
 © 2015, IJCSE All Rights Reserved 1

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
 Research Paper Volume-3, Issue-9 E-ISSN: 2347-2693

Parallel Aggregation on Sharded Clusters

T. Mothilal1* and P. Anil Kumar2

1*,2Department of Computer Science and Engineering,

Prasad V Potluri Siddhartha Institute of Technology, Kanuru, India

www.ijcseonline.org

Received: Aug/12/2015 Revised: Aug/20/2015 Accepted: Sep/17/2015 Published: Sep/30/2015

Abstract— The data is organized by databases with the help of database management systems. DBMS is the collection of
schemas, queries and other objects. To aggregate the data DBMS used Cartesian products between two or more tables and
produce a result in a logical table. Where data is increasing rapidly day by day, so writing joins on large tables is difficult to data
analysts and manage complex queries on large scale table is quite difficult to DBMS. To reduce complexity of manipulating
large data schemaless databases are introduced. MongoDB process schemaless data and having more use cases to achieve
parallel processing on data. Aggregation is one of the function which is applying on the data. To get fastest aggregation results
use mongodb sharded cluster and mareduce.

Keywords— NOSQL, MongoDB, Sharding, Parallelism, MapReduce

I. INTRODUCTION

Database is typically organizing collection of data.

A DBMS is a software application that is used to organize

the databases. Generally DBMS is designed to allow the

definition, creation, querying and administrating the data in

databases. DBMS are classified according to the database

model. In early days database technology has developed in

different eras, in 1960’s as navigational model, in 1970’s as

relational model, in 1990’s as Object model and in 2000’s

as NoSQL model. In the navigational database model, the

data is processed in sequential order by an interactive

manner and later on B-trees are added. In the traditional

relational database model, the data is stored with fixed

tables of different entities. Here we can link the tables based

the key’s i.e., data fields of the table. In the Object data

models the data is stored in the respective databases as

objects. So the relation between data is allowed in the form

of relation between objects. In the NoSQL databases the

data is stored in key-value pairs in the document oriented

based approach [3]. These databases are very fast, avoids

join operations by storing the data as de-normalized data. It

avoids fixed table schemas and horizontally scalable.

II. OVERVIEW

MongoDB is a document based database, not a

relational one. The row in RDBMS is considered as single

document mongodb. Table in RDBMS is considered as

collection in mongodb [4]. A collection can have many

documents. Each document has set of key/value pairs.

Mongodb generates a unique id for every document which

can works as default primary key. Here key/value pairs are

independent that means there are no need to be same all the

key/value pairs in a single document. So the document can

have variety of data objects like a text, numerical, binary,

and so on. Mongodb is also easy to scaling because a

collection can dynamically increase the documents and

document can also update with a new key/value pairs. The

seeking time of a data is very less in mongodb when

compare RDBMS. It is the beauty of mongodb, because in

RDBMS the processing of data done in sequential manner.

Where as in mongodb supports for indexing, so data can

found directly at that particular index. Mongodb can access

large data most efficient than RDBMS [5].

MapReduce in MongoDB:

To aggregate huge data mapreduce is most useful

in mongodb. Mongodb mapreduce uses the javascript as its

query language. Mapreduce can process across multiple

servers parallel. Mongodb can also apply mapreduce on

sharded cluster to achieve more efficiency. The mapreduce

has two phases like map function and reduce function.

There is no need to wait completion of map function, reduce

function is also execute parallel. The mapreduce instances

are created and each instance is works on different shards

[2]. How many shards are present in cluster that many

instances are creates. Each shard is having part of data. The

data may store as single chunk or multiple chunks. Each

shard produce different results for map function, reduce

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(39-43) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 40

function will combine all the results of map function as

required output.

Aggregation using mapreduce:

Aggregation will perform mathematical operations

like sum, count, average, etc., Applying aggregating

function on large data in mogodb is more efficient with help

of mapreduce. Aggregate function can be done match and

group operations on the data [1]. The match function will

select the key/values based on the condition and group

function will combine all the values with a corresponding

key. The mapreduce works with an aggregate framework by

applying query on the data and results obtained from the

query, apply the map function and get the results with the

grouped key/value pairs on each shard. Reduce function

will combine all the results from each shard and produce a

required output based on the function.

db.books.mapReduce(function()

{

var category;

if (this.pages >= 250)

category = 'Big Books';

else

category = "Small Books";

emit(category, {name: this.name});

},

function(key, values)

{

var sum = 0;

values.forEach(function(doc) {

sum += 1;

}

return {books: sum};

},

{

out:"book_results"

});

Fig.1. Aggregation using Mapreduce

 When applying mapreduce on books collections,

group the collection based on the query and produce map

results. Reduce function can perform count the number of

books from map results.

