
 © 2014, IJCSE All Rights Reserved 28

 International Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and Engineering Open Access
 Technical Paper Volume-2, Issue-2 E-ISSN: 2347-2693

Pattern Based Cache Management Policies

Namrata Dafre
1*

, Urmila Shrawankar
2
 and Deepak Kapgate

3

1*
Student of M.Tech. (CSE), GHRAET, Nagpur, Nagpur University(MS), India, namrata17dafre@gmail.com

2
 Department of C.S.E., GHRCE, Nagpur, Nagpur University (MS), India, urmila@ieee.org

3
Department of C.S.E., GHRAET, Nagpur, Nagpur University (MS), India,deepakkapgate32@gmail.com

www.ijcaonline.org

Received: 05 Feb 2014 Revised: 14 Feb 2014 Accepted: 26 Feb 2014 Published: 28 Feb 2014

Abstract— In a computer architecture Cache memory have been introduced to balance performance and cost of the system. To

improve the performance of a cache memory in terms of hit ratio and good response time system needs to employ efficient

cache replacement policy. Unified Buffer cache management, Program Counter-based Classification, Detection based

Adaptive Replacement, Robust Adaptive buffer Cache management scheme and Block Pattern Based Buffer Cache

Management are some of the existing policies. But they have some disadvantages like they were not able to exploit both

recency and frequency information, some of them could not exploit all type of reference regularities, some of them have high

memory overhead. So we require more advanced policies to improve the performance. In this work we are proposing the block

access pattern based replacement policy which predicts future request of a block based on history of response time for

respective data block. Block access pattern based replacement policy leads to effective improvement in buffer cache hit ratio

and reduced response time.

Index Term—Buffer Cache, Access Patterns, Cache Replacement Policies, Buffer Cache Management Techniques

I. INTRODUCTION

Cache is high speed memory contains most recently

accessed pieces of main memory. It bridges the gap

between CPU and Main Memory. Increasing cache size

results in better performance but it is very expensive. It is

necessary because, time it takes to bring an instruction into

the processor is very long when compared to the time to

execute the instruction. Cache memory helps to reduce the

time it takes to move information to and from the processor.

Cache memory improves system performance by following

a concept of Locality of Reference. The concept is that at

any given time the processor will be accessing memory in a

small or localized region of memory, cache memory loads

this region allowing the processor to access the memory

region faster. The role of Cache is illustrated in the

following figure 1. The typical Cache Organization can be

shown in figure 2.

Figure 1: Cache Based Memory System

Figure 2: Typical Cache Organization

When a new block is brought into the cache, it needs to

replace one of the existing blocks if cache is full. For this

purpose we need replacement policies. To provide memory

operands to the processor at the speed it can process them is

one of the most challenging aspect. To achieve high speed,

an efficient replacement policy must be implemented. A

number of policies have been introduced. To have

maximum hit rate a good caching algorithm must have

characteristics such as,

� Low memory overhead.

� Faster access to data.

� Low response time.

In computer architecture, to balance performance and cost

of the system Cache and buffer cache have been introduced.

Corresponding Author: Namrata Dafre

 International Journal of Computer Sciences and Engineering Vol.-2(2), pp (28-35) Feb 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 29

The hierarchy architecture consists of CPU, RAM and

external storage. Cache reduces read latency, while the

buffer cache is to reduce writing operations. Cache works

between CPU and RAM while cache buffer works between

RAM and external storage [1].

Buffer cache is an interface between the main memory and

disk drive. It is introduced to reduce the frequency of access

made to the secondary storage devices and enhance the

system throughput [2]. In a computer system, storage

devices such as registers, caches, main memory and

secondary memory are present in a hierarchy. They are at

various levels. At the top level there are registers which

accesses data at the speed of processor usually in one clock

cycle. At next higher level there exists cache memory.

