
 © 2014, IJCSE All Rights Reserved 38

 International Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer Sciencessss and Engineeringand Engineeringand Engineeringand Engineering Open Access
Research Paper Volume-2, Issue-12 E-ISSN: 2347-2693

Comparison of Open MP and CUDA

Fazlul Kader Murshed Nawaz
1
, Arnab Chattopadhyay

1
,

Kirthan G J
1
, Girish D Mane

1
, Rohith N Savanth

1

1
School of Computer Science and Engineering, VIT University Vellore, INDIA,

 www.ijcseonline.org

Received: Dec/04/2014 Revised: Dec/10/2014 Accepted: Dec/23/2014 Published: Dec/31/ 2014

Abstract— In this paper we will study the architectures of both Open Mp and CUDA architectures and make some

comparisons among both in terms of basic program execution time. We will use a basic serial version of Matrix Multiplication

Algorithm and modify it in terms of CUDA and Open MP and study comparatively.

Keywords—OpenMP; CUDA; Matrix Multiplication; GPU; CPU;

I. INTRODUCTION

This project we will use the NVIDIA CUDA GPU

programming environment to explore data parallel hardware

and programming environments. The goals include

exploring the space of parallel algorithms, understanding

how the data-parallel hardware scales performance with

more resources, and utilizing the data-parallel programming

model.

At the start of multicore CPUs and GPUs the processor chips

have become parallel systems. But speed of the program will

be increased if software exploits parallelism provided by the

underlying multiprocessor architecture. Hence there is a big

need to design and develop the software so that it uses

multithreading, each thread running concurrently on a

processor, potentially increasing the speed of the program

dramatically. To develop such a scalable parallel

applications, a parallel programming model is required that

supports parallel multicore programming environment.

NVIDIA’s graphics processing units (GPUs) are very

powerful and highly parallel. GPUs have hundreds of

processor cores and thousands of threads running

concurrently on these cores, thus because of intensive

computing power they are much faster than the CPU.

II. DATA LEVEL PARALLELISM

Data parallelism is a form of parallelization of computing

across multiple processors in parallel computing

environments. It mainly focuses on distributing the data

across different parallel computing nodes. In a

multiprocessor system executing a single set of instructions

(SIMD), data parallelism is achieved when each processor

performs the same task on different pieces of distributed

data. In some situations, a single execution thread controls

operations on all pieces of data. In others, different threads

control the operation, but they execute the same code.

For instance, consider a 2-processor system (CPUs A and B)

in a parallel environment, and one wish to do a task on some

data d. It is possible to tell CPU A to do that task on one part

of d and CPU B on another part simultaneously, thereby

reducing the duration of the execution. The data can be

assigned using conditional statements. As a specific

example, consider adding two matrices. In a data parallel

implementation, CPU A could add all elements from the top

half of the matrices, while CPU B could add all elements

from the bottom half of the matrices. Since the two

processors work in parallel, the job of performing matrix

addition would take one half the time of performing the

same operation in serial using one CPU alone.Data

parallelism emphasizes the distributed (parallelized) nature

of the data.

III. APPLICATION

At start, they were used for graphics purposes only. But now

GPUs are becoming more and more popular for a variety of

general-purpose, non-graphical applications too. For

example they are used in the fields of computational

chemistry, sparse matrix solvers, physics models, sorting,

and searching etc. For sorting algorithms there are many

modifications using GPUs and ISSD (Improved Sorting

considering Special Distributions). The programs designed

for GPGPU (General Purpose GPU) run on the multi

processors using many threads concurrently. As a result,

these programs are extremely fast

IV. CUDA

CUDA stands for Compute Unified Device Architecture. It

is a parallel programming paradigm released in 2007 by

NVIDIA. It is used to develop software for graphics

processors and is used to develop a variety of general

purpose applications for GPUs that are highly parallel in

nature and run on hundreds of GPU’s processor cores. It

aims at improving the efficiency of parallel algorithm

implementation and facilitating programmers in harnessing

the power of the Modern NVIDIA GPU that consists of

hundreds of scalar processing elements per chip.
Corresponding Author: F . K . M . Nawaz, fkmnawaz@gmail.com

 International Journal of Computer Sciences and Engineering Vol.-2(3), PP(38-41) Dec 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 39

CUDA uses a language that is very similar to C language

and has a high learning curve. It has some extensions to that

language to use the GPU-specific features that include new

API calls, and some new type qualifiers that apply to

functions and variables. CUDA has some specific functions,

called kernels. A kernel can be a function or a full program

invoked by the CPU. It is executed N number of times in

parallel on GPU by using N number of threads. CUDA also

provides shared memory and synchronization among

threads.

