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Abstract: Software must evolve continuously and accept the changes imposed by the environment in order to stay relevant. As 

the software undergoes updates, the quality of its design degrades. Poor design further deteriorates the quality of software. In the 

traditional software development processes, quality is often measured at code level using metrics-based approaches. However, 

quality assessment at model level has various advantages over code level. UML models provide a higher level of abstraction 

allowing isolation of the core design problem from irrelevant coincidental problems, which typically interfere at code level. 

Problems uncovered at the design level can be improved directly in the model. Early quality assessment reduces maintenance 

costs and manages requirement volatility. This paper presents a design flaw detection approach based on machine learning for 

UML models of object-oriented software. It advances the proposition of a concise quality assurance procedure wherein the root 

cause of design defects is identified instead of a localized flaw detection and correction approach. The notion of functional 

decomposition is advanced as an anomalous design tendency as object-oriented software architecture based on functional 

decomposition compromises on major quality goals like comprehensibility, changeability and semantic consistency. A semi-

supervised machine learning technique is used in an unsupervised mode to detect functional decomposition as an anomaly. The 

precision and recall of the proposed approach were found to be 0.8 each.  
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1. Introduction 
 

Software is the real driver of innovation and growth of 

societies across the world. Software lies at the centre of the 

sophisticated digital technologies, tools and methods that are 

deployed by organizations for digitizing their operating 

models. Such transformations from traditional business 

practices have resulted in higher success rates for enterprises, 

as per the McKinsey Global Institute report [1] that measures 

the digitization of United States’ economy. Trends like the 

digital ecosystem approach and replacement of legacy 

applications by SaaS (Software as a Service) have built 

momentum in the growth of software industry. Global 

research and advisory firm, Gartner Inc. has anticipated 

vigorous growth for the software industry in the forthcoming 

years, as per their report [2].  

 

The growing dependency of nearly all the segments of society 

on technology has unlocked software’s immense potential for 

social and economic benefit as well as impairment. A 

malfunction of industrial-strength software system can have 

huge impact in terms of financial or business loss, 

inconvenience to users or loss of property and life. Thus, 

software systems need to be of high quality with respect to 

properties like – functionality, reliability, efficiency, 

maintainability, portability, reusability, flexibility, and 

interoperability. The shift from project-centric to product-

centric delivery in software industry has radically overhauled 

development organizations.  

 

In their report titled “Application Development and Platforms 

Primer for 2019” [3], Gartner analysts Wong and Mann assert 

that software development organizations must shift to a 

continuous quality mind-set in order to shorten cycles and 

improve delivery outcomes. Evolving application architecture 

is said to drive better business outcomes. There is a 

realization that software quality assurance needs to match up 

the precision and decorousness of hardware quality processes. 

Good quality needs to be assured at design stage of 

development process ahead of construction stage.  

 

In model-driven engineering, models depicting various 

perspectives of users form the basis of implementation. Such 

practices along with automatic code generation accommodate 
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frequent changes imposed by environment and higher user 

acceptance, which is an important measure of product quality. 

Model refactoring is a form of quality assurance process that 

continually transforms software models in order to increase 

their understandability and modifiability. The practice aims to 

produce better quality and facilitate evolution of the software. 

 

Thus, high quality is an important goal of software 

development process. In model driven development, high 

software (code) quality can be reached only if the design 

quality, i.e. the quality of involved models is high. Quality 

assessment at model level has other advantages also. Models 

provide a higher level of abstraction allowing isolation of the 

core design problem from irrelevant coincidental problems, 

which typically interfere at code level. Problems uncovered at 

the design level can be improved directly in the model. Early 

quality assessment reduces maintenance costs and manages 

requirement volatility.   

 

Present study focuses on models’ quality in object-oriented 

software as object-oriented development paradigms continue 

to dominate, as reported by the 2024 TIOBE Index, 2023 

IEEE Spectrum Ranking, and 2022 GitHub's Octoverse. The 

main reason is that the technique of object-orientation models 

a system analogous to human perception of the real world. 

The software system is fabricated out of mutually interacting 

objects that encapsulate behaviour and information associated 

with the corresponding real-world entities. Also, considerable 

number of software development paradigms and methods 

follow object-oriented principles as they are inherently 

immune to bad design.  
 