Primary memory is present next higher level. At higher

levels, as data storage space increases, access time and the

transfer bandwidth decreases. System cannot access directly

to secondary storage for the data. Whenever there is a

request for the data, at first the system searches block

containing the requested byte in the buffer cache. If the

request is not found, the system searches it into the

secondary disk, brought into the buffer cache and finally

passed to main memory and then to the cache & as the

buffer resides in main memory the access time between

main memory and buffer cache is negligible.

File Access Patterns

Processor is much faster than DRAM memory, so it is

obvious that the number of processor cycles it takes to

access main memory has also increased. Thus we must use

other cache management technique to make cache more and

more efficient for a system which make use of it in their

memory hierarchy. Different workloads and programs have

different accessing patterns like,

Sequential references: All blocks are accessed one after

another, such as file scanning. Blocks are never re-accessed.

Looping-like references: All blocks are accessed

periodically.

Temporally-clustered references: Blocks accessed more

recently are the ones more likely to be accessed in the near

future.

Probabilistic references: Blocks are accessed independently

with the associated probabilities.

II. RELATED WORKS

Replacement algorithms are of three types. They are as

follows:

1) Replacement algorithms that incorporate longer reference

histories than LRU:

As LRU[5] is simple and easy to implement so it is used

widely but in some cases it does not perform well so other

replacement algorithms such as LRU-K[6], 2Q[13],

LRFU[14], EELRU[12], MQ, LIRS[16], and ARC[15] are

used which incorporate longer reference histories than

LRU. These algorithms make their cache replacement

decision by maintaining information of accessed blocks

such as recency as well as frequency. But, they cannot

exploit regularities such as looping or sequential references.

2) Replacement algorithms that rely on application hints:

Some of the replacement algorithms rely on programmers to

insert useful hints such as information about future access

patterns but, this technique cannot achieve satisfactory

performance level if the I/O access pattern can be known

only at runtime. Such application informed caching

management schemes are proposed in ACFS [28] and TIP

[29].

3) Replacement algorithm that actively detects the I/O

access patterns:

Depending on the level at which patterns are detected, the

pattern-detection based techniques are of four types:

Block-level patterns

Block level pattern detection policy detects the long

sequences of page cache misses and applies the Most

Recently Used (MRU) policy to such sequences to avoid

scan pollution.

Application-level patterns

At this level, a scheme periodically classifies the pattern of

references issued by a single application. DEAR[] observes

the patterns of assuming that the I/O pattern of each

application is consistent. DEAR (Detection Adaptive

Replacement) uses MRU as the replacement policy to

manage the cache partitions for looping and sequential

patterns, LRU for the partition of the temporally-clustered

pattern, and LFU for the partition of the probabilistic

pattern.

File-level patterns

At the file level, the UBM (Unified Buffer Management)

[23]scheme separates the I/O references according to their

target files and automatically classifies the access pattern of

each individual file into one of three categories such as

sequential references, looping references and other

references. It divides the buffer cache into three partitions,

one for blocks belonging to each pattern category, and then

uses different replacement policies on different partitions.

For blocks in the sequentially referenced partition and

periodically referenced partition, MRU[7] replacement

policy is applied. For blocks that belong to other reference

pattern, LRU[5] is used. This approach tends to have good

responsiveness and stability due to the fact that most files

tend to have stable access patterns, although large database

files may show mixed access patterns.

 International Journal of Computer Sciences and Engineering Vol.-2(2), pp (28-35) Feb 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 30

Program-context level patterns

At this level, a scheme separates I/O stream into sub-stream

according to single program context and detect the patterns

of each sub-stream, assuming that a single program context

tends to access files with the same pattern in the future.

AMP [21] and PCC [22] are the example of program-

context level replacement algorithm. This approach uses

program context and has relatively shorter learning period

than the file-based approach. While it can make correct

classification for new files after training, it classifies the

accesses to all files touched by a single program context

into the same pattern category, thus it has no detection

accuracy.

