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Abstract— Metrics have been used to measure many attributes of software. For object oriented software, cohesion indicates the 

level of binding of the class elements. A class with high cohesion is one of the desirable properties of a good object oriented 

design. A highly cohesive class is less prone to faults and is easy to develop and maintain. Several object oriented cohesion 

metrics have been proposed in the literature. In this paper, we propose a new cohesion metric, the High Precision Cohesion 

Metric (HPCM) to overcome the limitations of the existing cohesion metrics. We also propose seven hypotheses to investigate 

the relationship between HPCM and other object oriented metrics. The hypotheses are verified with data collected from 500 

classes across twelve open source Java projects. We have used Pearson’s coefficient to analyze the correlation between HPCM 

and the metrics in the hypotheses. To further bolster our results we have included p-value to confirm the statistical significance 

of the findings. 
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I. INTRODUCTION  

Object oriented design and development continues to be the 

most widely used methodology for designing high quality 

software. Ensuring the quality of such systems is of prime 

interest. Eliminating defects that affect quality in early stages 

of software development life cycle, like design, saves cost 

and effort [1] [2] [3]. Object oriented design-level metrics 

and their associated quality prediction techniques attempt to 

ensure quality during the design and early coding phase. 

Many object oriented metrics have been proposed to 

compute an underlying property like cohesion, inheritance 

and coupling. Cohesion metrics indicate how well the class 

elements bind with each other. Since a class consists of two 

basic sets of elements, attributes and methods, all of the 

cohesion metrics revolve around the usage of these. A high 

cohesion value indicates that the class is well structured and 

provides the stated functionality with the help of well-knit 

attributes and methods [4]. Conversely a low cohesive value 

indicates a class that may need to be split or redesigned. A 

non-cohesive class is a maintenance nightmare and is prone 

to faults [5] [6] [7].  

Several cohesion measures have been proposed in the 

literature. Chidamber and Kemerer [8] proposed the first 

cohesion metric. They presented an inverse metric, thus 

measuring the lack of cohesion (LCOM1). LCOM1 

measures the number of pairs of methods that do not have 

any common attribute.  Chidamber and Kemerer [9] revised 

their metric and came up with an altered version (LCOM2) 

which found the difference between the number of pairs of 

methods not sharing any attribute and those sharing at least 

one attribute. LCOM1 and LCOM2 do not have normalized 

values. Li and Henry [10] proposed their version of lack of 

cohesion (LCOM3) as the number of connected components 

in a graph with methods as node and edges between each 

pairs of methods with at least one common attribute. Hitz 

and Montazeri [11] enhanced the LCOM3 to include edges 

for method to method invocations as well and named it 

LCOM4. Henderson-Sellers [12] came up with LCOM5 

which included the number of distinct attributes accessed by 

each method. LCOM3, LCOM4 and LCOM5 show high 

values of cohesion even with a single common attribute 

among methods. After LCOM5, the cohesion metrics 

proposed were direct cohesion metrics compared to the 

inverse nature of lack of cohesion metrics proposed till then. 

The first direct cohesion metric, Connectivity (Co) was 

introduced by Hitz and Montazeri [13]. Briand et al [21] 

proposed Coh which uses the concept of number of attributes 

used by each method. Bieman and Kang [14] introduced 

TCC (Tight class cohesion) and LCC (Loose class cohesion) 

which captured the methods connected through attributes 

directly and indirectly. Badri [15] introduced variations on 

TCC and LCC naming them DCD and DCI which includes 

method invocations also, directly or in the call trace 

respectively. TCC, LCC and their derivatives DCD and DCI 

also give skewed cohesion values when a single common 

attribute exists in all methods. The metrics that were 

proposed further were based on the similarity between 

methods based on the number of common attributes used 

between them. Bonja and Kidanmariam [16] defined Class 

Cohesion (CC) based on this similarity of methods. The 

concept was further enhanced by Fernandez and Pena [17] in 

their metric Sensitive Class Cohesion Metric (SCOM). 

