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Abstract— Odd graceful labeling is one of the major evolving research areas in the field of graph labeling. It is defined as for 

any graph G with q edges if there is an injection f from V(G) to {0, 1, 2, …, (2q-1)} such that, when each edge xy is assigned the 

label │f(x) ─ f(y)│,so that the edge labels are {1, 3, 5, …, (2q-1)} then the graph G is said to be odd graceful. Graph labeling 

has a vast range of real life applications which has provided major contributions in the development of new technologies. In 

this paper we have investigated and proved that the graph G which is obtained by joining m isomorphic copies of lobster graph 

to each vertex of the cycle Cm admits odd graceful labeling. 
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I.  INTRODUCTION  

In Graph theory, graph labeling technique was first 

introduced in the mid 90’s. Most of the graph labeling 

methods has its origin from graceful labeling which was first 

introduced by Rosa[9] in the year 1967 and she called it as 

β- valuation. Later Golomb [4] called thisβ- valuation as 

graceful labeling in 1972. Odd graceful labeling was 

introduced by Gananjothi[3] in the year 1991. Assigning 

values to the vertices subject to certain conditions is known 

as Graph labeling. Gananjothi[3]  has proved that the graph 

of path Pn and cycle Cn is odd graceful if and only if n is 

even. She has stated a very famous conjecture that All trees 

are odd graceful and also proved this for all trees with order 

up to 10. In 2009 Barrientos[1] has verified this conjecture 

for order up to 12. He also proved that every forest whose 

components are caterpillars (a caterpillar is a tree with the 

property that the removal of its end points leaves a path) are 

odd graceful. In 2010 Moussa[6][7] proved that the graph 

Cm    Pn is odd graceful if m is even and provided an 

algorithm. . In 2009 Moussa and Badr[8] proved that Cm ʘ 

Pn is odd graceful if and only if m is even. In 2002 David 

Morgan[5] proved that all lobsters (a lobsters is a tree with 

the property that the removal of the endpoints leaves a 

caterpillar) with perfect matching are odd graceful. In 2012 

Zhou, Yao, Chen and Tao[10] proved that every lobster  is 

odd graceful. For more results on odd graceful labeling, refer 

to dynamic survey by Gallian[2]. 

 

Labeling has a vast range of application in communication 

network, optimal circuit layouts, cryptography, and traffic 

control systems. 

In this paper we have proved that the graph obtained by 

joining each vertex of the cycle Cm of even order with m 

isomorphic copies of lobster admits odd graceful labeling. 

 

II. RESULTS AND DISCUSSION 

In this section we prove that the graph G obtained by 

attaching each vertex of the cycle Cm
 
with the m isomorphic 

copies of lobster graph is odd graceful where m≡0(mod 4). 

 

Theorem: 

The graph G obtained by joining each vertex Cm with m 

copies of lobster graph is odd graceful where m≡0(mod 4). 

Proof: 

Let G be a graph obtained by joining each vertex of cycle Cm 

with the lobster. Let |V(G)|= p and | E(G) | = q.  

 

The vertices in the cycle Cm are denoted as u1
1
, u1

2
, u1

3
, ..., 

u1
m 

 in the clockwise direction. Consider a isomorphic m 

copies of lobster and attach it to each vertex of the cycle. The 

first copy of the part of the lobster attached to vertex u1
1
 of 

cycle Cm is denoted as u1
1
, u2

1
, …, un

1
. The second copy of 

the path of the lobster attached to vertex u1
2
 of cycle Cm is 

denoted as u1
2
,u2

2
,…,un

2
 continuing the same process the i

th
 

copy of the path of the lobster attached with the vertex u1
m
 of 

cycle Cm is denoted as u1
m
, u2

m
,…, un

m
. 
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The vertices in the first level of lobster attached with the odd 

