E-ISSN: 2347-2693

A Comparative Study on Various Clustering Techniques in Data Mining

M. Kasthuri^{1*}, S. Kanchana², R. Hemalatha³

¹Dept. of Computer Science, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India ^{2,3}Bishop Heber College, Tiruchirappalli, Tamil Nadu, India

*Corresponding Author: stephenbasilkasthuri@gmail.com

Available online at: www.ijcseonline.org

Abstract— Clustering is the process of combination of identical objects into same classes. A cluster is a grouping of data objects that are analogous to one another within the same cluster and are disparate to the objects in other clusters. Data clustering can be performed on various areas such as data mining, statistics, machine learning, spatial database, biology and marketing. Machine learning is classified into supervised and unsupervised learning. Clustering is the example of unsupervised learning that has no predefined classes and deals with unknown samples. Cluster analysis can be done with different types of methods includes partitioning methods, hierarchical methods, density based methods, grid based methods and model based methods. Quality of clusters can be determined by the two factors that they are high intra-cluster similarity and low intercluster similarity. In this paper, various clustering techniques has been analyzed in data mining in terms of methodology adopted, dataset handled, accuracy, advantages and limitations.

Keywords— Agglomative approach, Clustering, K-means, K-medoid

I. INTRODUCTION

Data mining is a type of sorting technique which is actually used to extract hidden patterns either from large databases, data warehouses or other information repositories [15]. The goals of data mining are fast retrieval of data or information, knowledge Discovery from the databases to reduce the level of complexity and time saving [17].

Data mining also known as KDD (Knowledge Discovery in Databases) which has the following steps: Data Cleaning, Data Integration, Data Selection, Data Transformation, Data Mining, Pattern Evaluation and Knowledge Discovery. Cluster analysis can be done by various methods such as Partition based, Hierarchical based, Grid based and Density based algorithms [7]. The discovered knowledge can be applied to decision making, process control, information management, and query processing. Clustering methodologies are very useful in different domains such as prediction analysis, sentiment analysis, forecasting, text categorization, information retrieval [19], Stemming analysis [20], etc.

II. CLUSTERING METHODOLOGIES

A. Partition Method

Partition based techniques divide the object in multiple partitions where single partition describes cluster. Objects within single clusters are of analogous characteristics where an object of different cluster has disparate characteristics in terms of dataset attributes. A distance measure is one of the feature space used to identify similarity or dissimilarity of patterns between data objects. Then it use an iterative relocation techniques that attempts to develop the partitioning by moving objects from one group to another. To achieve global optimality in partition based clustering would require the comprehensive enumeration of all the possible partitions [11]. Instead, most applications implement one of four popular heuristic methods:

- 1. K-Mean Algorithm : Centroid Based Technique
- 2. K-Medoid Algorithm (PAM) : Object Based technique
- 3. CLARA (Clustering Large Application): To deal with large data sets
- 4. CLARANS (Clustering Large Application Based on Randomized Search): It is more capable and scalable than both PAM (Partitioning Around Medoids) and CLARA.

The advantage of the partition based algorithms that they use an iterative way to create the clusters, but the weakness is that the number of clusters has to be determined in advance and only spherical shapes can be strong-minded as clusters. Another major disadvantage of partitioned based algorithm is that whenever the distance between the two points from the centre are close to another cluster, the result becomes poor or misleading due to overlapping of the data points. Table 2.1 shows various clustering methodologies, its advantages and disadvantages of partitioned method.