Sharded cluster:

 Processing of data on multiple systems in

mongodb is nothing but a sharded cluster. Shards are

created by developer. Data can be stored in shards using

shard key. Each shard is independent. There is no

redundancy of data one shard and another shard. Each shard

is having primary and secondary. Mapreduce job running on

a shard, the secondary shard is acts as primary when

primary shard is failed [7]. Mongodb provides high

availability of data with sharded cluster, because the data is

replicating in secondary also. To deploy sharded cluster we

need to bellow components:

a. Shards: shards are used to store the data. Each shard is

having one primary node and two or more secondary

nodes.

b. Config servers: config servers are having clusters

information. The query router periodically

communicates with the config server to get the

information of the cluster.

c. Query routers: Query Routers are basically mongos

instances, interface with client applications and direct

operations to the appropriate shard. The query routers

process the data and produce results.

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(39-43) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 41

Fig.2. components of a sharded cluster

III. IMPLEMENTATION

a. Installation of MongoDB on ubuntu

• Import the public key used by the package

management system.

huser@incu-nn2$sudo apt-key adv --keyserver
hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10

• Create a list file for MongoDB

huser@incu-nn2$echo 'deb http://downloads-
distro.mongodb.org/repo/ubuntu-upstart dist
10gen' | sudo tee
/etc/apt/sources.list.d/mongodb.list

• Reload local package database

huser@incu-nn2$sudo apt-get update

• Install the MongoDB packages.

huser@incu-nn2$sudo apt-get install mongodb-
org

• Start MongoDB

huser@incu-nn2$sudo /etc/init.d/mongod start
(or)

huser@incu-nn2$sudo service mongod start

• Verify that MongoDB has started successfully

/var/log/mongodb/mongod.log.

• Stop MongoDB

huser@incu-nn2$sudo /etc/init.d/mongod stop
(or)

huser@incu-nn2$sudo service mongod stop

• Restart MongoDB

huser@incu-nn2$sudo /etc/init.d/mongod restart
(or)

huser@incu-nn2$sudo service mongod restart

• Begin using MongoDB

huser@incu-nn2$mongo

b. Deploy sharded cluster

Step 1: Start three shard servers i.e., mongod data servers.
Create data directories for shard servers.

� Start Replicaset “a”

$mkdir a0
$mkdir a1
$mkdir a2
$mongod --shardsvr --replSet a --dbpath a0 --logpath log.a0
--port 27000 –fork --logappend
$mongod --shardsvr --replSet a --dbpath a1 --logpath log.a1
--port 27001 --fork –logappend
$mongod --shardsvr --replSet a --dbpath a2 --logpath log.a2
--port 27002 --fork –logappend

� Start Replicaset “b”

$mkdir b0
$mkdir b1
$mkdir b2
$mongod --shardsvr --replSet b --dbpath b0 --logpath log.b0
--port 27100 --fork –logappend
$mongod --shardsvr --replSet b --dbpath b1 --logpath log.b1
--port 27101 --fork –logappend
$mongod --shardsvr --replSet b --dbpath b2 --logpath log.b2
--port 27102 --fork –logappend

� Start Replicaset “c”

$mkdir c0
$mkdir c1
$mkdir c2
$mongod --shardsvr --replSet c --dbpath c0 --logpath log.c0
--port 27200 --fork –logappend
$mongod --shardsvr --replSet c --dbpath c1 --logpath log.c1
--port 27201 --fork –logappend
$mongod --shardsvr --replSet c --dbpath c2 --logpath log.c2
--port 27202 --fork –logappend

� Start Replicaset “d”

$mkdir d0
$mkdir d1
$mkdir d2
$mongod --shardsvr --replSet d --dbpath d0 --logpath log.d0
--port 27300 --fork –logappend
$mongod --shardsvr --replSet d --dbpath d1 --logpath log.d1
--port 27301 --fork –logappend
$mongod --shardsvr --replSet d --dbpath d2 --logpath log.d2
--port 27302 --fork –logappend

Step 2: Start the Config Server Database Instances. config
servers are having clusters information. The query router
periodically communicates with the config server to get the
information of the cluster.