vertices of the path of the cycle u1
1
 are denoted as a1

1
, a2

1 
,…, 

ar
1
, ar+1

1
,ar+2

1
,…,a2r

1
 , a2r+1

1 
,…, a3r

1
 ,…, a[(n/2)-1]+r+1

1
, a[(n/2)-

1]+r+2
1
  ,…, a(n/2)r

1
. Vertices in the first level of lobster 

attached with the odd vertices of the path of the cycle u1
2
 are 

denoted as a(n/2)r+1
2
, a(n/2)r+2

2
,…, a(n/2)r+r

2
, a(n/2)r+r+1

2
, 

a(n/2)r+r+2
2
,…, a(n/2)r+2r

2 
,…, anr-r+1

2
,anr-r+2

2
,…,anr

2
. Vertices in 

the first level of lobster attached with the odd vertices of the 

path of the cycle u1
3
 are denoted as anr+1

3
, anr+2

3
,…, anr+r

3
, 

anr+r+1
3
, anr+r+2

3
,…, anr+2r

3
 ,…, anr+[(n/2)-1]r+1

3
, anr+[(n/2)-1]r+2

3
,…, 

a3nr/2
3
 . Continuing the same process for the vertices in the 

first level of lobster attached with the odd vertices of the path 

of the cycle u1
m
 are denoted as a(m-1)nr/2+1

m
, a(m-1)nr/2+2

m
,…, a(m-

1)nr/2+r
m 

, a(m-1)nr/2+r+1
m
, a(m-1)nr/2+r+2

m
,…, a(m-1)nr/2+2r

m
 ,…, a(mnr/2)-

r+1
m
, a(mnr/2)-r+2

m
,…, amnr/2

m
. 

 

The vertices in the first level of lobster attached with the odd 

vertices of the path of the cycle u1
1
 are denoted as b1

1
, b2

1 
,…, 

br
1
, br+1

1
,br+2

1
,…,b2r

1
 , b2r+1

1 
,…, b3r

1
 ,…, b[(n/2)-1]+r+1

1
, b[(n/2)-

1]+r+2
1
  ,…, b(n/2)r

1
. Vertices in the first level of lobster 

attached with the odd vertices of the path of the cycle u1
2
 are 

denoted as b(n/2)r+1
2
, b(n/2)r+2

2
,…, b(n/2)r+r

2
, b(n/2)r+r+1

2
, 

b(n/2)r+r+2
2
,…, b(n/2)r+2r

2 
,…, bnr-r+1

2
, bnr-r+2

2
,…, bnr

2
. Vertices in 

the first level of lobster attached with the odd vertices of the 

path of the cycle u1
3
 are denoted as bnr+1

3
, bnr+2

3
,…, bnr+r

3
, 

bnr+r+1
3
, bnr+r+2

3
,…, bnr+2r

3
 ,…, bnr+[(n/2)-1]r+1

3
, bnr+[(n/2)-1]r+2

3
,…, 

b3nr/2
3
 . Continuing the same process for the vertices in the 

first level of lobster attached with the odd vertices of the path 

of the cycle u1
m
 are denoted as b(m-1)nr/2+1

m
, b(m-1)nr/2+2

m
,…, b(m-

1)nr/2+r
m 

, b(m-1)nr/2+r+1
m
, b(m-1)nr/2+r+2

m
,…, b(m-1)nr/2+2r

m
 ,…, b(mnr/2)-

r+1
m
, b(mnr/2)-r+2

m
,…, amnr/2

m
. 

 

The vertices in the second level of lobster attached with the 

odd vertices of the path un
m
 is denoted as a1

2
, a2

2
,…, as

2
, 

as+1
2
, as+2

2
,…, a2s

2
, a2s+1

2
,…, a3s

2
,…, a(n-1)s+1

2
,…, a rs

2
, a 

rs+1
2
,…, a 2rs

2
 , a 2rs+1

2
,…, a 3rs

2
   and so on the last vertex of 

the level two in this path will be a(n/2)rs
2
. Vertices in the 

second level of lobster attached with the odd vertices of the 

path un-2
m
 is denoted as a[(n/2)rs]+1

2
, a[(n/2)rs]+2

2
,…, a[(n/2)rs]+s

2
, 

a[(n/2)rs]+s+1
2
, a[(n/2)rs]+2

2
,…, a[(n/2)rs]+2s

2
, a[(n/2)rs]+2s+1

2
,…, 

a[(n/2)rs]+3s
2
,…, a[(n/2)rs]+rs

2
, a[(n/2)rs]+rs+1

2
,…, a[(n/2)rs]+2rs

2
, 

a[(n/2)rs]+2rs+1
2
,…, a[(n/2)rs]+3rs

2
 and so on the last vertex of the 

level two in this path will be anrs
2
. The last vertex in the level 

two of the next path will be a3(n/2)rs
2
. Continuing the same 

way the last vertex in the second level of lobster attached 

with the odd vertices of the path will be am(n/2)rs
2
. 