Bansiya et al. [18] defined Cohesion among Methods in a 

class (CAMC) as a modified version of Co. Counsell et al Corresponding Author: Kayarvizhy N, kayarvizhy@gmail.com   
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[19] also introduced Normalized Hamming Distance (NHD) 

and Scaled Normalized Hamming Distance (SNHD) based 

on how many attributes each method accesses. Al Dallal and 

Briand [20] came up with Low-level design Similarity based 

Class Cohesion (LSCC) which finds out how many methods 

access each attribute. SCOM, CAMC, NHD, SNHD and 

LSCC give high cohesion values in the presence of few 

common attributes across methods.  

In this paper, we propose a new cohesion metric, the High 

Precision Cohesion Metric (HPCM) to address the 

limitations in the existing cohesion metrics. HPCM is 

designed to give precise cohesion values. We then analyze 

the proposed metric with hypotheses. This paper is organized 

as follows. Section 2 explains the High Precision Cohesion 

Metric (HPCM) in detail. In Section 3 we propose seven 

hypotheses capturing the relation between HPCM and other 

OO metrics. These hypotheses are verified empirically in 

Section 4. Section 5 lists the limitations and future work and 

Section 6 concludes the study followed by a list of 

references. 

 

II. HIGH PRECISION COHESION METRIC 

A. Limitations of existing Cohesion Metrics 

LCOM1 and LCOM2 are not normalized in their value and 

hence it is difficult to compare their values between two 

classes and understand their relative cohesion. Their values 

are dependent on the number of methods in a class. Hence 

their values can grow to very high values. Consider two 

classes, c1 and c2 which have two and four methods each. 

The attributes accessed by the methods are listed here - c1m1 

{a1}, c1m2 {a2}, c2m1 {a1}, c2m2 {a2}, c2m3 {a3}, c2m4 

{a4}. Each method accesses just a single unique attribute in 

both the classes. But the values of LCOM1 and LCOM2 are 

very different for the classes. LCOM1(c1) = LCOM1(c2) = 1 

and LCOM2(c1) = LCOM2(c2) = 6.  

LCOM3 and LCOM4 are also not normalized in their value 

but the range is improved over LCOM1 and LCOM2. But 

LCOM3 and LCOM4 suffer from a different issue. Consider 

class c1 with the following method-attribute interactions - 

c1m1 {a1, a2, a4}, c1m2 {a3, a5, a4}, c1m3 {a6, a7, a4}, 

c1m4 {a7, a8, a4}, c1m5 {a9, a10, a4}, c1m6 {a11, a12, a4}. 

The methods are not cohesive since they all share just one 

common attribute between them and use their own unique 

set of attributes otherwise. However LCOM3 and LCOM4 

give the class a perfect cohesion value of 1. The same 

limitation applies to TCC, LCC, DCD and DCI. 

CC and SCOM cohesion metrics vastly improve on the idea 

of similarity. They do not consider just one common 

attribute sufficient for high level of cohesion. Instead these 

metrics account for the number of attributes that are shared 

between methods. However they have a limitation as 

highlighted here. Consider a class c1 with the following 

method-attribute interactions – c1m1 {a1}, c1m2 {a1}, c1m3 

{a1}, c1m4 {a1}, c1m5 {a2, a3, a4, a5}. We have CC = 

SCOM = 0.6 for this class. However careful observation of 

the class would show that most of the attributes are not 

shared by majority of its methods. This is not realistically 

captured by CC and SCOM.  

The motivation for a new metric is to have a fine grain value 

for cohesion.  HPCM differentiates classes with similar but 

not identical cohesion. HPCM values are normalized on a 

scale of 0 to 1. 

B. Definition of HPCM 

The High Precision Cohesion Metric (HPCM) is based on 

two related concepts – Average Attribute Usage (AAU) and 

Link Strength (LS). The AAU is a separate metric which 

computes the average number of attributes used by each 

method of the class directly or indirectly through a method 

invocation. We consider only public, non-inherited methods 

of a class. Inherited attributes are also not considered for 

computation of AAU. Let ’c’ be the class in consideration. 