This paper is organized as follows, Section 1 contains the 

introduction of software quality and discusses its significance. 

The context of the presented study is discussed. Section 2 

contain the related work of software design flaw detection. It 

lists relevant research works carried out in the area of code 

smell detection and model smell detection. Section 3 

introduces the notion of functional decomposition as an 

anomalous design choice in object-oriented software. Section 

4 contain the methodology of implementation of proposed 

algorithm. Section 5 discusses the results and section 6 

concludes research work with future directions. 

 

2. Related Work 
 

The identification of deviations from good design principles 

and heuristics is known as smell detection.  The term “bad 

smells” was coined by Fowler et al. in the book Refactoring: 

Improving the Design of Existing Code [4] to refer to 

structures in the code that are potential candidates for 

improvement. Extensive research has been carried out in code 

smell detection [5] [6]. Similar to code smells, model smells 

are defined as elements within the model that symptomize 

design defects or bad alternatives to recurring design 

problems (anti-patterns) in object-oriented design. 

Redundancies, ambiguities, inconsistencies, incompleteness, 

non-adherence to design conventions or standards, abuse of 

the modelling notation are typical model smells [7].  

 

UML is a widely accepted modelling language in the field of 

software engineering. It allows for the visual representation 

of systems, software architectures, and designs in a 

standardized way. Various strategies have been used in the 

literature for analysing the design defects, i.e. smells in UML 

models. Studies employing pattern-based smell detection [8], 

[9], [10], [11], [12], [13], [14] identify areas of a design that 

would benefit from the implementation of design patterns. 

These design patterns are pre-established templates that 

provide expert knowledge-based solutions for common 

design issues. They offer a tried-and-tested approach to 

implementing relationships and interactions between classes 

or objects.  

 

Anti-patterns are the recurring and counterproductive design 

practices. Studies employing metrics-based smell detection 

[15], [16], [17], [18], [19], [20], [21] use threshold values of 

quality metrics to mark refactoring opportunities. The 

selection of threshold is subjective and thus cannot be applied 

universally. Human judgement plays an important role in 

using values of quality metrics as indications of smell.  

 

Thirdly, there are research works using rule-based smell 

detection approaches [22], [23], [24]. These identify both 

model smells and anti-patterns using a declarative rule 

definition. These rules are manually defined to identify the 

symptoms that characterize the smell. Suitable refactoring 

operations are selected to fix the identified model smells. 

 

In a PhD thesis titled “Development of refactoring technique 

for architecture-based evolution of object-oriented software 

systems” [25], it is argued that the conventional methods of 

model smell detection suffer from various drawbacks. For 

instance, the selection of threshold value in metric-based 

approaches is subjective and thus cannot be applied 

universally. Smells uncovered by deviant values of individual 

metrics are consequences of sub-optimal realization of design 

principles, thus, are superficial in nature. In the context of 

refactoring class diagrams, localized iterative refactoring 

operations are used to fix architectural defects. Such design 

transformations introduce cascaded flaws in the design and 

trigger a vicious cycle of re-evaluation, re-refactoring and 

synchronization among various parts of the model. This 

resultant ravel of problems signals the need for a different 

perspective on bad design in order to derive a more effective 

refactoring technique. Also, none of the prior works was 

found to be using machine learning techniques. 

 

3. Functional Decomposition in Object-Oriented 

Design 
 

Software design methods involve three fundamental decisions 

[26]. The first and foremost is the criteria for partitioning the 

software into components. This process of decomposition, 

also known as factoring, aids the understanding of software to 

be built, makes the design process easy and leads to an 

effective design. The decomposition paradigm also lays the 

foundation for the other two design decisions: regarding 

various representations of software and design quality. The 

design phase of the software development process translates 
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the requirements models representing the problem domain 

into design models representing the solution domain, to be 

used as blueprints for construction of software.  

 

A function-oriented design approach views the software 

solution as one big process and partitions it into smaller, 

simpler processes (tasks) that need to be performed. On the 

other hand, object-oriented design approach partitions the 

system into classes or objects that interact among themselves 

to achieve the software solution.  