 

The vertex in the level 2 attached with the odd vertex of the 

path un-1
m
 is denoted as b1

2
, b2

2
,…, bs

2
, bs+1

2
, bs+2

2
,…, b2s

2
, 

b2s+1
2
,…, b3s

2
,…, b(n-1)s+1

2
,…, b rs

2
, b rs+1

2
,…, b 2rs

2
 , b 2rs+1

2
,…, 

b 3rs
2
   and so on the last vertex of the level two in this path 

will be b(n/2)rs
2
. The vertex in the level 2 attached with the 

even vertex of the path un-3
m
 is denoted as b[(n/2)rs]+1

2
, 

b[(n/2)rs]+2
2
,…, b[(n/2)rs]+s

2
, b[(n/2)rs]+s+1

2
, b[(n/2)rs]+2

2
,…, 

b[(n/2)rs]+2s
2
, b[(n/2)rs]+2s+1

2
,…, b[(n/2)rs]+3s

2
,…, b[(n/2)rs]+rs

2
, 

b[(n/2)rs]+rs+1
2
,…, b[(n/2)rs]+2rs

2
, b[(n/2)rs]+2rs+1

2
,…, b[(n/2)rs]+3rs

2
 and 

so on the last vertex of the level two in this path will be bnrs
2
. 

The last vertex in the level two of the next path will be 

b3(n/2)rs
2
. Continuing the same way the last vertex in the level 

2 in the last path will be bm(n/2)rs
2
. 

 

Here, N = (the number of edges of level one + the number 

edges of the path) in a single copy, r is the number of first 

level vertives attached in one vertex of the path of the 

lobster, s is the number of second level vertices attached in 

one first level vertex of the lobster, k denotes the m
th

 vertex 

in the cycle, i denotes the n
th

 path of the lobster, g denotes 

the s
th

 vertex of the lobster and h denotes the h
th

 vertex of the 

lobster. 

 Figure 1: The vertex in the first copy of the lobster 

 

 
       Figure 2: The vertex in the second copy of the lobster 
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Figure 3: The vertex in the third copy of the lobster 

 

And so on the vertices in the last copy of the lobster is given 

as: 

 

 
Figure 4: Vertices in the last copy of the lobster 

 

 

u1
1

u1
3

u1
m

 
 

Figure 5: The vertices in the cycle Cm 

... ...

...

...

...

...

...

u1
1

u2
1

u3
1

un
1

u1
2

un
2

u1
3

u2
3

u3
3

un
3

u1
m

u2
m

u3
m

b1
1

b2
1 b3

1

br
1

anr/2
1

b(nr/2)+r
1

a(nr/2)+r
2

anr
1

a{nr-r+1}
1

bnr+1
1

as
2

a2
2

a1
2

ars
2

b[(n/2)-1]rs
2

a[(n/2)-1]rs+1
2

b(n/2)rs
2

a[(m-3)(n/2)+1]rs+s
2

a(m-2)(n/2)rs+1
2

a(m-2)(n/2)+1)rs
2

b[(m-2)(n/2)-1]rs
2

bmnrs/2
2

    Figure 6: The graph G of Cycle with lobster 

 

The vertex label of the cycle Cm is given as:
 

f(u1
2k-1

)= 

{
 
 

 
 

(    )  (   )   (   )(   )      
           

(    )  (   )   (   )(   )         

  
 

 
        

 

f(u1
2k

) = (N+1)+2(N+1)(k-1),       1 < k < m/2 

 