Vol.6(11), Dec 2018, E-ISSN: 2347-2693

Techniques	Cluster shape	Complexity	Suitable Data set size	Advantages	Disadvantages
K-means	Spherical	O(ikn)	Large	1. K-means is comparatively scalable and efficient processing in large data sets	 It is difficult to predict the K Value More difficulties in comparing the quality of cluster K-means does not work well with globular clusters It is not suitable for clusters with different sizes and different densities
K-medoid	Arbitrary	O (i k (n- k)2)	Large	 It is simple to understand and easy to implement K-medoids seems to perform better for large data sets K-medoid is fast and converges in a fixed number of steps Partition Around Medoid (PAM) is less perceptive to outliers than other partitioning algorithms 	 K-mediods is more costly than K-means because of its time complexity Results and total run time depends upon initial partitions
CLARA	Arbitrary	O(ks2+k(n- k))	Sample	1. CLARA deals with larger data sets than PAM	 The act of CLARA depends upon the size of dataset A partial sample data may result into ambiguous and poor clustering
CLARANS	Arbitrary	O (n ²)	Sample	 It is easy to handle outliers CLARANS result more effective than PAM and CLARA 	 It does not guarantee to give search to a localized area It uses randomize samples for neighbors It is not much efficient for large datasets

Table 2.1: Various Methodologies of Partitioned Method

B. Hierarchical Methods

.

Cluster analysis of hierarchical methods generates the hierarchical decomposition of given data objects. Hierarchical based algorithms can be classified as agglomerative and divisive those are described as bottom up and top down approaches respectively [12]. Agglomerative approach starts with singleton cluster of each separate data object in the dataset and merge them according to the great similar identity adjacently by computing similarity [15]. Divisive approach takes all the data objects as an own single cluster and recursively partition the cluster in order to get one cluster for each data object in the dataset finally. Table 2.2 represents different methodologies of Hierarchical methods.

Table 2.2. Different Methodologies of Hierarchical Method

Techniques	Cluster	Complexity	Suitable	Advantages	Disadvantages
	shape		Data set		

Vol.6(11), Dec 2018, E-ISSN: 2347-2693

			size		
BIRCH (Balanced Iterative Reducing and Clustering Using Hierarchies)	Spherical	O(N)(Time)	Large	1.Efficiently work on given limited amount of main memory and available resources 2.Minimized time required for I/O 3.Applies multiphase clustering technique 4.Produce good quality clustering for single scan and improves the quality of clustering for successive scans	 Clustering Feature tree can hold only a limited number of entries due to its size BIRCH does not work well for non-spherical shapes because it uses the radius notion to control the boundary of a cluster Works on only numeric dataset
CURE (Clustering Using Representatives)	Arbitrary	O(N2)	Large	 Overcomes the problem of favoring clusters with spherical shape and similar sizes More robust with respect to outliers High quality clusters in the existence of outliers with complex shapes and different sizes Well clustering quality for large databases One scan of the entire database 	 Sensitive to the user defines parameters-parameter setting does have an significant influence on the results CURE does not handle categorical attributes ignores the information about the aggregate interconnectivity of objects in two different clusters
ROCK (Robust Clustering Using LinKs)	Arbitrary	O(N2)	Large	1.Suitable for categorical attributes	1.Ignores the information about the closeness of two clusters while emphasizing the interconnectivity
CHAMELEON	Graph	O(KN2)	Small	1.Explores dynamic modellings	1.High Time complexity for high dimensional dataset

C. Grid Based Method

The grid based clustering uses a multi resolution grid data structure. It quantizes the space into a limited number of cells that form a grid structure on which all of the operations for clustering are performed. The main advantage of this approach is its high-speed processing time, which is typically autonomous of the number of data objects, yet reliant on only the number of cells in each dimension in the quantized space. Table 2.3 shows that various methodologies in Grid Based methods. Grid based approach includes:

1. STING (Statistical Information Grid): Explore statistical information stored in grid.

- 2. Wave Cluster: Objects using a clustering Wavelet Transformation
- 3. CLIQUE (Clustering In QUEst): Represents a grid and density based approach for clustering in high dimensional data space
- 4. MAFIA (Merging of Adaptive Intervals Approach to Spatial Data Mining): To handle massive data sets.
- 5. O-Cluster (Orthogonal partitioning CLUSTERing): Creates a hierarchical grid based clustering model, it creates axis-parallel (orthogonal) partitions in the input attribute space.