 

While cataloguing model smells for UML class diagrams in a 

study [27], it was discovered that most of the design flaws are 

caused when object-oriented software is designed with 

procedural design instincts, i.e. when object-oriented software 

is contrived on functional decomposition. Such software 

systems exhibit poor design and face severe drawbacks 

during the inevitable process of evolution. In the work 

presented in this paper, functional decomposition is cast as an 

anomaly in object-oriented design.  

 

Object-oriented software architecture based on functional 

decomposition compromises on major quality goals like 

comprehensibility, changeability and semantic consistency 

and thus calls for a big refactoring (a long series of repeated 

operations). Following functional decomposition, objects are 

constructed around tasks (functions) instead of data. The class 

diagram in Error! Reference source not found. shows an 

example of an object-oriented design exhibiting functional 

decomposition. 

 

 
Figure 1. Anomalous UML Class Diagram Detected by Proposed Algorithm 

 

The design depicted in the diagram has improper 

encapsulation, suboptimal use of inheritance, high coupling 

and unwieldy size. The class diagram is a part of a navigation 

system’s design. 7 out of the 13 classes, namely, Student, 

Professor, Guest, users, Location, Register and Place contain 

only data members and do not specify any operations for the 

instantiated objects. This is in violation with the object-

oriented principle of encapsulated objects. Objects must have 

a well-defined interface that specifies the stimuli to which the 

object responds. Classes Find_people, Login, Select_place 

and Maps_user represent isolated functions instead of 

encapsulated objects.  

 

Most of the operations performed in the example system have 

been clubbed into the class WebService. This class does not 

contain any data and is heavily associated to other classes that 

avail its services. Thus, the parts of the system are strongly 

coupled. Proper encapsulation of attributes and operations in 

the class users would reduce redundancy in the classes Login, 

Find_people and Register, achieve effective inheritance and 

cut down the unwieldy size of the model. It would also cut 

down the unnecessary associations and coupling in the model. 

In the approach proposed here, class models which have 

lower leverage of the essential object-oriented principles like 

extensible classes, inheritance, reusability, and polymorphism 

are identified as anomalies. 

 

4. Methodology of Proposed Approach 
 

“No set of metrics rivals informed human intuition”, these 

words of Beck and Fowler (Fowler et al., 1999) accentuate 

the role of human perspicacity in performing the refactoring 

process. Thus, artificial intelligence is an instinctive choice 

for automating the process. Machine learning is a form of 

artificial intelligence which enables a computer program to 

learn from experience (seen data) and subsequently apply the 

acquired knowledge to make predictions for unseen cases. It 

is proposed that machine learning has huge application 
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potential in model refactoring because it would provide the 

capability to discover the subtle relationships among elements 

of a graphical model that indicate flawed design but are 

inconspicuous to human eye. 

 

Another motivation to apply machine learning is the 

snowballing growth of the software engineering world with 

advances in development paradigms, design methodologies, 

programming techniques and automated testing. The rapidly 

changing business rules also have an intriguing effect on 

quality notions. The current software yield is an assortment of 

varied sizes and designs. Even within the object-oriented 

domain, a rigid definition of good design exists no more. This 

diversity has made manual decisions nearly impossible. Smell 

detection rules used in the refactoring process must 

continuously adapt to the changing perceptions of good and 

bad design. Here, a machine learning algorithm trained by 

data can outperform human judgement.  

 

Anomaly detection has been widely researched as a problem 

of machine learning and data mining since Edgeworth’s paper 

On Discordant Observations [28].  It refers to the problem of 

identifying patterns in data that do not conform to expected 

behaviour. In other words, anomalies are outliers or 

exceptions that deviate significantly from the majority of the 

data.  

 

The presented attempt to identify design flaws as anomalies 

at the modelling stage of object-oriented software 

development is a first, to the best of our knowledge. The 

proposed method uses semi-supervised learning technique in 

an unsupervised mode in order to detect use of functional 

decomposition in object-oriented design. A semi-supervised 

learning method [29] uses training data with labelled 

instances only for the normal classes and an unsupervised 

method works sans training data. Proposed method is a 

parametric statistical technique that uses an unlabelled dataset 

as training data, assuming that the test data contains few 

anomalies and the model learned during training is robust to 

these few anomalies.  