III. EXISTING CACHE REPLACEMENT POLICIES

LRU[5] algorithm is used widely because of its simplicity.

LRU algorithm keeps track of the cache lines according to

time they have been used. The pages which have not been

used for longer time are to be replaced.

LRU has some limitations such as inability to cope with

access patterns with weak locality and scan pollution. LRU

causes thrashing for the workloads larger than the L2 cache.

When the LRU policy is used for memory intensive

workload, lines that are inserted in the cache will be

referenced in the future but due to the capacity misses, they

will be replaced by new lines before being re-referenced.

LRU-K [6] is the improvement over LRU, it dynamically

records the K’th backward distance. Backward distance of

block is number of references in between last and current

reference of the block. A block with the maximum K’th

backward distance is dropped to make space for missed

blocks. LRU-K makes its replacement decision based on the

time of the K’th to last reference to the block. Hence, oldest

resident block is evicted [4]. In LRU-2 simply K = 2 is

taken that is the time of the penultimate reference to a

block, LRU-2 quickly removes cold block from the cache.

Early Eviction LRU [12] policy is an improvement of LRU.

It attempts to get advantage of both LRU and MRU. It

concentrates on the positions of the memory references in

the LRU queue. This queue is only a representation of the

main memory using the LRU model, ordered by the recency

of each page. By analyzing reuse of pages EELRU detects

sequential access pattern. EELRU detects non-numerically

adjacent sequential memory access patterns.

First In First Out [10] replacement policy uses a replace_ptr

to indicate the cache block that is to be replaced when a

cache miss occurs. 2Q [13] algorithm performs similar to

LRU-K but with considerably lower time complexity. It

achieves quick removal of cold blocks from the buffer by

using a FIFO queue A1in, an LRU queue Am, and a ghost

LRU queue A1out. When a block is newly referenced, it

initially kept into A1in. When a block is evicted from A1in,

this block’s identifier is added to A1out, this queue contents

only block identifiers. If a block in A1out or A1in is re-

referenced, this block is promoted to Am [5].

Second Chance is an improvement of FIFO. It uses a

reference bit for each cache block. The reference bit will be

set to 1 each time the cache block is accessed. SC uses a

queue, where the head of the queue represents the next

cache block to be replaced upon a cache miss. LFU [5]

algorithm keeps track of cache lines which are used

frequently and the information which is not used frequently

is discarded. It uses a bit called LFU count. MRU [7]

algorithm discards, in contrast to LRU algorithm does,

replaces most recently used information. Optimal

replacement [9] algorithm is also known as clairvoyant

algorithm. This is the most efficient algorithm which

discards the information that will not be needed for longer

time in future.

Least Recently/Frequently used (LRFU) [14] policy

consider both recency as well as frequency information of a

block. It uses a CRF value on the basis of which it makes

the replacement decision. It uses a weighing function which

uses all the past CRF values of that block.

In Dueling CLOCK [19], Cache is logically implemented as

circular queue. It is an adaptive replacement policy which

alternates between the CLOCK algorithm and the scan

resistant version of the CLOCK algorithm. This policy uses

hit bit, replace_ptr and circular buffer. In CLOCK algorithm

, the hitbit associated with each page is set to 0 initially,

whenever the page is referred hitbit is set to 1.On miss

event the replace_ptr is incremented that is moved to next

cache line and corresponding hitbit is checked, if it is 1 then

it is set to 0 and replace_ptr is incremented and check next

cache line’s hitbit, if it is 0 then that cache line is replaced.

This policy requires log(N) memory bits for Replace pointer

to indicate which page is to be replaced and N bits for array

of hitbit, one for each cache line.

Therefore, the total memory overhead is N + log(N) bits.

Scan Resistant version of CLOCK works same as that of

CLOCK, only the difference is, on miss event it force

replace_ptr not to advance to next cache line. Dueling

CLOCK policy have low overhead cost, it captures recency

and frequency information and it is scan resistant [29].