Table 2.3: Various Methodologies of Grid Based Method

D. Density Based Method

Techniques	Cluster shape	Complexity	Suitable Data set Size	Advantages	Disadvantages
STING	Arbitrary	O(K)	Large	 It is a query-independent approach since the statistical information exists independently of queries Query processing using this structure are trivial to parallelize When data is updated, need not recomputed all information in the cell hierarchy 	1. All Cluster boundaries are either horizontal or vertical, and no diagonal boundary is selected
MAFIA	Arbitrary	O(cp + p N)	Large	 MAFIA proposes adaptive grids for fast sub space clustering and introduces scalable parallel frame work It also use shared – nothing architecture to handle massive data sets 	1. Gains on higher dimensional data and larger data sets has been observed to be even more dramatic
Wave Cluster	Arbitrary	O(N)	Large	 Wavelet transformation can automatically result in the removal of outliers The multi resolution property of wavelet transformations can help detect clusters at varying levels of accuracy It can handle any large spatial database efficiently 	1. A wavelet transform is only suitable for signal processing techniques, so that decomposes a signal into different frequency is so difficult
O-Cluster	Arbitrary	O(N x d)	Large	 Good accuracy and scalability It is robust to noise Automatically detects the number of clusters in the data Successfully operate with limited memory resources 	1. O-clustering encounter serious scalability and/or accuracy related problems when used on data sets with a large number of records and/or dimensions
CLIQUE	Arbitrary	O(Ck+mk)	Large	 It automatically finds subspaces of the highest dimensionality such that high density clusters exist in those subspaces It is quite efficient It is insensitive to the order of records in input and does not presume some canonical data distribution 	1. The accuracy of the clustering result may be degraded at the expense of simplicity of the method.

Most Density based clustering method is considering distance between objects. These methods can find only spherical shaped clusters and come across difficulty at discovering clusters of arbitrary shapes. Other clustering methods have been developed based on the view of density [15]. Table 2.4 represents different methodologies in Density method.

1. DEBSCAN: A Density Based clustering method based on Connected Regions with Sufficiently High Density.

- 2. OPTICS: Ordering Points to identify the Clustering Structure.
- 3. DENCLUE: Clustering Based on Density Distribution Functions.

Techniques	Cluster	Complexity	Suitable Data set	Advantages	Disadvantages
	snape		size		
DBSCAN	Arbitrary	N LogN)	large	1. DBSCAN performs efficiently for low dimensional data	 Sampling data set would affect the density measures The algorithm is not suitable for multiprocessing systems
OPTICS	Arbitrary	O(N Log N)	Large	 It can discovers the clustering groups with irregular shape, uncertain amount of noise It can discovers high density data included in low density group Final clustering structure is incentive to parameters 	 Expect some kind of density drop to detect cluster borders Less sensitive to outliers
DENCLUE	Arbitrary	O(log D)	large	 It uses solid mathematical foundation and generalizes various clustering methods It is good clustering properties for large data sets 	1. Less sensitive to outliers

III. LITERATURE REVIEW OF RECENT CLUSTERING TECHNIQUES

This section is useful to represent literature review about recent clustering techniques in various fields. Table 2.5

shows recent clustering techniques applied in various domains, adapted methodology, data set used, reached accuracy, advantages and Limitations.

Table 2.5: Clustering	Techniques	adapted in	various	fields
-----------------------	------------	------------	---------	--------