Then �����is the set of non-inherited, overriding or newly 

implemented methods of c. Further �������  is the set of 

public methods of c. Public non-inherited or overridden 

methods are given by ����� ∩ �������. The total number of 

methods in our case is the cardinality of such a set. It is 

given by	|����� ∩ �������| . The attributes referenced by a 

method is given by AR(m) where m is the method. Hence 

total attributes referenced is given by ∑����, for each m 

in the set ����� ∩ �������  . Hence the AAU is given in 

Equation (1).  

 

� = 	 ∑����|����� ∩ �������| (1) 

 

Link Strength is a concept to capture the level of interaction 

between a pair of methods based on the number of attributes 

commonly used between them. Link Strength (LS) is based 

on AAU. LS for a pair of methods m1 and m2 is given in 

Equation (2). 

 	����� = 	 |���1� ∩ ���2�| 
 

(2) ������ = 	 �
	������ , ��		����� ≤ �
1, ��		����� 	> � 

 

 

HPCM is defined using Link Strength. We define HPCM as 

given in Equation (3) 

 � =	 |����� ∩ �������| 
 

(3)  !����� = 		 2 ∗ ∑ ���#�$� ∗ �� − 1� 
 

 

HPCM is an average of Link Strength of all method pairs in 

the class. To find the average we first find the total of all LS 

in the numerator. Here all public non inherited, overridden 

and newly implemented methods are considered, similar to 

AAU and their link strengths are summed up. The 
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denominator denotes the total available method pairs and is 

given by a simple formula of n ∗ (n − 1)/2 where ’n’ is the 

total number of methods. In our case the total number of 

methods is given by ����� ∩ �������   and hence results in 

given denominator. 

C. Evaluating HPCM 

To evaluate HPCM, we have considered 500 classes from 12 

open source projects written in Java. The projects considered 

were Apache Mahout, Apache Open Web Beans, Apache 

Sling, Apache Synapse, Apache Tobago, Apache Tomcat, 

Camel, Castor, Cayene, Eclipse, JDK 7, and Struts. The code 

for each of the project was downloaded from their respective 

websites [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] 

[36]. Classes were chosen such that there they were 

comparable in terms of their size ranging from a few 

methods to around twenty methods. Classes without 

attributes or methods were not considered. The bug 

information for the projects was retrieved from Sonar Nemo 

website [23]. Only major and critical defects were 

considered for the study. The cohesion metrics LCOM1, 

LCOM2, LCOM3, LCOM4, LCOM5, TCC, LCC, SCOM, 

CC and HPCM were computed using Automated Tool 

developed by the authors [24]. Studies have confirmed of a 

linear relationship between cohesion metrics and defects [10] 

[37] [38]. Univariate Linear regression was used to evaluate 

the fault prediction capability of the cohesion metrics. Linear 

Regression attempts to fit the data points (in our case the bug 

data and each cohesion metric) in a straight line y = α + βx. 

Where ‘α’ is the constant term, ‘β’ is the coefficient, ‘y’ is 

the number of bugs in the class and ‘x’ is the cohesion 

metric. The Root Mean Square Error (RMSE) was used to 

measure the fitness of the resulting plot. A lower RMSE 

indicates a good fit whereas a high RMSE indicates poor fit. 

Table 1 lists the RMSE for the various cohesion metrics that 

were obtained in the linear regression analysis. 