 

The proposed approach uses data science methods to tag the 

outlier UML class diagrams that follow process-based 

decomposition and do not conform to the data-based object-

oriented manifesto of ease of development, low complexity, 

reusability and easy maintainability (understandability, 

modifiability, fault detection, testability). Following sections 

give the details of the approach. 

 

4.1 Feature Set 

The algorithm uses an unlabelled training set T = {x
1
, x

2
,…, 

x
m
} of m number of UML class diagrams selected randomly. 

It is assumed that the number of normal examples outnumber 

the number of anomalous examples in the training set. Each 

element of T is a feature vector x of size n, representing n 

features of a class diagram that are indicative of anomalous 

object-oriented design. The feature space (R
n
) comprises n 

metrics measuring design properties viz. inheritance, coupling 

and size to identify the outlier software models (c.f. Table 1).  
 

Table 1. Features Used to Detect Anomalous Class Diagrams 

Feature Name Description 

Inheritance Features  

(reusability, modifiability, testability, probability of fault detection) 

Number of 

generalizations 

Number of parent-child pairs in generalization 

relationship in the diagram. 

Maximum depth 

of inheritance 

The maximum among the DIT [30] values of 

classes in the diagram. The DIT value for a class 

within a generalization hierarchy is the length of 

the longest path from the class to the root of the 

hierarchy. 

Coupling Features  

(complexity, understandability, maintainability) 

Number of 

associations 

Number of associations in the diagram; includes 

aggregation and composition. There is an 

association from class C to class D if C has an 

attribute of type D. 

Total coupling 

Sum of Direct Class Coupling (DCC) values of all 

classes in the diagram. The DCC value for a class 

is a count of the different number of classes that 

the class is directly related to [31]. The metric 

includes classes that are directly related by 

attribute declarations and message passing 

(parameters) in methods. Bidirectional 

associations are counted twice, because C knows 

D and vice versa. 

Maximum 

coupling 

The maximum among DCC values of classes in 

the diagram.  

Number of 

dependencies 

Number of dependencies in the diagram. There is 

a dependency from class C to class D if C has an 

operation with a parameter of type D. 

Size Features  

(reusability, complexity, development effort, maintainability) 

Number of 

classes 
Number of classes in the diagram. 

Number of 

attributes 

Total number of attributes in the classes of the 

diagram. 

Number of 

operations 

Total number of operations in the classes of the 

diagram. 

 

Thus, the dataset is an m × n matrix where the columns 

represent the features and each row is a vector representing 

one class diagram example. The proposed approach requires 

feature vectors to have normally distributed values. Scaling, 

logarithmic transformations and square root transformations 

were applied to features with skewed distributions. Skewness 

measures asymmetry in given dataset. It represents the 

manner in which the data are clustered around the average. In 

a skewed distribution data falls to a side of the mean value. 

Kurtosis is used as a measure of skewness as follows (1):  

 

 Sk =  

1
n

∑ (xi −  μ)4n
i=1

(
1
n

∑ (xi −  μ)2n
i=1 )

2 (1)  

 

Here, Sk computes the kurtosis for vector x with size n and 

mean µ. As per the given function, kurtosis of the normal 

distribution is 3. In the calculations, 3 was subtracted from 

the computed values of Sk, so that the normal distribution has 

kurtosis of 0. The resultant histograms showing the normally 

distributed feature vectors are plotted in Figure 2.  
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Figure 2. Histograms of Feature Vectors 

 

4.2 Probability Density Estimation 

In this step, a statistical model is fit to the training data. A 

probability density test is applied to determine if an unseen 

instance of class diagram belongs to this model or not. The 

training data is modelled as a multivariate Gaussian 

distribution, a generalization of the one-dimensional normal 

distribution to higher dimensions. A multivariate Gaussian 

distribution captures the correlations between class diagram 

features and is a better choice than univariate distribution 

when the number of training examples is much greater than 

the number of features. 

