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Abstract— The process of Learning distance function over different objects is called as Metric learning. In various of data mining 

processes like clustering, nearest neighbours etc. is very important problem that relies on distance function. For many types of data, 

linear model is not very useful but most of metric learning methods assumes linear model of distance. In the recent nonlinear data 

demonstrated potentialpower of non-Mahalanobis distance function, particularly tree-based functions.  This leads to a more robust 

learning algorithm. We compare our method to a number of state-of-the-art benchmarks on k-nearest neighbour classification, 

large-scale image retrieval and semi supervised clustering problems. Then we find that our algorithm yields results comparable to 

the state-of-the-art. A novel tree-based non-linear metric learning method can have information from both constrained and 

unconstrained points. And hierarchical nature of training can minimize the constraint satisfaction problem as it won’t have to go 

through the constraint satisfaction process per object but per hierarchy. Combining the output of many of the resulting semi-random 

weak hierarchy metrics and by introducing randomness during hierarchy training, we can obtain a powerful and robust nonlinear 

metric model. 
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I. INTRODUCTION 

Many elemental data mining problems nearest neighbour 

classification, retrieval, clustering is at their core dependent 

on the availability of an effective measure of pair wise 

distance. A wide range of methods have been proposed to 

address this learning problem, linear methods have primarily 

benefited from two advantages. Firstly, they are generally 

easier to optimize, allowing for faster learning. Second they 

allow the original. Data to be easily projected into the new 

metric space, Metric learning is process of learning distance 

function over different objects. It is very important problem 

in data mining as various processes like clustering, nearest 

neighbours etc. relies on distance function. Most of metric 

learning methods assumes linear model of distance. But for 

many types of data, linear model is not very useful. 

  

 A wide range of methods have been proposed to 

address the learning problem, but the field has traditionally 

been dominated by algorithms that assume a linear model of 

distance, specially Mahalanobis metrics [2]. Linear methods 

have primarily benefited from two advantages. First, they are 

generally easier to optimize, allowing for faster learning and 

in many cases a globally optimal solution to the proposed 

problem[6] Second, they allow the original data to be easily 

projected into the new metric space, meaning the metric can 

be used in conjunction with other methods that operate only  

 

on an explicit feature representation. This methodology 

provides two significant contributions: first, unlike previous 

tree-based nonlinear metrics, it is semi-supervised, and 

incorporate information from both constrained and 

unconstrained points into the learning algorithm. This is an 

important advantage in many problem settings, particularly 

when scaling to larger datasets where only a small proportion 

of the full pair wise constraint set can realistically be 

collected or used in training. Second, the iterative, 

hierarchical nature of the training process allows to relax the 

constraint satisfaction problem. Rather than attempting to 

satisfy every available constraint simultaneously, at each 

hierarchy node optimize an appropriate constraint subset to 

focus on, leaving others to be addressed lower in the tree. By 

selecting constraints in this way, we can avoid situations 

where attempting to satisfy incoherent constraints [11], and 

thereby better model hierarchical data structures. 

 

II.      RELATED WORK 

 

D. M. Johnson, C. Xiong and J. J. Corso proposed obtains 

more powerful metric model with the help of iterative 

hierarchical variant of semi supervised max-margin 

clustering [1]. A. Bellet, A. Habrard, and M. Sebban 

proposed that Recent trends and extensions, such as semi-

supervised metric learning, metric learning for histogram 

data and the derivation of Generalization guarantees, are also 

covered [2]. J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. 
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Dhillon, proposed that this method can handle a wide variety 

of constraints and can optionally incorporate a prior on the 

distance function. Also it is fast and scalable [3]. C.Shen, J. 

Kim, L. Wang, and A. van den Hengel, proposed that one of 

the primary difficulties in learning such a metric is to ensure 

that the Mahalanobis matrix remains positive semi definite. 

Semi definite programming is sometimes used to enforce this 

constraint, but does not scale well [4]. J. Blitzer, K. Q. 

Weinberger, and L. K. Saul, prosed the metric is trained with 

the goal that the k-nearest neighbours always belong to the 

same class while examples from different classes are 

separated by a large margin.[5]. Y.Ying and P. Li proposed 

that the framework not only provides new insights into 

metric learning but also opens new avenues to the design of 

efficient metric learning algorithms. Indeed, first-order 

algorithms are developed for DML-eig and LMNN which 

only need the computation of the largest eigenvector of a 

matrix per iteration [6]. R. Chatpatanasiri, T. Korsrilabutr, P. 

Tangchanachaianan, and B. Kijsirikul proposed that 

developing a new framework of kernelizing Mahalanobis 

distance learners. The new KPCA trick framework offers 

several practical advantages over the classical kernel trick 

framework [7]. S. Chopra, R. Hadsell, and Y. LeCun, 

proposed that a function that maps input patterns into a target 

space such that the norm in the target space approximates the 

―semantic‖ distance in the input space. The method is applied 

to a face verification task [8]. A. Frome, Y. Singer, and J. 

Malik, proposed that a distance function for each training 

image as a combination of elementary distances between 

patch-based visual features [9]. K. Q. Weinberger and L. K. 