$sudo mkdir /configdb0

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(39-43) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 42

$sudo mkdir /configdb1
$sudo mkdir /configdb2
$mongod --configsvr --dbpath configdb0 --port 27020 --
fork --logpath log.cfg0 --logappend
$mongod --configsvr --dbpath configdb1 --port 27021 --
fork --logpath log.cfg1 --logappend
$mongod --configsvr --dbpath configdb2 --port 27022 --
fork --logpath log.cfg2 –logappend

Step 3: Start the mongos instances. The mongos instances
are lightweight and do not require data directories. By
default, a mongos instance runs on port 27017.

huser@incu-nn2$mongos --configdb incu-nn2:27020,
incu-nn2:27021, incu-nn2:27022 --fork --logappend --
logpath log.mongos0

Step 4: Initiate Replicaset “a” for shard. Here 27000 is
primary instance and 27001, 27002 are secondary instances.

huser@incu-nn2$mongo --port 27000

>rs.initiate()

>rs.add(“incu-nn2:27001”)

>rs.add(“incu-nn2:27002”)

>rs.status()

Fig.3. Sharded ReplicaSet “a” Status

Step 5: Initiate Replicaset “b” for shard. Here 27100 is
primary instance and 27101, 27102 are secondary instances.

huser@incu-nn2$mongo --port 27100

>rs.initiate()

>rs.add(“incu-nn2:27101”)

>rs.add(“incu-nn2:27102”)

>rs.status()

Step 6: Initiate Replicaset “c” for shard. Here 27200 is
primary instance and 27201, 27202 are secondary instances.

huser@incu-nn2$mongo --port 27200

>rs.initiate()

>rs.add(“incu-nn2:27201”)

>rs.add(“incu-nn2:27202”)

>rs.status()

Step 7: Initiate Replicaset “d” for shard. Here 27300 is
primary instance and 27301, 27302 are secondary instances.

Huser@incu-nn2$mongo --port 27300

>rs.initiate()

>rs.add(“incu-nn2:27301”)

>rs.add(“incu-nn2:27302”)

>rs.status()

Step 8: Add shards to the cluster on mongos instance.

$mongo

>sh.addShard(“a/incu-nn2:27000”)

>sh.addShard(“b/incu-nn2:27100”)

>sh.addShard(“c/incu-nn2:27200”)

>sh.addShard(“d/incu-nn2:27300”)

>sh.status()

Fig.4. Sharding Status

IV. RESULTS

Consider the collection having the data that is crimes

occurred in Chicago in the period of 2012 to 2014. And

there is having 1048575 documents. When applying

mapreduce on that collection for number of crimes occurred

per day without sharding it will takes 21784 milli seconds.

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(39-43) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 43

When applying mapreduce on that collection for number of

crimes occurred per day with sharding it will takes 10542

milli seconds.

Fig.5. Crime dataset

Fig.6. MapReduce on MongoDB without sharding

Fig.7. MapReduce on MongoDB Shards

V. CONCLUSION

Processing large datasets having 1048575 records

is difficult or time taking process in normal systems. Using

MongoDB Schemaless databases users can achieve better

performance than traditional systems. MongoDB without

distribution, processing same dataset is taken much time

than mongodb with sharded distributed cluster. So,

distributed processing using mongodb is efficient and

highly useful to bigdata processing.

REFERENCES

[1] J. M. Hellerstein, “The case for online aggregation”,

Technical Report UCB//CSD-96-908, EECS Computer

Science Division, University of California, Berkeley,

CA,1996

[2] Jeffrey Dean and Sanjay Ghemawat “MapReduce: Simplified

Data Processing on Large Clusters”, OSDI 2014

[3] Anju abraha,"A Dynamic Query Form System for Mongodb",

SSRG-IJCSE, volume-1 issue-9, Nov 2014.

[4] MongoDB, “http://docs.mongodb.org/manual/”, Thursday,

April 30, 2015.

[5] MongoDB, http://www.tutorialspoint.com/mongodb/,

Monday, July 6, 2015

[6] Replication, http://stackoverflow.com, Tuesday, August 11,

2015

[7] Sharding, http://gist.github.com, Monday, August 17, 2015.

AUTHORS PROFILE

T.Mothilal is presently M.Tech Student,

Dept. of Computer Science &

Engineering, Prasad V Potluri Siddhartha

Institute of Technology (Autonomous),

kanuru, India.

P. Anil Kumar is presently Assistant

Professor, Dept. of Computer Science &

Engineering, Prasad V Potluri Siddhartha

Institute of Technology (Autonomous),

kanuru, India.