Year	Authors	Title of the	Methodology	Data set	Accurac	Advantage	Limitations
		paper			У		
2018	Pushpalatha	Text Document	Frequent	Word	85%	1. The rigid nature	1. Not able to
	К.Р.,	Retrieval	Ordered Word	Net		of Agglomerative	load the data into
	G.Raju	through	Patterns			Hierarchical	RAM fully at a
		Clustering	(FOWPs)			Clustering is	time When the
		using				removed by a	size of the data
		Meaningful				greedy approach to	set is very high
		Frequent				select more than	
		Ordered Word				one object for	
		Patterns				clustering in the	
						same iteration	
						using K-nearest	
						Neighbors	
						approach	
2018	Hemanth	Text	Improved	Twenty	94%	1. Avoids the	1. Not applicable
	Somasekar,K	Categorization	Markov	Newsgro		overlapped clusters	for multilingual
	avya Naveen	and graphical	Clustering	ups		2. Decreases the	document
		representation	Model	dataset		CPU time	clustering
		using Improved	(IMCM)	downloa		3. Less memory	
		Markov		ded from		consumption	
		Clustering		Jason			
				Rennie's			
				page(20			
				Newsgro			
				ups and			
				Reuters-			
				21578)			
2018	Dr.Vo Ngoc	English	YULEQ	English	87.85 %	1. It can process	1. Low

Vol.6(11), Dec 2018, E-ISSN: 2347-2693

	Phu, Dr.Vo	sentiment	similarity	testing		millions of	rate of accuracy
	Thi Ngoc	classification	coefficient of	data set		documents in the	
	Tran	using an	the			shortest time	2. It takes too
		YIII FO	clustering			2 It shortens the	much of cost
		similarity	technique			execution time in	mach of cost.
		measure and	teeninque			distributed	
		the one				austributed	
		dimensional				2. It can be applied	
		Vioatora in a				5. It can be applied	
		vectors in a				longuages	
						languages	
		Environment					
2017	A '(D 1	Environment	M 1°C 1	C	02 (80/	1 751 1'C' 1 17	1 771 1
2017	Arpit Bansal,	Improved	Modified	Cancer	92.68%	1. The modified K-	1. This approach
	MayurSharm	K-mean	K-mean	data set		means clustering	is not suitable for
	a and	Clustering	Clustering and	available		will vanish off	large data set
	Shalini Goel	Algorithm for	SVM	in		the two major	
		Prediction		MATLA		drawbacks,	
		Analysis using		В		accuracy level and	
		Classification				calculation time	
		Technique in				consumed in	
		Data Mining				clustering dataset	
2017	Vairaprakash	Mining the	K-mean,	Large	87.5%	1. K-means	1. K-mean
	Gurusamy,	Attitude of	stemming			performance is	algorithm also
	S. Kannan	Social Network	algorithms			better	increases its time
	J. Regan	Users using K-				2. To save memory	
	Prabhu	means				space and time	
		Clustering					
2016	Shilna S ,	Heart disease	PSO (Particle	Clevelan	88.20%	1. Reduces main	1. It consider only
	Navya EK	forecasting	Swarm	d Heart		memory needed	a small cluster at
		system using	Optimization)	disease		2. This prediction	a time
		K-mean	K-Means	Date set		handles all missing	2. PSO is a good
		clustering	MAFIA			values and	clustering
		algorithm with	(Maximal			investigates each	algorithm, it does
		PSO and other	Frequent Item			possibility	not perform well
		data mining	set Algorithm)				when the dataset
		methods	-				is large or
							complex
2015	K.Rajalaksh	Comparative	K-means	Patient's	Heart-	1. This system	1. This paper
	miDr.S.S.Dh	Analysis of K-	algorithm ,	data sets	disease-	reduces the human	does not provide
	enakaran ,	Means	Naive Bayes		98.24%,	effects and cost	clear picture
	N.Roobini	Algorithm in	and Decision		diabetics	effective one	about accuracy
		Disease	tree		-78%		and evaluation
		Prediction					process
2012	Mohammed	Mining	decision tree.	graduate	-	1.Improves	1. This paper
	M. Abu Tair.	Educational	rule induction	students		students'	does not provide
	Alaa M. El-	Data to	neural	data set		performance and	clear picture
	Halees	Improve	networks k-			also predict current	about accuracy
		Students'	noorost			position in	and evaluation
1		1 100000000	HEALESI			1 1 / / / / / / / / / / / / / / / / / /	
		Performance: A	neighbor			academic level	process
		Performance: A	neighbor, naïve			academic level.	process

IV. CONCLUSION

Clustering is a method of grouping data into different groups, set of objects. The data in each group share similar trends and

pattern. This research paper presents detail about various methodologies in clustering technique, which type of data is suitable, its advantages and limitations. Clustering is a significant task in data analysis and data mining applications.

