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Abstract— In this paper we will study the architectures of both Open Mp and CUDA architectures and make some 

comparisons among both in terms of basic program execution time. We will use a basic serial version of Matrix Multiplication 

Algorithm and modify it in terms of CUDA and Open MP and study comparatively.  
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I.  INTRODUCTION 

This project we will use the NVIDIA CUDA GPU 

programming environment to explore data parallel hardware 

and programming environments. The goals include 

exploring the space of parallel algorithms, understanding 

how the data-parallel hardware scales performance with 

more resources, and utilizing the data-parallel programming 

model. 

At the start of multicore CPUs and GPUs the processor chips 

have become parallel systems. But speed of the program will 

be increased if software exploits parallelism provided by the 

underlying multiprocessor architecture. Hence there is a big 

need to design and develop the software so that it uses 

multithreading, each thread running concurrently on a 

processor, potentially increasing the speed of the program 

dramatically. To develop such a scalable parallel 

applications, a parallel programming model is required that 

supports parallel multicore programming environment. 

NVIDIA’s graphics processing units (GPUs) are very 

powerful and highly parallel. GPUs have hundreds of 

processor cores and thousands of threads running 

concurrently on these cores, thus because of intensive 

computing power they are much faster than the CPU. 

 

II. DATA LEVEL PARALLELISM 

Data parallelism is a form of parallelization of computing 

across multiple processors in parallel computing 

environments. It mainly focuses on distributing the data 

across different parallel computing nodes. In a 

multiprocessor system executing a single set of instructions 

(SIMD), data parallelism is achieved when each processor 

performs the same task on different pieces of distributed 

data. In some situations, a single execution thread controls 

operations on all pieces of data. In others, different threads 

control the operation, but they execute the same code. 

For instance, consider a 2-processor system (CPUs A and B) 

in a parallel environment, and one wish to do a task on some 

data d. It is possible to tell CPU A to do that task on one part 

of d and CPU B on another part simultaneously, thereby 

reducing the duration of the execution. The data can be 

assigned using conditional statements. As a specific 

example, consider adding two matrices. In a data parallel 

implementation, CPU A could add all elements from the top 

half of the matrices, while CPU B could add all elements 

from the bottom half of the matrices. Since the two 

processors work in parallel, the job of performing matrix 

addition would take one half the time of performing the 

same operation in serial using one CPU alone.Data 

parallelism emphasizes the distributed (parallelized) nature 

of the data. 

 

III. APPLICATION 

At start, they were used for graphics purposes only. But now 

GPUs are becoming more and more popular for a variety of 

general-purpose, non-graphical applications too. For 

example they are used in the fields of computational 

chemistry, sparse matrix solvers, physics models, sorting, 

and searching etc. For sorting algorithms there are many 

modifications using GPUs and ISSD (Improved Sorting 

considering Special Distributions). The programs designed 

for GPGPU (General Purpose GPU) run on the multi 

processors using many threads concurrently. As a result, 

these programs are extremely fast 

 

IV. CUDA 

 

CUDA stands for Compute Unified Device Architecture. It 

is a parallel programming paradigm released in 2007 by 

NVIDIA. It is used to develop software for graphics 

processors and is used to develop a variety of general 

purpose applications for GPUs that are highly parallel in 

nature and run on hundreds of GPU’s processor cores. It 

aims at improving the efficiency of parallel algorithm 

implementation and facilitating programmers in harnessing 

the power of the Modern NVIDIA GPU that consists of 

hundreds of scalar processing elements per chip.  
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CUDA uses a language that is very similar to C language 

and has a high learning curve. It has some extensions to that 

language to use the GPU-specific features that include new 

API calls, and some new type qualifiers that apply to 

functions and variables. CUDA has some specific functions, 

called kernels. A kernel can be a function or a full program 

invoked by the CPU. It is executed N number of times in 

parallel on GPU by using N number of threads. CUDA also 

provides shared memory and synchronization among 

threads. 

 

 
Figure 1 

 

CUDA has several advantages over traditional general-

purpose computation on GPUs (GPGPU) using graphics 

APIs: 

 

• Scattered reads – code can read from arbitrary 

addresses in memory 

• Unified virtual memory (CUDA 4.0 and above) 

• Unified memory (CUDA 6.0 and above) 

• Shared memory – CUDA exposes a fast shared 

memory region (up to 48 KB per multi-processor) 

that can be shared amongst threads. This can be 

used as a user-managed cache, enabling higher 

bandwidth than is possible using texture 

lookups.[13] 

• Faster downloads and readbacks to and from the 

GPU 

• Full support for integer and bitwise operations, 

including integer texture lookups 

 

V. GPU VS CPU 

 

 
Figure 2 

CPU 

• Optimized for low-latency access to cached data 

sets 

• Control logic for out-of-order and speculative 

execution 

• CPU architecture must minimize latency within 

each thread 

 

GPU 

• Optimized for data-parallel, throughput 

computation 

• Architecture tolerant of memory latency 

• More transistors dedicated to computation 

• GPU architecture hides latency with computation 

from other thread warps GPU 

 

 
Figure 3 

VI. PROCESSING FLOW 

1. Copy input data from CPU memory to GPU memory 

2. Load GPU program and execute, caching data on 

chip for performance 

3. Copy results from GPU memory to CPU memory 

PCI Bus 

 

 

VII. GPU ARCHITECTURE 

There are two Main Components: 

� Global memory 

• Analogous to RAM in a CPU server 

• Accessible by both GPU and CPU 
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• Currently up to 6 GB Bandwidth currently up 

to 150 GB/s for Quadro and Tesla products 

• ECC on/off option for Quadro and Tesla 

products 

� Streaming Multiprocessors (SMs) 

• Perform the actual computations 

• Each SM has its own Control units, registers, 

execution pipelines, caches 

VIII. CUDA CORE 
 

Floating point & Integer unit IEEE 754-2008 floating-point 

standard Fused multiply-add (FMA) instruction for both 

single and double precision Logic unit Move, compare unit 

Branch unit Register. 