 

The training set of m examples, {x
1
, x

2
,…, x

m
}, such that x

i
 ϵ 

R
n
, is modelled using multivariate Gaussian distribution with 

parameters µ and Σ  i.e.  x ~ Ɲ(µ, Σ) ,such that µ = { µ1, 

µ2,…, µn}
T
 is a vector consisting of mean values of n features 

(µ ϵ R
n
) and Σ is the covariance matrix measuring the 

variability of the features (Σ ϵ R
n×n

 ). µ is computed as in (2). 

 

 μ = 
1

m
∑ xi

m

i=1

 (2)  

 

The covariance matrix Σ is the matrix whose (i, j)
th

 entry is 

the covariance Σij computed as in (3)  where the operator E 

denotes the mean value of the argument. 

 

 Σij = cov(xi,xj) = Ε [(xi-μj
) (xj-μj

)]  = Ε[xixj]-μi
μ

j
 (3)  

 

Given a new example xtest = {x
1
,x

2
,…,x

n
}

T
, a feature vector 

representing a class diagram under observation, the 

probability of xtest, represented as p(xtest), quantifies the 

proximity of model to object-oriented design. p(xtest) is 

computed as in (4). 

 

 p(xtest) = 
exp (-

1
2

(xtest-μ)TΣ-1(xtest-μ))

(2π)
n
2|Σ|

1
2

 (4)  

Test instances that have lower probability of being generated 

from the learned model are declared as anomalies, i.e. the 

class model under observation, represented by xtest, is tagged 

as an anomaly if p(xtest) < ɛ, where ɛ is the threshold value. 

p(xtest) is the probability of xtest conforming to the object-

oriented behaviour depicted by training set.  

 

5. Results and Discussion 
 

In the training phase of the algorithm, UML class diagrams 

were serialized using OMG’s standard XMI
1
 format for 

creating textual representations of MOF-compliant models. 

The design quality measurement tool SDMetrics
2
 (version 

2.35) was used to calculate the metrics(features listed in 

Table 1) for the XMI representations. 86 UML class diagrams 

selected randomly from repository of UML class models 

offered by [32] were used. Hence, the training dataset was 

sized 86×9. The anomaly detection algorithm was 

implemented using MATLAB
3
 R2017b (version 9.3). 

 

The anomaly detection model learned from the training 

dataset was validated using validation dataset comprising 

feature vectors from 21 UML class models. The algorithm 

output a probability score for each example in dataset. The 

threshold value (ɛ) decides the classification of the examples 

as being normal or anomalous. It is the value above which an 

example is marked as positive.  

 

Since the problem at hand is an imbalanced binary 

classification problem (the number of anomalous examples is 

usually few), the F-measure was used to find the best value of 

ɛ to use for identifying outliers based on the results from the 

validation set and the ground truth. Ground truth was 

established by manual inspection. F-measure, the harmonic 

mean of precision P (5) and recall R (6) is computed as in (7). 

 

 P = 
truePositives

truePositives + falsePositives
 (5)  

   

 R = 
truePositives

truePositives + falseNegatives
 (6)  

   

 F = 
2PR

P+R
 (7)  

 

The metric precision used here measures the ability of the 

model to mark only the relevant class diagrams. Precision is 

defined as the number of true positives per the sum of number 

of true positives and number of false positives. True positives 

(truePositives) are correctly identified class diagrams that 

show presence of functional decomposition, and false 

positives (falsePositives) are the diagrams the model labels as 

positive for depicting functional decomposition but actually do 

not (cf. Table 2).  

 

Recall measures the ability of the model to find all the 

relevant cases in the validation dataset. Recall is defined as 
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the number of true positives per the sum of number of true 

positives and number of false negatives. False negatives 

(falseNegatives) are the class diagrams the model identifies as 

negative that actually are positive.  

 
Table 2. Confusion Matrix 

  PREDICTED 

  Positive Negative 

ACTUAL Positive truePositive falseNegative 

Negative falsePositive trueNegative 

 

The threshold selection algorithm iterates over the probability 

scores of validation set and computes F-measure for the 

different values of ɛ. The best value of F-measure gives the 

best value for threshold. Using the said validation dataset best 

threshold value of 6.5865e-09 was obtained at the best F1 

measure of 0.6667.  