Literature review describes various types of clustering techniques which have been evolved in different domains such as prediction analysis, sentiment analysis, forecasting, text categorization, information retrieval, Stemming analysis [18], etc.

From the literature review it is observed that existing clustering methodologies have its own advantages and limitation. In order to overcome the limitations available in the existing clustering methodologies, if anyone will propose new clustering methodology with hybridize some other techniques like Data structure, Stemming or hybrid clustering, then it is very useful to different domains such as prediction analysis, sentiment analysis, forecasting, text categorization, information retrieval, etc.

REFERENCES

- Pushpalatha K.P., and Raju G., "Text Document Retrieval through Clustering using Meaningful Frequent Ordered Word Patterns", In: *International Journal of Applied Engineering Research*, Volume.13, pp. 4822-4833, ISSN: 0973-4562, 2018.
- [2] Hemanth Somasekar and Kavya Naveen, "Text Categorization and graphical representation using Improved Markov Clustering", In: *International Journal of Intelligent Engineering and Systems*, Volume. 11, pp. 107-116, March 2018.
- [3] Dr.Vo Ngoc Phu and Dr.Vo Thi Ngoc Tran, "English Sentiment Classification Using an YULEQ Similarity Measure and the One dimensional Vectors in a Parallel Network Environment", In: *Journal* of Theoretical and Applied Information Technology, Volume.96, pp.3356-3382, ISSN: 1992-8645, June 2018.
- [4] Arpit Bansal, Mayur Sharma, Shalini Goel, "Improved K-mean Clustering Algorithm for Prediction Analysis using Classification Technique in Data Mining", In: *International Journal of Computer Applications*, Volume.157, pp.35-40, January 2017.
- [5] Vairaprakash Gurusamy S., Kannan, J. and Regan Prabhu, "Mining the Attitude of Social Network Users using K-means", In: *International Journal of Advanced Research in Computer Science and Software Engineering*, Volume.7, Issue.5, pp.226-230, ISSN: 2277-128X, May 2017.
- [6] Suman, Pinki Rani, "A Survey on STING and CLIQUE Grid Based Clustering Methods", In: *International Journal of Advanced Research in Computer Science*, Volume.8, pp.1510-1512, ISSN: 0976-5697, May-June 2017.
- [7] Chitra K., and Maheswari D., "A Comparative Study of Various Clustering Algorithms in Data Mining", In: *International Journal of Computer Science and Mobile Computing*, Volume.6, Issue.8, pp.109-115, ISSN: 2320–088X, August 2017.
- [8] Sajana T., Sheela Rani C.M., and Narayana K.V, "A Survey on Clustering Techniques for Big Data Mining", In: *Indian Journal of Science and Technology*, Volume.9, pp.1-12, ISSN: 0974-6846, January 2016.
- [9] Shilna S. and Navya EK, "Heart Disease Forecasting System using Kmean Clustering Algorithm with PSO and other Data Mining Methods", In: *International Journal On Engineering Technology and Sciences*, Volume.3, Issue.4, pp.51-55, ISSN(P): 2349-3968, ISSN (O): 2349-3976, April 2016.