To minimize the deficiencies presented by LRU, new

replacement policy is proposed called as LIRS (Low Inter-

reference Recency Set)[16]. To make replacement decision

it uses Inter Reference Recency of a block. IRR refers to the

number of other blocks accessed between two consecutive

references to the block in history. According to the

collected IRRs, policy replaces the page that will take more

time to be referenced again. This means that LIRS does not

replace the page that has not been referenced for the longest

time, but it uses the access recency information to predict

which pages have more probability to be accessed in a near

 International Journal of Computer Sciences and Engineering Vol.-2(2), pp (28-35) Feb 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 31

future.The blocks having low IRR are called as LIR blocks

and blocks having high IRR are called as HIR blocks. LIRS

divides cache into two sets: High Inter-reference Recency

(HIR) block set and Low Inter-reference Recency (LIR)

block set. Each block with history information has a status

either LIR or HIR. The cache is divided into a major part

and a minor part in terms of size. The major part is used to

store LIR blocks, and the minor part is used to store HIR

blocks. A HIR block is replaced when the cache is full.

Adaptive Replacement Cache (ARC) [15] policy

implements two additional lists L1 and L2, L1 keeps track

The pages that were used recently only once, L2 keeps track

of pages that were used more than once. That means L1

captures recency while L2 captures frequency. That means

it dynamically chooses among LRU and LFU. According to

misses the policy will adapt the number of pages allocated

for each list. ARC is scan-resistant.. It has constant-time

complexity per request.

IV. BUFFER CACHE MANAGEMENT

TECHNIQUES

Buffer Cache Management Techniques are classified into

three categories. They are given as below.

Access Pattern Based

This technique focuses on prediction of block access

pattern. PCC [22], UBM [23] and DEAR [24] are examples

of this technique.

Block Pre-fetching

In this mechanism data blocks are read prior and kept into

main memory, to deal with the delay associated with the

access made to the disk. This mechanism is termed as pre-

fetching. User or complier inserted hints are used in

informed pre-fetching. I/O request are traced to obtain the

information about the system call made by the applications

and used in predictive caching. Automatic Pre-fetching And

Caching System (APACS) [31] is the examples of block

pre-fetching technique.

Distance Based Prediction

Reuse distance of a block is the time difference between

two consecutive references to a block. The reuse distance of

a block can be obtained by use of a program counter. Re-

Reference Interval Prediction (RRIP) technique has

suggested Static RRIP (SRRIP) and Dynamic RRIP

(DRRIP), Signature Based Hit Predictor (SHiP) [30] are

examples of this technique.

Unified Buffer Management (UBM) [23] scheme exploits

reference regularities such as sequential and looping

references. Reference information of a block in each file is

maintained in abstract form. It is maintained in 4-tuple, such

as file descriptor, start block number, end block number,

and loop period. This scheme works with the three main

modules.

Detection module detects sequential and looping references.

A reference is categorized as a sequential reference if any of

the block is not re-referenced. If references are referred

periodically then it is categorized as a looping reference.

After the detection, block references are classified into

sequential, looping, or other references.

Replacement module applies different replacement schemes

to the blocks which belong to different reference patterns.

For the partition which holds sequential references, MRU

replacement policy is used. For looping references, a

period-based replacement scheme is used to replace the

victim block in decreasing order of their loop periods, and

the blocks having same loop period, MRU [7] block

replacement scheme is used. For other references LRU [5],

LFU [5], LRU-K [6], and LRFU [14] replacement schemes

are applied which replaces on the basis of recency,

frequency, or a combination of the two factors.

Allocation module allocates the limited buffer cache space

among the three partitions corresponding to sequential,

looping, and other references. To allocate the blocks in the

cache among the three partitions, marginal gain function is

used. Marginal gain is defined as, expected number of extra

buffer hits per unit time that would be obtained by

increasing the number of allocated buffers from (n-1) to n,

where n is the expected number of buffer hits per unit time

using buffers.