Table 1.  HPCM Evaluation – RMSE 

Metric RMSE Coefficient Constant 

LCOM1 0.509 0.001 .54 
LCOM2 0.509 0.001 .54 
LCOM3 0.481 0.049 .39 

LCOM4 0.525 0.049 .46 

LCOM5 0.433 0.721 .07 

TCC 0.379 -1.19 .95 
LCC 0.389 -.910 .92 
SCOM  0.391 -1.19 .95 
CC 0.410 -1.46 .89 

HPCM 0.370 -1.32 .87 

 

We find that RMSE of the metrics TCC, LCC, SCOM and 

CC indicate lower error and hence better fit compared to the 

traditional cohesion metrics. However HPCM gives the least 

RMSE indicating the best fit among the cohesion metrics for 

predicting bugs. This indicates that HPCM predicts the faults 

better compared to other cohesion metrics 

 

III. HPCM HYPOTHESES 

Our goal in this paper is to study specific aspects and 

characteristics of HPCM. In the following sections we 

propose seven hypotheses investigating the relationship 

between HPCM and other object oriented metrics. We limit 

the metrics to a class since HPCM is class cohesion metric.  

A. HPCM vs. Size Metrics 

Size metrics of a class captures how big the class is in terms 

of its attributes, methods and lines of code. Research efforts 

have gone it to measure the effect the size of a class has on 

other OO metrics [22]. A class with more number of 

methods tends towards having groups of methods, with each 

group concentrated on a different functionality. The same 

argument can be extended to attributes as well. Also an 

increase in attributes and methods leads to more lines of 

code. Hence a cohesive class should depict an inverse 

relation to all of these size metrics. We have considered 

three size metrics - lines of code (LOC), number of attributes 

(NOA) and number of methods (NOM) for our analysis. Our 

hypotheses are based on the understanding that bigger 

classes tend to be overloaded with more than one core 

functionality and hence lead to poor cohesion. The following 

hypotheses are proposed for analyzing the relationship 

between HPCM and size metrics. 

 

Hypothesis 1.  Lesser the number of attributes defined in a 

class, higher the value of HPCM of the class 

 

Hypothesis 2.  Lesser the number of methods defined in a 

class, higher the value of HPCM of the class 

 

Hypothesis 3.  Lesser the LOC of a class, higher the value of 

HPCM 

B. HPCM vs. LCOM 

LCOM proposed by Chidamber and Kemerer [8] is one of 

the earliest known metric for cohesion of a class. It is an 

inverse metric that captures the lack of cohesion. The value 

of LCOM is not range bound and tends to get very high for 

classes with more methods. Both HPCM and LCOM capture 

the underlying property of cohesion in a class. However 

HPCM is a precise and finer metric compared to the coarse 

LCOM. HPCM is also a direct cohesion metric. Based on 

this information we propose the below hypothesis 

 

Hypothesis 4.  Higher the value of HPCM, lower would be 

the value of LCOM of the class 

C. HPCM vs. CBO 

Coupling between Objects (CBO) was proposed by 

Chidamber and Kemerer [9] to measure the level of 

dependency between classes. A well designed class is a self-

contained unit and should have minimum dependency on 

other classes to fulfill its functionality. On the other hand, a 

highly coupled class has a lot of interaction with other 

classes. CBO captures the depth of inter class relationship of 
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a class. With this basic premise we propose the next 

hypothesis below. 

 

Hypothesis 5.  Higher the value of HPCM, lower would be 

the value of CBO of the class 

D. HPCM vs. DIT 

The Depth of Inheritance Tree was proposed by Chidamber 

and Kemerer [9] to measure the level of inheritance of a 

class. It is the length of the maximal path from the node to 

the root of the tree. A class’s cohesion and its depth of 

inheritance are unrelated properties. The depth of inheritance 

(DIT) of a class should not have any effect in the way the 

class’s elements are bound together. With this assumption 

we propose the following hypothesis  

 

Hypothesis 6.  The DIT of a class should not have an effect 

on the HPCM of the class 

 

IV. HYPOTHESES VERIFICATION 

In this section we perform the empirical analyses for the 

hypotheses that were formulated in the previous section 

A. Data Set 

To evaluate the proposed hypotheses, we have considered 

the same dataset that was used in evaluating HPCM in 

section 2.3 

B. Metrics 

The metrics listed in Table 2 were computed to evaluate the 

proposed hypotheses. All the metrics were computed from 

the dataset using the Automated Tool developed by the 

authors [24] 

 

Table 2.  Metrics considered for the study 
 

Metric Detail 

HPCM High Precision Cohesion Metric 
LCOM Lack of Cohesion 
LOC Lines of Code 
NOA Number of Attributes 
NOM Number of Methods 
CBO Coupling Between Objects 
DIT Depth of Inheritance 

C. Pearson Coefficient and p-value 

We have used Pearson’s coefficient to estimate the 

relationship between the variables in our hypotheses. 