Figure 1

CUDA has several advantages over traditional general-

purpose computation on GPUs (GPGPU) using graphics

APIs:

• Scattered reads – code can read from arbitrary

addresses in memory

• Unified virtual memory (CUDA 4.0 and above)

• Unified memory (CUDA 6.0 and above)

• Shared memory – CUDA exposes a fast shared

memory region (up to 48 KB per multi-processor)

that can be shared amongst threads. This can be

used as a user-managed cache, enabling higher

bandwidth than is possible using texture

lookups.[13]

• Faster downloads and readbacks to and from the

GPU

• Full support for integer and bitwise operations,

including integer texture lookups

V. GPU VS CPU

Figure 2

CPU

• Optimized for low-latency access to cached data

sets

• Control logic for out-of-order and speculative

execution

• CPU architecture must minimize latency within

each thread

GPU

• Optimized for data-parallel, throughput

computation

• Architecture tolerant of memory latency

• More transistors dedicated to computation

• GPU architecture hides latency with computation

from other thread warps GPU

Figure 3

VI. PROCESSING FLOW

1. Copy input data from CPU memory to GPU memory

2. Load GPU program and execute, caching data on

chip for performance

3. Copy results from GPU memory to CPU memory

PCI Bus

VII. GPU ARCHITECTURE

There are two Main Components:

� Global memory

• Analogous to RAM in a CPU server

• Accessible by both GPU and CPU

 International Journal of Computer Sciences and Engineering Vol.-2(3), PP(38-41) Dec 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 40

• Currently up to 6 GB Bandwidth currently up

to 150 GB/s for Quadro and Tesla products

• ECC on/off option for Quadro and Tesla

products

� Streaming Multiprocessors (SMs)

• Perform the actual computations

• Each SM has its own Control units, registers,

execution pipelines, caches

VIII. CUDA CORE

Floating point & Integer unit IEEE 754-2008 floating-point

standard Fused multiply-add (FMA) instruction for both

single and double precision Logic unit Move, compare unit

Branch unit Register.

IX. OPEN MP

ARCHITECTURE

Figure 4

OpenMP is an implementation of multithreading, a method

of parallelizing whereby a master thread (a series of

instructions executed consecutively) forks a specified

number of slave threads and the system divides a task among

them. The threads then run concurrently, with the runtime

environment allocating threads to different processors.

The section of code that is meant to run in parallel is

marked accordingly, with a preprocessor directive that will

cause the threads to form before the section is executed.[4]

Each thread has an id attached to it which can be obtained

using a function (called omp_get_thread_num()). The thread

id is an integer, and the master thread has an id of 0. After

the execution of the parallelized code, the threads join back

into the master thread, which continues onward to the end of

the program.

By default, each thread executes the parallelized section

of code independently. Work-sharing constructs can be used

to divide a task among the threads so that each thread

executes its allocated part of the code. Both task parallelism

and data parallelism can be achieved using OpenMP in this

way.

The runtime environment allocates threads to processors

depending on usage, machine load and other factors. The

runtime environment can assign the number of threads based

on environment variables, or the code can do so using

functions. The OpenMP functions are included in a header

file labeled omp.h in C/C++.

X. PERFORMANCE EXPECTATIONS

One might expect to get an N times speedup when running a

program parallelized using OpenMP on a N processor

platform. However, this seldom occurs for these reasons:

� When a dependency exists, a process must wait

until the data it depends on is computed.

� When multiple processes share a non-parallel proof

resource (like a file to write in), their requests are

executed sequentially. Therefore each thread must

wait until the other thread releases the resource.

� A large part of the program may not be parallelized

by OpenMP, which means that the theoretical upper

limit of speedup is limited according to Amdahl's

law.