Robust Adaptive buffer Cache management scheme

(RACE) [25] is a novel and simple replacement scheme

detects an access pattern. It uses two important data

structures, a file hash table and a PC hash table. The file

hash table records the sequences of consecutive block

references and is updated for each block reference. The

sequence is identified by the file description (inode), the

starting and ending block numbers, the last access time of

the first block, and their looping period. The PC hash table

records blocks which are fresh and reused. The main

process of the RACE scheme works into three steps. First,

the file hash table is updated for each block reference.

Second, RACE updates the PC hash table by changing the

fresh and reused counters. In last step it predicts access

pattern based on values of file and PC hash tables. If the file

table reports that the currently requested block has been

visited before, a looping pattern is returned. If the file table

cannot provide any history information of the current block,

RACE relies on the PC hash table to make predictions. A

PC with its reused counter larger than its fresh counter is

considered to show a looping pattern. On the other hand, a

PC is classified as sequential if the PC has referenced a

certain amount of one-time-use-only blocks and as others if

there is no strong supportive evidence to make a prediction.

 International Journal of Computer Sciences and Engineering Vol.-2(2), pp (28-35) Feb 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 32

Block Pattern Based Buffer Cache Management [26,27] is a

methodology which analyzes past access behavior and

program context from I/O request and helps to predict block

access patterns. It uses data structure which has values such

as File hash table and PC hash table of a block. In the

process of block access pattern identification three modules

are involved. The three modules works as,

Detection module updates File hash table and PC hash table

of the respective block as the block is accessed by the I/O

request, which is then used to identify the block access

pattern. The block being referenced, may be newly

referenced or re-referred. So that data structure either enters

new values or the existing values are updated. Then the

threshold is used to avoid conflicts and the pattern is

detected. Allocation Module allocates space to the block

being referenced, in the partition corresponding to the

pattern identified. The partition space allocated to each

identified pattern is calculated and movement of the block

among the several partitions, is managed dynamically

through the use of marginal gain function. Replacement

module replaces block from the partition whenever there is

no space to allocate for a block. Based upon the pattern

identified by the detection module the replacement policy is

applied. Program-Counter based Classification (PCC) [22]

is a prediction technique used in pattern based buffer

caching. This technique identifies the access pattern among

the blocks accessed by I/O operations triggered by a call

instruction in the application. Operating system correlates

the I/O operations with the program context in which they

are issued via the program counters of the call instructions

that trigger the I/O requests. PCC also performs

classification more quickly as per-PC pattern just needs to

be learned once. Detection based Adaptive Replacement

(DEAR) [24] buffer management scheme detects the block

reference pattern of applications and classifies the reference

pattern as sequential, looping, temporally clustered, or

probabilistic. After detection, the scheme applies an

appropriate replacement policy to the application. In this

technique two attributes associated with blocks such as

frequency and backward distance are used. Backward

distance is defined as the time interval between the current

time and the time of a last reference. This scheme employs

a procedure which invokes periodically and detects the

correct reference pattern. The procedure first finds the

backward distance and frequency of the blocks and two

ordered lists are created one according to backward distance

and another according to frequency. Then these two lists are

divided into sub list, all are of same size. After that it

calculates average forward distance for all the sub lists and

checks various conditions to detect correct reference

pattern.