Pearson’s coefficient of correlation (r) is a widely used 

measure of correlation. It gives the extent and direction of 

relation between the two variables under consideration. 

Given variables X and Y and ‘n’ data points for them, 

Pearson’s coefficient is given as in Equation (4) 

 

& = ' �() − (*��+) − +*�,
)-.

/' �() − (*��,
)-. /' �+) − +*��,

)-.
 (4) 

 

Pearson’s coefficient can take a value from -1 to +1, both 

inclusive. The larger the value of ‘r’, ignoring sign, the 

stronger the association between the two variables and hence 

more accurately one can predict the value of one variable 

from the knowledge of other. A value of -1 or +1 suggests 

that the variables have perfect correlation.                An ‘r’ 

value of 0 suggests the absence of correlation between the 

variables – there is no relationship between the two 

variables. The sign of ‘r’ gives information on the direction 

of the association. A positive value suggests that relatively 

high values of one variable are paired with relatively high 

values of another variable and low values are paired with 

low values of the second variable. A negative correlation 

means that relatively high values of the first variable are 

paired with relatively low values of the second variable and 

vice versa.  

The p-value is the probability of getting the correlation by 

chance. When the p-value is low, the confidence in the 

obtained Pearson coefficient is high. Generally p-value less 

than 0.05 are considered statistically significant and we have 

taken the same cut-off in our experiment as well. 

D. Results and Interpretation 

The results of the empirical analysis are summarized in this 

section.  

Projects HPCM  LCOM   LOC   NOA   NOM    CBO   DIT 

Mahout 0.461 24.18 133.12 4.72 7.66 8.38 0.59 

OWB 0.489 29.81 163.63 4.31 7.95 7.5 0.86 

Sling 0.416 18.66 125.59 4.61 8.38 4.07 0.48 

Synapse 0.271 318.8 382.3 10.4 13.7 24.7 1.1 

Tobago 0.355 69.57 141.76 6.09 7.86 6.24 0.57 

Tomcat 0.189 176.6 378.58 8.9 13.03 12.4 0.73 

Camel 0.279 156.0 160.0 5.15 10.46 14.9 0.36 

Castor 0.205 50.76 149.76 4.57 9.73 6.66 0.61 

Cayene 0.314 73.33 168.71 7.52 11.62 12 0.86 

Eclipse 0.236 105.4 172.52 10.2 6.66 20.4 0.42 

JDK7 0.330 35.15 185.87 7.33 7.37 2.38 1.86 

Struts 0.292 51.45 138.8 4.45 6.27 7.63 0.36 

 

Table 4 provides the correlation coefficient values for 

HPCM with size metrics. We find that HPCM is negatively 

correlated with all the size metrics as proposed in the 

hypotheses 

 

Table 4.  Pearson Coefficients for HPCM vs. Size Metrics 

 

Projects 
HPCM vs.  
LOC 

HPCM vs.  
NOA 

HPCM vs.  
NOM 

Mahout -0.28712 -0.37333 -0.15952 

OWB -0.37087 -0.45170 -0.36659 

Sling -0.16793 -0.31734 -0.30214 

Synapse -0.24568 -0.40196 -0.10998 

Tobago -0.49601 -0.37482 -0.35987 

Tomcat -0.21269 -0.28263 -0.13176 

Camel -0.52366 -0.46848 -0.20135 
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Castor 0.029200 -0.24433 -0.06038 

Cayene -0.14734 -0.42173 -0.24623 

Eclipse -0.42998 -0.08017 -0.23754 

JDK7 -0.27492 -0.19197 -0.22159 

Struts 0.315460 0.170510 -0.34170 

 

Table 5 provides the correlation coefficient values for 

HPCM with LCOM, CBO and DIT. HPCM has negative 

correlation with LCOM and CBO as proposed earlier. 