 

IX. OPEN MP 

 

ARCHITECTURE 

 
Figure 4 

 

OpenMP is an implementation of multithreading, a method 

of parallelizing whereby a master thread (a series of 

instructions executed consecutively) forks a specified 

number of slave threads and the system divides a task among 

them. The threads then run concurrently, with the runtime 

environment allocating threads to different processors. 

 

The section of code that is meant to run in parallel is 

marked accordingly, with a preprocessor directive that will 

cause the threads to form before the section is executed.[4] 

Each thread has an id attached to it which can be obtained 

using a function (called omp_get_thread_num()). The thread 

id is an integer, and the master thread has an id of 0. After 

the execution of the parallelized code, the threads join back 

into the master thread, which continues onward to the end of 

the program. 

 

By default, each thread executes the parallelized section 

of code independently. Work-sharing constructs can be used 

to divide a task among the threads so that each thread 

executes its allocated part of the code. Both task parallelism 

and data parallelism can be achieved using OpenMP in this 

way. 

 

The runtime environment allocates threads to processors 

depending on usage, machine load and other factors. The 

runtime environment can assign the number of threads based 

on environment variables, or the code can do so using 

functions. The OpenMP functions are included in a header 

file labeled omp.h in C/C++. 

 

X. PERFORMANCE EXPECTATIONS 
 

One might expect to get an N times speedup when running a 

program parallelized using OpenMP on a N processor 

platform. However, this seldom occurs for these reasons: 

� When a dependency exists, a process must wait 

until the data it depends on is computed. 

� When multiple processes share a non-parallel proof 

resource (like a file to write in), their requests are 

executed sequentially. Therefore each thread must 

wait until the other thread releases the resource. 

� A large part of the program may not be parallelized 

by OpenMP, which means that the theoretical upper 

limit of speedup is limited according to Amdahl's 

law. 

� N processors in a symmetric multiprocessing 

(SMP) may have N times the computation power, 

but the memory bandwidth usually does not scale 

up N times. Quite often, the original memory path 

is shared by multiple processors and performance 

degradation may be observed when they compete 

for the shared memory bandwidth. 

Many other common problems affecting the final speedup in 

parallel computing also apply to OpenMP, like load 

balancing and synchronization overhead. 

XI. MATRIX MULTIPLICATION 

Input Matrix: a[1..n] b[1..n] 

� Serial Version 
 for (i = 0; i <n; i++)  

 { 

 for (j = 0; j < n; j++)  

 { 

 sum = 0; 

 for (k = 0; k < n; k++)  

 { 

 sum = sum + a[i][k] * b[k][j]; 

 } 

 c[i][j] = sum;     

 } 

   

� Open MP Version : 

 #pragma omp parallel for schedule(dynamic,chunk) 

private(i,j) shared(a,b,c) 

 for (i = 0; i <lines; i++)  

 { 

 for (j = 0; j <columns; j++)  

 { 
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 int sum = 0; 

 #pragma omp parallel for reduction(+:sum) 

private(k) 

 for (k = 0; k <N; k++)  

 { 

 sum = sum + a[i][k] * b[k][j]; 

 }     

 c[i][j] = sum;   

 } 

   } 

 

� CUDA Version: 

 __global__ void gpuMM(float *a, float *b, float *c, 

int n) 

 { 

 int row = blockIdx.y*blockDim.y + threadIdx.y; 

 int col = blockIdx.x*blockDim.x + threadIdx.x; 

 

 float sum = 0.f; 

 for (int j = 0; j < n; ++j) 

 sum += a[row*n+j]*b[j*n+col]; 

 

 c[row*n+col] = sum; 

 

  } 

 

XII. RESULTS AND ANALYSIS 
 

We implemented the serial and parallel version of matrix 

multiplication in OpenMP and CUDA architecture, 

measured the execution times, speed ups and studied it detail 

the graphs. 

 

 

 
Figure 5 

Blue - CUDA, Red - Open MP, Yellow: Serial 

XIII. CONCLUSION 
After the comparative study of open MP, CUDA and serial 

version of matrix multiplication algorithm. It is clear that 

CUDA execution time is lot faster than the open MP system 

and irrespective of the size of the matrix CUDA performs a 

lot better than its counterparts. 
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Speed 

Comparison 

Execution Time Speed UP 

Size of the 

Matrix 

CUDA 

execution 

time (in 

ms) 

OpenMP 

execution 

time (in 

ms) 

Serial 

execution 

time (in 

ms) 

Speedup 

of 

CUDA 

(w.r.t. 

serial) 

Speedup 

of 

OpenMP 

(w.r.t. 

serial) 

50x50 1.0078 2.238 0.701 0.696 0.313 

100x100 1.7397 3.738 5.727 3.291 1.5321 

150x150 1.6106 8.490 19.056 11.83 2.2445 

200x200 1.8689 21.193 43.455 23.26 2.05 

250x250 2.0156 36.040 84.915 42.24 2.356 

300x300 2.6751 59.035 130.61 48.91 2.2124 

350x350 2.6807 102.170 186.890 69.73 1.82 

400x400 2.6903 132.550 267.891 99.58 2.0215 

450x450 2.7096 195.707 345.521 127.91 1.7655 

500x500 3.0462 308.454 488.740 160.45 1.58 

550x550 3.1274 430.357 645.376 206.38 1.4996 