The vertices in the path of the lobster, m is even are labeled 

based on the parameter ‘N’, ‘n’ and ‘r’ as follows: 

f(u2i-1
2k-1

)= 

{
 
 
 

 
 
 

(    )  (   )   (   )(   )  

 (   )(   ) 

                                                   
   

 
     

 

 
      

(    )  (   )   (   )(   )  

 (   )(   )    
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f(u2i-1
2k

) = (N+1)+2(N+1)(k-1)+2(r+1)(i-1),  

1 ≤ i ≤ (n+1)/2,  1 ≤ k ≤ m/2 

f(u2i
2k-1

) = (N+1)+2(N+1)(k-1)-2(r+1)(i-1),     

 1 ≤ i ≤ (n-1)/2,  1 ≤ k ≤ m/2 

 

f(u2i
2k

)= 

{
 
 

 
 
 (    )   (   )(   )   (   )(   )  

 (   )   (   ) 
                                     (   )              

(    )   (   )(   )   (   )(   )  

 (   )   (   )    
                                     (   )              

 

 

The vertex labels for level 1 of Lobster at ui is defined as 

follows, 

f(ag
1
) = 2i,    1≤g≤r 

f(atr+g
1
) = f(atr

1
)+4+(2g-2),   1≤g≤r,  1≤t≤mn/2 

f(bg
1
) = (2q-1)-2(g-1),    1 ≤ g ≤ r 

f(btr+g
1
) = f(btr

1
)-4-2(g-1),   1 ≤ g ≤ r, 1 ≤ t ≤ mn/4  

f(bmnr/4+g
1
) = f(bmn/4)-6-2(g-1),   1 ≤ g ≤ r 

 

The vertex labels for level 2 of Lobster at ag is defined as 

follows, where a is even. 

f(ah
2
) = (2q-1)-2(N+1)(k-1)+2(r+1)(i-1)-(N-3)+2(j-1)- 

           2-2(h-1),   i = n/2, k = m/2 

f(ags+h
2
) = f(ags

2
)-4-2(h-1),    1 ≤ g ≤ r-1 

f(ars+h
2
) = f(ars

2
)-2(rs+3)-2(h-1),   1 ≤ h ≤s 

f(atrs+h
2
) = f(atrs

2
)-2(rs+3)-2(h-1),   1 ≤ t ≤ mn/2 

  

The vertex labels for level 2 of Lobster at bg is defined as 

follows, where b is odd. 

f(bh
2
) = f(bmnr/2

1
)+2(rs)+4+2(h-1),     1 ≤ h ≤s 

f(bgs+h
2
) = f(bgs

2
)+4+2(h-1),     1 ≤ h ≤ s,   1 ≤ g ≤ r-1 

f(btrs+h
2
) = f(btrs

2
)+2(rs+3)+2(h-1),    

      1 ≤ h ≤ s,   1 ≤ t ≤ mn/4 

f(bs(tr+g)+h
2
) = f(bs(tr+g)

2
)+2(h-1)+4,    1 ≤ h ≤ s,   1 ≤ g ≤ r-1 

f(bsmnr/4 + h
2
) = f(bmnrs/4

2
)+2(rs+3)+2(h-1)+2,    1 ≤ g ≤ r 

f(btrs+h
2
) = f(btrs

2
)+2(rs+3)+2(h-1),   mn/4+s  ≤ t ≤ mn/2 

 

From the above equation it is clearly seen that the vertex 

labels are distinct and edge get the odd labels from 1 to 2q-

1.Thus the graph G is odd graceful. Illustration of the graph 

G is given in figure 7. 

 

 Illustration: 

 

When m=4, n=4, r=4, s=3, p=272, q=272 
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              Figure 7: Illustration of the graph G 

 

III. CONCLUSION AND FUTURE SCOPE  

 

Thus we have proved that the graph G obtained by attaching 

each vertex of the cycle Cm
 
with the m isomorphic copies of 

lobster graph is odd graceful where m≡0(mod 4). 

 

Further we are intended to prove that the graph G obtained 

by attaching each vertex of the cycle Cm
 
with the m arbitrary 

copies of lobster graph is odd graceful where m≡0(mod 4). 
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