HPCM does not show a clear correlation direction with DIT. 

Some projects show non-trivial positive correlation (like 

0.44169 in Synapse) while others show a non-trivial negative 

correlation (-0.2933 in Sling). Hence there is no clear 

conclusion on the effect of DIT on HPCM 

 

Table 5 – Pearson Coefficients for HPCM vs. LCOM, CBO 

and DIT 

 

Projects HPCM Vs 

LCOM 

HPCM Vs  

CBO 

HPCM Vs  

DIT 

Mahout -0.50256 -0.38886 0.3572 

OWB -0.43935 -0.16926 -0.0151 

Sling -0.37584 0.02919 -0.2933 

Synapse -0.38714 -0.28206 0.44169 

Tobago -0.51058 -0.70940 0.10882 

Tomcat -0.15733 -0.17478 0.08981 

Camel -0.48129 -0.51830 0.05387 

Castor -0.33969 -0.13932 0.40893 

Cayene -0.34952 -0.27688 -0.2077 

Eclipse -0.11025 -0.20351 -0.2022 

JDK7 -0.44104 -0.14557 -0.0741 

Struts -0.39241 -0.08755 -0.0002 

 

Table 6 gives the overall correlation results for the various 

metrics along with their statistical significance (p-value). We 

find that all the metrics except DIT are negatively correlated 

as proposed in the hypotheses. The correlation coefficient 

between HPCM and DIT is close to zero, indicating near 

absence of correlation. However since the correlation 

between HPCM and DIT was not conclusive in section 4.4. 

Additional experiments are suggested before drawing 

conclusions on hypothesis 6. Also in all the cases we find p-

value less than 0.05 confirming the statistical significance of 

the coefficients. The p-value is less than 0.01 for 6 cases 

shows high statistical significance. 

Table 6 – Overall Pearson Coefficients 

Hypotheses Pearson Coefficient p-value 

HPCM Vs LOC -0.2662179 0.00000115 

HPCM Vs NOA -0.2768793 0.00000043 

HPCM Vs NOM -0.2307795 0.00002290 

HPCM Vs LCOM -0.2494641 0.00000501 

HPCM Vs CBO -0.2274472 0.00002965 

HPCM Vs DIT 0.0044887 0.00468834 

V. LIMITATIONS AND FUTURE WORK 

The study is prone to certain limitations which can be 

investigated and addressed in related future work. Fault 

modeling based on one metric might not yield the best 

results. Faults could be contributed by other metrics too. For 

the scope of this study we have considered that metrics other 

than cohesion have a constant impact on faults. The 

relationship between HPCM and DIT is inconclusive. Some 

projects presented a positive correlation and some indicated 

negative correlation. This requires additional experiments to 

arrive at a conclusion. We have considered data from open 

source Java projects. This data set is representative of a 

small population of projects. A large real time object-

oriented system from industry will serve as a better data set 

and can be considered for future study. The metric could be 

deployed in an industry setup and feedback from industry 

users can be used to further refine the metric. Future studies 

could also consider fault prediction models based on HPCM 

and other metrics to further understand their relationship and 

their contribution to the overall defect prevention 

 

VI. CONCLUSIONS 

In this paper we analyzed the limitations of existing cohesion 

metrics. A new cohesion metric, the High Precision 

Cohesion Metric has been proposed to address the 

limitations. The characteristics of HPCM have been 

investigated and validated with the help of seven hypotheses. 

The empirical study was done using data from 500 classes 

taken from 12 open source projects in Java. The hypothesis 

gives an insight on the relationship between HPCM with 

other object oriented metrics. 