V. COMPARISON AMONG CACHE REPLACEMENT POLICIES

Name of algorithm performance Access

Time

Scan

Resistant

Memory

Overhead

Parameter used Adaptive

LRU Good for working

set less in size

than cache size[5]

Fast No[15] Low Recency No[5]

LRU-2 [6] Better Than LRU Slow No Low Recency No

EELRU Better Than LRU

for regular access

pattern[12]

Fast Upto

Some

Extent[12]

Low Recency Yes[12]

LFU Good[5] Fast No Low Frequency No[5]

MRU Good Fast No[7] Low Recency No[7]

FIFO Poor[5] Fast No[15] Low _ No[15]

2Q Poor[16] Slow No[13] Low Recency No[13]

ARC [15] Good Fast Yes[15] High Recency,

Frequency

Yes[15]

LRFU Good 50 times

Slower

than

LRU &

ARC[15]

No High CRF(Recency &

Frequency)

Yes[14]

Dueling CLOCK Good Fast Yes[19] High[19] - Yes[19]

LIRS Good Fast No High

comparing

to

LRU[16]

IRR(Inter

Reference Recency)

Yes[16]

 International Journal of Computer Sciences and Engineering Vol.-2(2), pp (28-35) Feb 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 33

Hence, by comparing all the above cache replacement

policies we can say that LRU policy is simple and easy to

implement. It works well except at some situations.

Limitations of LRU are, it has a high overhead cost of

moving cache blocks into the most recently used position

each time a cache block is accessed, does not exploit

frequency information of memory accesses and it is prone

to cache pollution when a sequence of single-use memory

accesses that are larger than the cache size is fetched from

memory. In short it is not scan-resistant and thrash-resistant.

LRU2 is an improvement over LRU policy, but it does not

work well for the blocks having no significant difference in

reference frequencies. In addition, LRU-2 has high

overhead as each block access requires log(N) operations to

manipulate a priority queue, where N is the number of

blocks in the cache.

EELRU is again an improvement over LRU to achieve

adaptability and sensitivity to access pattern change. It

achieves the desired goal but behaves pathological after

some extent for loop access pattern. EELRU cannot quickly

respond to the changing access patterns. Without spatial or

temporal detections

LFU algorithm does not exploit recency information of the

block.

OPT policy can not implemented practically, as it requires

future reference information of a block and we can not

predict the future reference.

FIFO does not record recency information nor does it

exploit the frequency of memory accesses and it is known

to have lower performance than LRU.

The deficiency of SC is it needs to keep cache blocks

moving from the head of the queue to the tail. ARC policy

performs very good but it has high space overhead. LRFU

combines LRU and LFU, but it is not effective on

workload with a looping pattern. Dueling Clock policy has

high memory overhead. LIRS uses independent recency

events of each block to effectively characterize their

references. It achieves simplicity, adaptability but LIRS

stack may grow arbitrarily large, and hence, it needs to be

required large memory overhead. This policy does not

perform well for sequential access pattern.

VI. COMPARISON AMONG BUFFER CACHE MANAGEMENT TECHNIQUES

Name of policy Access level Comment

UBM [23] Files UBM scheme is very effective in detecting sequential and looping

references. It shows substantial performance improvement. Have

good responsiveness and stability as files generally tend to have

same access pattern. It has no classification accuracy.

PCC [22] Program counter

Call instruction

It is not sensitive to pattern change over an individual file, as its

pattern classification decision based on aggregate statistical

information.

DEAR [24] Application As application exhibits mixture of access patterns, it may fail to

detect local patterns, but it can detect global access pattern correctly.

RACE [25] File and program

counter

It overcomes all the limitations of LRU, but its overhead is it

requires program counter signatures.

Block Pattern Based

Buffer Cache

Management [26]

File and program

counter

Buffer cache hit ratio is improved by reducing total elapsed time in

servicing I/O services. Overhead is it requires program counter

signatures.

VII. CONCLUSION

A cache replacement policy is considered as efficient if it is

able to exploit any type of reference regularities which

improves hit ratio. In this paper several replacement policies

and cache management techniques are discussed of which

UBM has no classification accuracy, PCC is not sensitive to

pattern change, DEAR policy failed to detect local access

pattern correctly and some other has memory overhead as

they need to store information such as program counter

signatures. This leads to high miss ratio and increased

response time. As response time is important factor, it must

be minimum. Above discussed schemes can be used

according to system requirement. According to the

comparison, some policies have limitations so they could

not perform well for all type of reference regularities

because of this performance is degraded. So there is need to

develop a policy which perform better than existing one.