 

The Receiver Operating Characteristic (ROC) curve was used 

to visualize the performance of the model (cf. Figure 3) The 

ROC curve plots the True Positive Rate (8) versus the False 

Positive Rate (9). 

 

True Positive Rate = 
truePositives

truePositives + falseNegatives
 (8)  

  

False Positive Rate = 
falsePositives

falsePositives + trueNegatives
 (9)  

 

Two anomalous class models were detected in validation set. 

The vectors representing class diagrams of validation dataset 

are plotted as in Figure 4. Dashed lines in red represent 

anomalous examples (labelled 1 by the algorithm).  

 

A test dataset comprising feature vectors from randomly 

selected 39 UML class models and the threshold value 

selected during validation was used to test the accuracy of 

proposed approach. Precision of 0.8 and recall of 0.8 were 

obtained. The items of test set are plotted in Figure 5 with the 

anomalous marked in red colour  

 

 
Figure 3. ROC Curve 

 

 
Figure 4.  Validation Dataset Plot (a) Values of Features (b) Standardized 

Principal Component Scores of Features 

 

 
Figure 5. Test Dataset Plot (a) Values of Features (b) Standardized Principal 

Component Scores of Features 
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6. Conclusion and Future Scope 
 

This paper presents a novel perspective on flawed software 

design. A wider perspective is proposed in contrast to the 

traditional approaches which use individual model smells to 

mark flawed design. It is suggested that a quality assurance 

framework working at the roots of design flaws would be 

incisive. Proposed approach targets object-oriented software 

at model-level and aims to detect the presence of functional 

decomposition, a dominant cause of design smells. 

 

Functional decomposition basically represents lack of object-

oriented approach. Following function-oriented approach, a 

software system is viewed a process. During the design 

activity, the system is partitioned into a series of 

subfunctions. On the other hand, in object-oriented approach 

the system is viewed as a set of objects interacting with each 

other in order to achieve the common goal.  

 

The proposed algorithm uses semi-supervised anomaly 

detection technique in an unsupervised mode in order to 

detect use of functional decomposition in object-oriented 

design. UML class models were transformed into a feature set 

that trained the proposed system to spot anomalous design. 

This approach draws attention to the potential of machine 

learning methods in model-level software quality assurance. 

 

Some practical problems were confronted during the 

execution of the proposed algorithm. It was observed that 

defining a feature space that totally typifies object-oriented 

design is a challenge. Discerning such features and then 

quantifying them in order to make them fit for application of 

statistical models is major obstacle especially when the 

observations are graphical models of software. Notational 

inconsistencies were found in the UML class diagrams 

retrieved for training and testing the proposed model. These 

were handled during the transformation of diagrams into 

metrics by manual inspection and intervention. Lack of 

standardized measures and tools that interact with graphical 

models also restrict the research work.  

 

The perspective of software quality is constantly changing 

and has many aspects comprising structural quality, 

conformance to requirements, fitness for user’s needs and 

satisfaction, compliance with standards, and aesthetic quality. 

Further work is certainly required to develop and validate 

definitions of flawed design that are more extensive than 

model smells and evolve with the concept of quality. 

 

Conflict of Interest 

Author declares that there is no conflict of interest. 

 

Funding Source 

None. 

 

Acknowledgements 

The author would like to express sincere gratitude to Dr. 

Kawaljeet Singh and Dr. Neeraj Sharma for their invaluable 

guidance, encouragement, and support throughout the course 

of this research work. They provided valuable insights, 

constructive feedback, and unwavering support at every stage 

of the research process, contributing significantly to the 

success of this work. 

 

References 
 

[1]  J. Manyika, S. Ramaswamy, S. Khanna, A. Yaffe, H. Sarrazin, G. 

Pinkus and G. Sethupathy, "Digital America: A tale of the haves 

and have-mores," McKinsey & Company, December 2015. 

[2]  N. Gupta, H. Swinehart, J. Poulter and B. Abbabatulla, "Forecast 

Analysis: Enterprise Application Software, Worldwide, 4Q18 

Update," 2019. 