 
REFERENCES 

[1] G. Concas, M. Marchest, G. Destefanis and R. Tonelli, An 

empirical study of software metrics for assessing the phases of 

an agile product, International Journal of Software 

Engineering and Knowledge Engineering, June 2012, vol. 22, 

no. 04, pp. 525-548 

[2] E. Paikari, M. M. Ritcher and G. Ruhe, Defect Prevention 

using case based reasoning: An attribute weighing technique 

based upon sensitivity analysis in neural networks, 

International Journal of Software Engineering and Knowledge 

Engineering, Sep. 2012, vol. 22, no. 06, pp. 747-768 

[3] M. Khoshgoftaar, K. Gao and A. Napolitano, An empirical 

study of feature ranking techniques for software quality 

prediction, International Journal of Software Engineering and 

Knowledge Engineering, Mar. 2012, vol. 22, no. 02, pp. 161-

183 

[4] C. Z. Zhou and Y. B. Xu, A novel approach to measuring 

class cohesion based on dependence analysis, Proceedings of 

the International Conference on Software Maintenance, 2002, 

pp. 377-384. 

[5] L. C. Briand, C. Bunse and C. J. Daly, A controlled 

experiment for evaluating quality guidelines on the 

maintainability of object-oriented designs, IEEE Transactions 

on Software Engineering, 2001, pp. 513-530. 

[6] J. Bieman and L. Ott, Measuring functional cohesion, IEEE 

Transactions on Software Engineering, 1994, pp. 644-657. 



   International Journal of Computer Sciences and Engineering        Vol.-2(4), pp (238-243) April 2014, E-ISSN: 2347-2693  

                             © 2014, IJCSE All Rights Reserved                                                                                                                243 

[7] T. Mens and S. Demeyer, Future trends in software evolution 

metrics, Proceedings of IWPSE2001, ACM, 2002, pp. 83-86. 

[8] S. R. Chidamber and C. F. Kemerer, Towards a metrics suite 

for object-oriented design, Proceedings of Conference on 

Object-Oriented Programming Systems, Languages and 

Applications, 1991, pp. 476-493. 

[9] S. R. Chidamber and C. F. Kemerer, A metrics suite for 

object-oriented design, IEEE Transactions on Software 

Engineering, 1994, pp. 476-493. 

[10] W. Li and S. Henry, Object-oriented metrics that predict 

maintainability, Journal of Systems and Software, 1993, pp. 

111-122. 

[11] M. Hitz and B. Montazeri, Chidamber and Kemerer metric 

suite - a measurement theory perspective, IEEE Transactions 

on Software Engineering, 1996, pp. 267-271. 

[12] B. S. Henderson, Object-oriented Metrics: Measure of 

Complexity. New Jersey, Prentice Hall, 1996, pp. 142-147. 

[13] M. Hitz and B. Montazeri, Measuring coupling and cohesion 

in object oriented systems, Proceedings of the Int. Symposium 

on Applied Corporate Computing, 1995, 25-27. 

[14] M. M. Bieman, B. K. Kang and W. Melo, Cohesion and reuse 

in an object oriented system, Proceedings of the symposium 

on software reliability, 1995, pp. 259-262. 

[15] L. Badri and M. Badri, A Proposal of a new class cohesion 

criterion, an empirical study, Journal of Object Technology, 

2004 

[16] C. Bonja and E. Kidanmariam, Metrics for class cohesion and 

similarity between methods, Proceedings of the 44th Annual 

ACM Southeast Regional Conference, 2006, pp. 91-95. 

[17] L. Fernandez and R. Pena, A sensitive metric of class 

cohesion, International Journal of Information Theories and 

Applications, 2006, pp. 82-91. 

[18] J. Bansiya, L. Etzkorn, C. Davis and W. Li, A class cohesion 

metric for object-oriented designs,  Journal of Object Oriented 

Program, 1999, pp. 47-52. 