 International Journal of Computer Sciences and Engineering Vol.-2(2), pp (28-35) Feb 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 34

REFERENCES

[1] Hou Fang, zhao Yue-long, Hou fang, “A cache

management algorithm based on page miss cost”, in

proceedings of International conference on Information

Engineering and computer science, ICIECS, ISBN: 978-

1-4244-4994-1 pp. 1-4, 2009.

[2] Prof.P. K. Biswas, "Lecture series on digital computer

organization," Internet: http://nptel.iitm.ac.in, Sep 2009.

[3] M. J. Bach, “Operating system the design of the UNIX”,

Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1986.

[4] A. S. Tanenbaum, A. S.Woodhull, “Operating systems

design and implementation”, Upper Saddle River, NJ,

USA: Prentice-Hall, Inc., 1987.

[5] Donghee Lee, et.al.,.“On the existence of a spectrum of

policies that subsumes the least recently used (LRU) and

least frequently used (LFU) policies”,SIGMETRICS’99

Proceedings of the ACM SIGMETRICS international

conference on Measurement and modeling of computer

systems, pages 134-143, NY, USA, 1999.

[6]E. J. O’Neil, P. E. O’Neil, and G. Weikum., “The LRU-K

Page Replacement Algorithm for Database Disk

Buffering” , ACM Conference on SIGMOD, pg. no.

297–306, 1993.

 [7] K. So and R. N. Rechtschaffen, “Cache operations by

MRU change.” IEEE Trans. Computers, vol. 37, no. 6,

pp. 700–709, 1988.

[8] L. A. Belady, “A study of replacement algorithms for a

virtual-storage computer,” IBM Syst. J., vol. 5, no. 2, pp.

78-101, 1966.

[9] Alfred V. Aho, Jeffrey D. Ullman, et.al., “Principles of

Optimal Page Replacement”, Journal of ACM, Vol 18,

Issue 1, Pages 80-93,Jan 1971.

[10] R. Turner and H. Levy, “Segmented FIFO Page

Replacement”, In Proceedings of SIGMETRICS ,1981.

[11] A. Dan and D. Towsley, “An Approximate Analysis of

the LRU and FIFO Buffer Replacement Schemes”, in

Proceedings of ACM SIGMETRICS, Boulder, Colorado,

United States, pp. 143—152,1990.

[12] Y. Smaragdakis, S. Kaplan, and P. Wilson, “EELRU:

simple and effective adaptive page replacement,” in

Proceedings of ACM SIGMETRICS international

conference on Measurement and modeling of computer

systems, New York, USA, pg. no. 122–133, 1999.

[13] T. Johnson and D. Shasha, “2Q : A Low Overhead High

Performance Buffer Management Replacement

Algorithm” , In Proceedings of the 20
th
 International

Conference on VLDB, pg. no. 439–450, 1994.

[14] D. Lee, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C.

Kim, “LRFU: A Spectrum of Policies that Subsumes the

LRU and LFU Policies”, IEEE Transactions on

Computers, vol. 50, Issue no. 12, pp.1352-1361, Dec.

2001

[15] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low

overhead replacement cache,” in Proceedings of the 2
nd

USENIX Conference on File and Storage Technologies

(FAST), pg no. 115–130, Mar 2003.

[16] S. Jiang and X. Zhang, “LIRS: An efficient low inter-

reference recency set replacement policy to improve

buffer cache performance,” in Proceedings of the ACM

SIGMETRICS Conference on Measurement and

Modeling of Computer Systems, pg. no. 31–42, June

2002.

[17] Seon-yeong Park, et.al., “CFLRU: A Replacement

Algorithm for Flash Memory”, CASES'06, October 23–

25, Seoul, Korea ,2006.