� N processors in a symmetric multiprocessing

(SMP) may have N times the computation power,

but the memory bandwidth usually does not scale

up N times. Quite often, the original memory path

is shared by multiple processors and performance

degradation may be observed when they compete

for the shared memory bandwidth.

Many other common problems affecting the final speedup in

parallel computing also apply to OpenMP, like load

balancing and synchronization overhead.

XI. MATRIX MULTIPLICATION

Input Matrix: a[1..n] b[1..n]

� Serial Version
 for (i = 0; i <n; i++)

 {

 for (j = 0; j < n; j++)

 {

 sum = 0;

 for (k = 0; k < n; k++)

 {

 sum = sum + a[i][k] * b[k][j];

 }

 c[i][j] = sum;

 }

� Open MP Version :

 #pragma omp parallel for schedule(dynamic,chunk)

private(i,j) shared(a,b,c)

 for (i = 0; i <lines; i++)

 {

 for (j = 0; j <columns; j++)

 {

 International Journal of Computer Sciences and Engineering Vol.-2(3), PP(38-41) Dec 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 41

 int sum = 0;

 #pragma omp parallel for reduction(+:sum)

private(k)

 for (k = 0; k <N; k++)

 {

 sum = sum + a[i][k] * b[k][j];

 }

 c[i][j] = sum;

 }

 }

� CUDA Version:

 __global__ void gpuMM(float *a, float *b, float *c,

int n)

 {

 int row = blockIdx.y*blockDim.y + threadIdx.y;

 int col = blockIdx.x*blockDim.x + threadIdx.x;

 float sum = 0.f;

 for (int j = 0; j < n; ++j)

 sum += a[row*n+j]*b[j*n+col];

 c[row*n+col] = sum;

 }

XII. RESULTS AND ANALYSIS

We implemented the serial and parallel version of matrix

multiplication in OpenMP and CUDA architecture,

measured the execution times, speed ups and studied it detail

the graphs.

Figure 5

Blue - CUDA, Red - Open MP, Yellow: Serial

XIII. CONCLUSION
After the comparative study of open MP, CUDA and serial

version of matrix multiplication algorithm. It is clear that

CUDA execution time is lot faster than the open MP system

and irrespective of the size of the matrix CUDA performs a

lot better than its counterparts.

ACKNOWLEDGMENT

Many thanks go to Prof. Harsh Arora (VIT UNIVERSITY,

Vellore, SCSE) for his sincere guidance and many joint

discussions of CPU and GPU and its associated speed

related issues. Also we want to thank him for his valuable

lectures on Advanced Computer Architecture by help of

which our project got succeeded. .

REFERENCES
[1] Kirk David B, Hwu Wen Mei. W, “programming

massively parallel processors”, NVIDIA Elsevier, ISBN:

978-0-12-381472-2, Vol.10, 2010, pp.59-120.

[2] Sanders Jason, Kandrot Edward, “Cuda By Example”,

Addison – Wesley, ISBN-13: 978-0-13-138768-3, 2011,

pp.37-57.

[3] Niraj R Chauhan and Mayur S. Burange, “Multicore

Heterogeneous Computing with OpenACC”, International

Journal of Computer Science and Engineering E-ISSN:

2347-2693, Vol.2, Issue-3, 2014, pp.92-97.

Speed

Comparison

Execution Time Speed UP

Size of the

Matrix

CUDA

execution

time (in

ms)

OpenMP

execution

time (in

ms)

Serial

execution

time (in

ms)

Speedup

of

CUDA

(w.r.t.

serial)

Speedup

of

OpenMP

(w.r.t.

serial)

50x50 1.0078 2.238 0.701 0.696 0.313

100x100 1.7397 3.738 5.727 3.291 1.5321

150x150 1.6106 8.490 19.056 11.83 2.2445

200x200 1.8689 21.193 43.455 23.26 2.05

250x250 2.0156 36.040 84.915 42.24 2.356

300x300 2.6751 59.035 130.61 48.91 2.2124

350x350 2.6807 102.170 186.890 69.73 1.82

400x400 2.6903 132.550 267.891 99.58 2.0215

450x450 2.7096 195.707 345.521 127.91 1.7655

500x500 3.0462 308.454 488.740 160.45 1.58

550x550 3.1274 430.357 645.376 206.38 1.4996