[19] S. Counsell, S. Swift and J. Crampton, The interpretation and 

utility of three cohesion metrics for object-oriented design, 

ACM Transactions on Software Engineering and 

Methodology, 2006, pp. 15:123-149. 

[20] A. J. Dallal and L. Briand, A Precise method-method 

interaction based cohesion metric for object oriented classes, 

Simula Research Laboratory, Simula Technical Report, 2009 

[21] L. C. Briand, J. Daly, J. Wuest, A unified framework for 

cohesion measurement in object-oriented systems, Empirical 

Software Engineering, An International Journal, 1999, pp. 65-

117 

[22] K. E. Emam, The confounding effect of class size on the 

validity of object oriented metrics,  IEEE Transactions on 

Software Engineering, 2001, pp. 630-650 

[23] Sonar Bug Repository (2012) http://nemo.sonarsource.org, 

September 

[24] N. Kayarvizhy and S. Kanmani, An Automated Tool for 

Computing Object Oriented Metrics using XML. Proceedings 

of International Conference on Advances in Computing and 

Communication ACC2011, Springer, 2011, pp. 69-79. 

[25] The Apache Mahout project, http://mahout.apache.org. 

[26] The Apache OpenWebBeans project, 

http://openwebbeans.apache.org. 

[27] The Apache Sling project, http://sling.apache.org. 

[28] The Apache Synapse project, http://synapse.apache.org. 

[29] The Apache Tobago project, 

http://myfaces.apache.org/tobago/index.html. 

[30] The Apache Tomcat project, http://tomcat.apache.org. 

[31] The Apache Camel project, http://camel.apache.org. 

[32] The Castor project, http://www.castor.org. 

[33] The Apache Cayene project, http://cayenne.apache.org. 

[34] The Eclipse project, http://www.eclipse.org. 

[35] The JDK7 project, http://jdk7.java.net. 

[36] The Apache Struts project, http://struts.apache.org. 

[37] Basili, Victor R., Lionel C. Briand, and Walcélio L. Melo, A 

validation of object-oriented design metrics as quality 

indicators. IEEE Transactions on Software Engineering, 1996, 

pp. 751-761. 

[38] Subramanyam, Ramanath, and Mayuram S. Krishnan, 

Empirical analysis of ck metrics for object-oriented design 

complexity: Implications for software defects. IEEE 

Transactions on Software Engineering, 2003, pp. 297-310. 

 

AUTHORS PROFILE 

 

Kayarvizhy N received her B.Tech and 

M.Tech degree from Pondicherry University, 

Puducherry in the year 2001 and 2004 

respectively in computer science and 

engineering. She is working as Associate 

Professor in AMC Engineering College, 

Bangalore since 2006. She is pursuing her PhD 

at Anna University, Chennai. Her research interest includes object 

oriented software metrics, neural network models and swarm 

intelligence algorithms. 

 

Kanmani S received her B.E in 1991 and M.E in 

1992 in computer science and engineering from 

Bharathiar University, Coimbatore and PhD in 

information and communication engineering 

from Anna University, Chennai in 2006.  

Currently she is a Professor in Pondicherry 

Engineering College, Puducherry. Her research area includes 

software systems, software metrics, object oriented systems, 

algorithms and data structures. Dr. Kanmani’s professional 

affiliations are with Indian Society for Technical Education (ISTE) 

and Computer Society of India (CSI).  

 

 Rhymend Uthariaraj V has done his M.E and 

PhD in Computer Science and Engineering, Anna 

University, Chennai. His areas of expertise include 

Network Security, Pervasive Computing, 

Distributed Computing, Operations Research, and 

Computer Algorithms. He has an overall experience 

of 27 years.  He holds the position of Secretary, 

Tamil Nadu Engineering Admissions and 

Coordinator, AICTE-MCA QIP Program at Anna University, 

Chennai. He is the Director of Ramanujan Computing Centre, Anna 

University, Chennai and has professional affiliations with Indian 

Society for Technical Education (ISTE). 

.  