[18] LI Zhan-sheng, et.al.,“CRFP: A Novel Adaptive

Replacement Policy Combined the LRU and LFU”, IEEE

8th International Conference on Computer and

Information Technology Workshops, 2008.

[19] Andhi Janapsatya, Aleksandar Ignjatovi´c, et.al.,

“Dueling CLOCK: Adaptive Cache Replacement Policy

Based on The CLOCK Algorithm”, 2010.

[20] T. Puzak, et.al,“Analysis of cache replacement

algorithms,” Ph.D. dissertation, Dep. Elec. Comput.

Eng., Univ. Massachusetts, Feb.1985.

[21] F. Zhou, R. von Behren, and E. Brewer, “AMP: Program

context specific buffer caching,” in Proceedings of the

USENIX Technical Conference, Apr. 2005

[22] C. Gniady, A. R. Butt, and Y. C. Hu, “Program-counter

based pattern classification in buffer caching”, in

Proceedings of 6
th

 Symposium on Operating System

Design and Implementation ,pg. no. 395–408, Dec. 2004.

[23] J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L.Min, Y. Cho,

and C. S. Kim,“A low-overhead, high-performance

unified buffer management scheme that exploits

sequential and looping references,” in 4
th

 Symposium on

Operating System Design and Implementation ,pg. no.

119–134, Oct. 2000.

[24] Jongmoo Choiy, Sam H. Nohz, Sang LyulMiny, Yookun

Cho, “An Adaptive Block Management Scheme Using

On-Line Detection of Block Reference Patterns”,

International Workshop on Multi-Media Database

Management Systems, Proceedings , pg no. 172 – 179,

Dayton, Aug 1998.

[25] Yifeng Zhu, Hong Jiang,“RACE: A Robust Adaptive

Caching Strategy for Buffer Cache”, IEEE Transaction

on computers, 2007.

[26] Urmila Shrawankar, Reetu Gupta, “Block Pattern Based

Buffer Cache Management”, The 8
th

 International

Conference on Computer Science and Education, April

26-28, Colombo, 2013.

[27] Reetu Gupta, Urmila Shrawankar, “Managing Buffer

Cache by Block Access Pattern”, IJCSI International

Journal of Computer Science Issues, Vol. 9, Issue 6,

November 2012.

[28] P. Cao, et.al., “Implementation and performance of

integrated application-controlled file caching,

prefetching, and disk scheduling,” ACM Transactions on

Computer Systems, vol. 14, Issue 4, pp. 311–343, 1996.

[29] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,

and J. Zelenka, “Informed prefetching and caching,” in

Proceedings of the fifteenth ACM symposium on

Operating systems principles (SOSP), New York, USA:

ACM Press, 1995.

[30] A. Jaleel, C. Jean, S. C. Steely, “ShiP: Signature Based

Hit Predictor for High Performance Caching”, ACM

International symposium on Computer Architectur, pg

430-431, 2011.

 International Journal of Computer Sciences and Engineering Vol.-2(2), pp (28-35) Feb 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 35

[31] Zhiyang Ding,et.al., “An Automatic Prefetching and

Caching System”, IEEE, 2010.

[32] Heung Seok Jeon, “Practical Buffer Cache Management

Scheme based on Simple Prefetching”, IEEE

Transactions on Consumer Electronics, Volume.- 52,

Issue - 3, August 2006.

[33] G. Keramidas, P. Petoumenou, S. kaxiras, “Cache

Replacement Based on Reuse Distance Prediction”,

Computer Design IEEE International Conference, page

no- 245-250, Oct 2007.

[34] G. Keramidas, P. Petoumenou, S. kaxiras, “ Instruction

Based Reuse Distance Prediction for Efficient Cache

Management”, Pet International Symposium on System,

Architecture, Modeling and Simulations, page no. 48-49,

July 2009.