Vol.6(11), Dec 2018, E-ISSN: 2347-2693

- [10] Kiranjeet Kaur and Lalit Mann Singh, "Heart Disease Prediction System Using ANOVA, PCA And SVM Classification", In: International Journal of Advance Research, Ideas and Innovations in Technology, Volume.2, Issue.3, pp.1-6, ISSN: 2454-132X, 2016.
- [11] Swarndeep Saket J. and Sharnil Pandya, "An Overview of Partitioning Algorithms in Clustering Techniques", In: *International Journal of Advanced Research in Computer Engineering & Technology*, Volume.5, Issue.6, pp.1943-1946, ISSN: 2278–1323, June 2016.
- [12] Abdullah Z. and Hamdan A. R, "Hierarchical Clustering Algorithms in Data Mining", In: *International Journal of Computer and Information Engineering*, Volume.9, pp.2201-2206, 2015.
- [13] Rajalakshmi K, and Dhenakaran, Roobini N, "Comparative Analysis of K-Means Algorithm in Disease Prediction", In: *International Journal of Science, Engineering and Technology Research* (IJSETR), Volume.4, Issue.7, pp.2697-2699, ISSN: 2278-7798, July 2015.
- [14] Abdullah Z, Hamdan A. R, "Hierarchical Clustering Algorithms in Data Mining", In: *International Journal of Computer and Information Engineering*, Volume.9, pp.2201-2206, 2015.
- [15] Jiawei Han and Micheline Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann, Third Edition, 2012.
- [16] Mohammed M. Abu Tair, Alaa M. El-Halees, "Mining Educational Data to Improve Students' Performance: A Case Study", In: International Journal of Information and Communication Technology Research, Volume.2, pp.140-146, February 2012.
- [17] M. Kasthuri, Dr. S. Britto Ramesh Kumar, "A Framework for Language Independent Stemmer Using Dynamic Programming", In: *International Journal of Applied Engineering Research* (IJAER), Print ISSN 0973-4562, Volume.10, Number.18, pp.39000-39004 Online ISSN1087-1090, 2015.
- [18] M. Kasthuri, Dr. S. Britto Ramesh Kumar, "PLIS: Proposed Language Independent Stemmer for Information Retrieval Systems Using Dynamic Programming", In: 2016 World Congress on Computing and Communication Technologies, ISBN: 978-1-5090-5573-9, pp.132-135, IEEE, 2016.
- [19] M. Kasthuri and Dr. S. Britto Ramesh Kumar, "Multilingual Phonetic Based Stem Generation", In: *Proceedings of the Second International Conference on Emerging Research in Computing, Information Communication and Applications* (ERCICA-2014), ELSEVIER Science :: Technology India, ISBN:9789351072 607, Volume.1, pp.437-442, 01-02 August, 2014.
- [20] Dr.M.Kasthuri and Dr.S.Britto Ramesh Kumar, "PLIS: Proposed Language Independent Stemmer Performance Evaluation", In: International Journal of Advanced Research in Computer Science & Technology (IJARCST 2017), Volume.5, Issue.4, ISSN: 2347-8446 (Online), ISSN:2347-9817 (Print), Oct-Dec, 2017.

Authors Profile

Dr. M.Kasthuri is working as an Assistant Professor in the Department of Computer Heber Bishop Applications, College, Tiruchirappalli, Tamil Nadu, India. She had completed her Doctorate of Philosophy in Science June Computer 2017 in at Bharathidasan University, Tiruchirappalli. She has published a number of National and

International level research papers related to Web Mining and Stemming concepts. She has completed UGC sponsored Minor Research Project entitled as Language Independent Stemmer.

Vol.6(11), Dec 2018, E-ISSN: 2347-2693

S. Kanchana Subramanian is a student of Master S. Kanchana Subramanian is a student of Master of Computer Applications at Bishop Heber College in Tiruchirappalli, She completed her Under Graduate of Bachelor of Computer Applications at Bishop Heber College, Tiruchirappalli in 2016. She secured Gold Medal for Computer Applications in University Rank Examinations 2016 conducted by Bharadhidasan University, Tiruchirappalli, Tamil Nadu, India.

R. Hemalatha R completed her Bachelor degree in computer applications at Bishop Heber College, Trichirappalli in 2016 and currently she studying her master degree in computer applications at Bishop Heber College, Tirchirappalli. She got department second in her under graduate program of computer applications.