[3]  J. Wong and K. Mann, "Application Development and Platforms 

Primer for 2019," 2019. 

[4]  M. Fowler, K. Beck, J. Brant, W. Opdyke and d. Roberts, 

Refactoring: Improving the Design of Existing Code, Addison-

Wesley, 1999.  

[5]  M. . Y. Mhawish and M. Gupta, "Generating Code-Smell 

Prediction Rules Using Decision Tree Algorithm and Software 

Metrics," International Journal of Computer Sciences and 

Engineering, Vol.7, No.5, pp.41-48, 2019.  

[6]  M. Kaur and D. Kaur, "Improve the accuracy and time complexity 

of code smell detection using SVM and Decision Tree with Multi-

label Classification," International Journal of Computer Sciences 

and Engineering, Vol.8, No.12, pp.66-69, 2020.  

[7]  T. Mens, G. Taentzer and D. Müller, "Challenges in Model 

Refactoring," in Proceedings of 1st Workshop on Refactoring 

Tools, University of Berlin, July, 2007.  

[8]  C. Bouhours, H. Leblanc and C. Percebois , "Bad smells in design 

and design patterns," Journal of Object Technology, May-June, 

Vol.8, No.3, pp.43-63, 2009.  

[9]  G. E. Boussaidi and H. Mili, "Understanding design patterns - what 

is the problem?," Software: Practice and Experience, December, 

Vol.42, No.12, pp.1495–1529, 2012.  

[10]  M. El-Sharqwi, H. Mahdi and I. El-Madah , "Pattern-Based Model 

Refactoring," in Proceedings of The 2010 International Conference 

on Computer Engineering and Systems (ICCES), Cairo, Egypt, 

2010.  

[11]  R. France, S. Ghosh, E. Song and D.-K. Kim, "A metamodeling 

approach to pattern-based model refactoring," IEEE 

Software,Special Issue on Model Driven Development, vol. 20, no. 

5, pp. 52-58, September/October 2003.  

[12]  S. R. Judson, R. B. France and D. L. Carver, "Supporting Rigorous 

Evolution of UML Models," in Proceedings of Ninth IEEE 

International Conference on Engineering Complex Computer 

Systems, 2004., 2004.  

[13]  D.-K. Kim, "Design pattern based model transformation with tool 

support," Software: Practice and Experience, April, Vol.45, No.4, 

pp.473-499, 2015.  

[14]  X.-B. Wang, Q.-Y. Wu, H.-M. Wang and D.-X. Shi, "Research and 

Implementation of Design Pattern-Oriented Model 

Transformation," in Proceedings of International Multi-Conference 

on Computing in the Global Information Technology (ICCGI 

2007), Guadeloupe City, 2007.  

[15]  T. v. Enckevort, "Refactoring UML models: using 

openarchitectureware to measure uml model quality and perform 

pattern matching on UML models with OCL queries," in 

Proceedings of the 24th ACM SIGPLAN conference companion on 

Object oriented programming systems languages and application 

(OOPSLA), Orlando, Florida, USA, 2009.  

[16]  M. V. Kempen, D. Kourie, M. Chaudron and A. Boake, "Towards 

Proving Preservation of Behaviour of Refactoring of UML 

Models," in Proceedings of the 2005 annual research conference of 

the South African institute of computer scientists and information 



International Journal of Computer Sciences and Engineering                                                                           Vol.12(4), Apr. 2024 

© 2024, IJCSE All Rights Reserved                                                                                                                                              54 

technologists on IT research in developing countries SAICSIT '05, 

2005.  

[17]  U. Mansoor, M. Kessentini, M. Wimmer and K. Deb, "Multi-view 

refactoring of class and activity diagrams using a multi-objective 

evolutionary algorithm," Software Quality Journal, Vol.25, 

pp.473–501, 2017 .  

[18]  M. Mohamed, M. Romdhani and K. Ghedira, "M-REFACTOR: A 

New Approach and Tool for Model Refactoring," ARPN Journal of 

Systems and Software, July, Vol.1, No.4, pp.117-122, 2011.  

