bridge and hence $b_{n s}(T) \geq 1$. Suppose that T has any two adjacent vertices, say x and y.
Case 1. If $\operatorname{diam}(T)$ is odd and x and y be the center. The graph H is the subgraph of T that is obtained by removing the edge $x y$ from T. Then the graph H has two components and the nonsplit domination number must be increase. Thus, $b_{n s}(T) \leq 1$.
Case 2. If $\operatorname{diam}(T)$ is even and x is the center. If H is obtained by removing one edge adjacent to a center x which is not a pendent edge namely $x y_{1}$ or $x y_{2}$. Then the graph divided into two components and so $\gamma_{n s}(H)>\gamma_{n s}(T)$. Thus, $b_{n s}(T) \leq 1$. Hence, $b_{n s}(T)=1$.

Remark 2.5. $\mathrm{b}_{n s}(\mathrm{G})$ is not defined if G is isomorphic to galaxy.

Theorem 2.6. For any helm graph H_{p}, then $b_{n s}\left(H_{p}\right)=3$.
Proof. Let $X=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{p}\right\}$ be the end vertices of H_{p} and $Y=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{p}\right\}$ be the adjacent vertices or rim vertices of H_{p}. Let K_{1} is a center of H_{p}. The graph H is the subgraph of H_{p} that is obtained by removing lessthan three edges of H_{p} whose nonsplit domination number is not increasing. Thus, $b_{n s}\left(H_{p}\right) \geq 3$.
Let $v_{i} \in Y(1 \leq i \leq p)$ be the rim vertices of H_{p} and degree of every rim vertex of H_{p} is four. H is the subgraph obtained by removing atmost three edges from any one rim vertex of H_{p} which is not a pendent edge and it increase the nonsplit domination number of H. Thus, $b_{n s}\left(H_{p}\right) \leq 3$. Hence, $b_{n s}\left(H_{p}\right)=3$.

Theorem 2.7. For any $\overline{C_{P}}$ with $p \geq 4$, then $b_{n s}\left(\overline{C_{p}}\right)=$ $\left\{\begin{array}{cl}2 & \text { if } p \leq 5 \\ p-4 & \text { otherwise }\end{array}\right.$.
Proof. Let $V=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{p}\right\}$ be the vertices of C_{p} and H be the subgraph of $\overline{C_{p}}$. If $p=4=5$, then the nonsplit domination number of $\overline{C_{p}}$ is 3 . The graph H is obtained by removing two edges in $\overline{C_{4}}$ or $\overline{C_{5}}$. Then $\gamma(H)$ increase. Thus, $b_{n s}\left(\overline{C_{p}}\right)=2$.
If $p \geq 6$, then the graph H is obtained by removing at least $p-4$ edges in $\overline{C_{p}}$. Thus $b_{n s}\left(\overline{C_{p}}\right) \geq p-4$.
Let the graph $\left(\overline{C_{p}}\right)$ is a $p-3$ regular graph and so the nonsplit domination number of $\overline{C_{p}}$ is 2 . Suppose $b_{n s}\left(\overline{C_{p}}\right)<$ $p-4$, the graph H is obtained by removing atmost $p-3$ edges in $\overline{C_{p}}$. Since $\gamma\left(\overline{C_{p}}\right)=\gamma(H)$, which is impossible. Now, let v_{i} be any vertex of $\overline{C_{p}}$. If the removal of $p-4$ edges of $\overline{C_{p}}$ in H such that each $p-4$ edges are incident with v_{i} where $i=1,2,3, \ldots, p$ in $\overline{C_{p}}$ which increase the nonsplit domination number. Thus $b_{n s}\left(\overline{C_{p}}\right) \leq p-4$.

Theorem 2.8. For any $\overline{P_{P}}$ with $p \geq 3$, then $b_{n s}\left(\overline{P_{p}}\right)=$ $\left\{\begin{array}{cl}1 & \text { if } p \leq 4 \\ p-3 & \text { otherwise }\end{array}\right.$.
Proof. It follows from theorem 2.7.
Theorem 2.9. For any $\overline{K_{m, n}} \nexists \overline{K_{2,2}}$ with $1 \leq m \leq n$, then $b_{n s}\left(\overline{K_{m, n}}\right)=\left\{\begin{array}{lc}\left\lfloor\frac{n}{2}\right\rfloor & \text { if } m \leq 2 \text { and } \\ & 2 \leq n \leq 3 \\ \left\lfloor\frac{n}{2}\right\rfloor & \text { if } 3 \leq m \leq n\end{array}\right.$
Proof. Let $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be two partitions of $K_{m, n}$ and $\overline{K_{m, n}}$ has two components, say V_{1} and V_{2}. let H be the subgraph of $\overline{K_{m, n}}$.
If $m \leq 2$ and $2 \leq n \leq 3$, then the removal of one edge of V_{2} in H which increase the nonsplit domination number. Thus $b_{n s}\left(\overline{K_{m, n}}\right)=\left\lfloor\frac{n}{2}\right\rfloor=1$ with $m \leq 2$ and $2 \leq n \leq 3$.
Case 1. If $n=m=3$, then $V_{1}=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $V_{2}=$ $\left\{v_{1}, v_{2}, v_{3}\right\}$. The nonsplit dominating set D_{1} of $\overline{K_{3,3}}$ is $\left\{u_{1}, u_{2}, u_{3}, v_{1}\right\}$. Now, the graph H is obtained by removing at least two edges of $\overline{K_{3,3}}$. Then the set D_{2} of H is $\left\{u_{1}, u_{2}, u_{3}, v_{1}, v_{2}\right\}$. Since $\gamma_{n s}(H)>\gamma_{n s}\left(\overline{K_{3,3}}\right), b_{n s}\left(\overline{K_{3,3}}\right)=$ $\left\lceil\frac{n}{2}\right\rceil=2$.
Case 2. If $3 \leq m<n$, then the two components V_{1} and V_{2} are complete in $\overline{K_{m, n}}$ and by theorem 2.1, $b_{n s}\left(\overline{K_{m, n}}\right)=\left\lceil\frac{n}{2}\right\rceil$.

Proposition 2.10. For any corona graph (G. K_{1}) with $p \geq 2$, then $b_{n s}\left(G . K_{1}\right)=1$.
Proof. We find the bondage number to remove any edge which incident with end vertex.

Proposition 2.11. For any friendship graph F_{p}, then $b_{n s}\left(F_{p}\right)=1$.
Proof. We find the bondage number to remove any rim edge of F_{p}.

Proposition 2.12. For any fan graph f_{p}, then $b_{n s}\left(f_{p}\right)=1$. Proof. We find the bondage number to remove any edge which incident with K_{1}.

Proposition 2.13 For any Book graph B_{p} with $p \geq 2$, then $b_{n s}\left(B_{p}\right)=1$.
Proof. We find the bondage number to remove any edge of B_{p}, then the nonsplit domination number increase.

REFERENCES

[1] J. F. Fink, M. S. Jacobson, L. F. Kinch and J. Roberts, The Bondage number of a graph, Discrete Math. 86(1990) 47-57.
[2] F. Harary, Graph Theory, Addision-Wesley, Reading Mass. (1969).
[3] L. Hartnell, Douglas F. Rall, Bounds on the bondage number of a graph, Discrete Mathematics 128 (1994) 173-177.
[4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Disc.Math., Marcel Dekker, Inc., New York, 1998.
[5] V. R. Kulli and B. Janakiram, The Nonsplit Domination Number of a Graph, Indian J.Pure appl. Math., 31(4):441-447, April 2000.