[19]  T. Ruhroth, H. Voigt and H. Wehrheim, "Measure, Diagnose, 

Refactor: A Formal Quality Cycle for Software Models," in 

Proceedings of 35th Euromicro Conference on Software 

Engineering and Advanced Applications (SEAA), Patras, Greece, 

2009.  

[20]  T. Arendt and G. Taentzer, "Implementation Details of Smells and 

Refactorings for UML Models within the Eclipse Modeling 

Framework," Philipps Universität Marburg, Marburg, November 4, 

2011. 

[21]  A. C. Jensen and B. H. Cheng, "On the use of genetic programming 

for automated refactoring and the introduction of design patterns," 

in Proceedings of the 12th annual conference on Genetic and 

Evolutionary Computation (GECCO), Portland, Oregon, USA, 

2010.  

[22]  M. Akiyama, S. Hayashi, T. Kobayashi and M. Saeki, "Supporting 

Design Model Refactoring for Improving Class Responsibility 

Assignment," in Model Driven Engineering Languages and 

Systems (Proceedings of 14th International Conference, MODELS 

2011, Wellington, New Zealand, October 16-21, 2011), vol. 6981 of 

Lecture Notes in Computer Science, J. Whittle, T. Clark and T. 

Kühne , Eds., Springer Berlin Heidelberg, pp.455-469, 2011. 

[23]  Ł. Dobrzanski, "UML Model Refactoring- Support for 

Maintenance of Executable UML Models," Sweden, July 2005. 

[24]  M. Stolc and I. Polasek, "A visual based framework for the model 

refactoring techniques," in Proceedings of IEEE 8th International 

Symposium on Applied Machine Intelligence and Informatics 

(SAMI), Herlany, Slovakia, 2010.  

[25]  B. K. Sidhu, "Development of refactoring technique for 

architecture based evolution of object oriented software systems," 

Punjabi University, Patiala, 2019. 

[26]  R. S. Pressman, Software Engineering, A Practitioner's Approach, 

7th ed., New York: McGraw-Hill, 2010.  

[27]  B. K. Sidhu, K. Singh and N. Sharma, "A Catalogue of Model 

Smells and Refactoring Operations for Object-Oriented Software," 

in Second International Conference on Inventive Communication 

and Computational Technologies (ICICCT), Coimbatore, 2018.  

[28]  F. Y. Edgeworth, "On discordant observations," The London, 

Edinburgh, and Dublin Philosophical Magazine and Journal of 

Science, Vol.23, No.143, pp.364-375, 1887.  

[29]  O. Chapelle, B. Scholkopf and A. Zien, Semi-Supervised Learning, 

The MIT Press, 2006.  

[30]  S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object 

Oriented Design," IEEE Transactions on Software Engineering, 

June, Vol.20, No.6, pp.476-493, 1994.  

[31]  J. Bansiya and C. G. Davis, "A hierarchical model for object-

oriented design quality assessment," IEEE Transactions on 

Software Engineering, January, Vol.28, No.1, pp.4-17, 2002.  

[32]  B. Karasneh and M. R. Chaudron, "Img2UML: A System for 

Extracting UML Models from Images," in 39th Euromicro 

Conference on Software Engineering and Advanced Applications, 

Santander, Spain, 2013.  

 

 

 

 

 

AUTHOR’S PROFILE  
Brahmaleen K. Sidhu earned her Ph.D. 

degree in Faculty of Engineering and 

Technology from Punjabi University, Punjab, 

India, M.Tech. degree in Computer Science 

and Engineering from the Punjab Technical 

University, Punjab, India, and B.Tech. degree 

in Computer Science and Engineering from 

Punjabi University. She is currently working 

as Assistant Professor in the Department of 

Computer Science and Engineering, Punjabi University and has 

around 18 years of teaching experience. Her research interests 

include software architecture, software evolution, software quality, 

refactoring, model-driven development, data science and machine 

learning. She has around 80 research papers in reputed international 

journals including Thomson Reuters (SCI & Web of Science) and 

conferences including IEEE, and a book titled "A Handbook of 

Reinforcement Learning" published in 2023. She has been awarded 

the “International Innovative Educator Award 2021" and is listed in 

“100 Eminent Academicians of 2021” by International Institute of 

Organized Research.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