Saul proposed that extended the original framework for 

LMNN classification in several important ways: by 

describing a solver that scales well to larger data sets, by 

integrating metric ball trees into the training and testing 

procedures [10]. 

 

 

III.   EXISTING SYSTEM 

 

The Mahalanobis distance is a parameter to calculate the 

distance between a point P and a distribution D, introduced 

by P. C. Mahalanobis in. It is a multi-dimensional 

generalization of the idea of measuring how many standard 

deviation away P is from the mean of D. The distance is zero 

if P is at the mean of D, and increases as P moves away from 

the mean: along each principal component axis, it calculates 

the number of standard deviations from P to the mean of D. 

If each of these axis is rescaled to have unit variance, then 

Mahalanobis distance corresponds to standard Euclidean 

distance in the transformed space. Mahalanobis distance is 

unit-less and scale-invariant, and takes into account the 

correlations of the data set.The full hierarchy forest distance 

is effectively the mean of a number of weak distance 

functions Ht, each corresponding to one hierarchy in the 

forest. These distance functions, in turn, are representations 

of the structure of the individual hierarchies—moreover the 

apart of two instances fall within a hierarchy, the greater the 

distance between them. 

 Learning a Mahalanobis distance is equivalent to learning a 

linear map, the in ability to learn a non-linear transformation 

is one important limitation of the learners .As their search in 

Mahalanobis distance learning has just recently begun, 

several issues are left open such as 

(1) some efficient learners doesn’t have non-linear 

extensions,(2)the kernel trick, a standard non-linearization 

method , is not fully automatic in the sense that new 

mathematical formulas were to be derived and codes have to 

be implemented; this is not convenient to non-experts, and 

(3) the problem of how to select an efficient kernel function 

has been left untouched in the previous works; in previous 

works, the best kernel function is achieved via a brute-force 

method such as cross validation. 

 

System Overview 

A. System Model 

In existing system novel tree-based non-linear metric 

learning method is proposed. This method can have 

information from both constrained and unconstrained points. 

It also has hierarchical nature of training can minimize the 

constraint satisfaction problem as it won’t have to go through 

the constraint satisfaction process per object but per 

hierarchy. 

 

B. Algorithms for Existing System 

 

Algorithm 1:  HFD Learning 

HFD is conceptually distinct from random forests in that 

the individual components of the forest represent cluster 

hierarchies rather than decision trees. HFD also differs from 

the common form of random forest in that it doesn't do 

bootstrap sampling on its training points and its splitting 

functions are linear combinations rather than single-feature 

thresholds. 

Algorithm1: HFD Learning 

 

t=0 

Step I: 
for t < T do 

Step II: 

function BuildTree(t,l,X
0
,L0) 

wtl←LearnSplit (Xtl, Ltl) 

Divide Xtl among cL and cR using, 

Ptl(x)= wtl
T
 [ xj

K
tl  1] 

Send x to left if Ptl(x)<=0 

Send x to right if Ptl(x)>0 

if|XtcL| > minimize then 

Use XtcL todetermineLtcL 

BuildTree(t, cL, XtcL , LtcL ) 
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end if 

if|XtcR| > minsize then 

Use XtcR to determine LtcR 

BuildTree (t, cR, XtcR , LtcR ) 

end if 

end function 

Step III: 

Function LearnSplit(Xtl, Ltl) 

Select split features Ktl and build X
K

tl via 

Ktl
K 

= { [ xj
Ktl   

1] | xj € Xtl € } 

if L
c
is not null then 

Use CCCP to solve wtl 

else 

Use block-coord for solving wtl 

end if 

return wtl 

end function 

 
Algorithm 2: HFD Inference: 

Metric inference on learned HFD structures is straight 

forward. We feed two points to the metric and track their 

progress down each tree. At each node, compute associated 

binary linear discriminates (for root info). 

 

Algorithm 2: HFD Inference 

Step I: 

function INFERDISTANCE(a, b) 

t = 0 

D  = 0 

for  t < T do 

D = D + TREEDISTANCE (t, 0, a, b) 

t = t + 1 

end for 

return D/T 

end function 

Step II: 

function TREEDISTANCE (t, l, a, b) 

Retrieve split features Ktl and build a
Ktl

 and b
Ktl

 

Apply following formulae to a
Ktl

 and b
Ktl

 to get Stl(a) and 

Stl(b) 

Ptl(x)= wtlT [ xj
Ktl

  1] 

Send x to left if Ptl(x)<=0 

Send x to right if Ptl(x)>0 

if Stl(a) = Stl(b) then 

return TreeDistance(t,Stl(a),a,b) 

else 

return output of  

Ht(a,b)= { 0pt(a,b).|Htl(a,b)| / N 

 
 

 

Algorithm 3: Fast Approximate HFD Nearest Neighbors: 

Comparing to a euclidean or even Mahalanobis distance. 

This is worsened, for many applications, by the 

unavailability of traditional fast approximate nearest- 

neighbor methods, which require an explicit representation of 

the data in the metric space in order to function. We address 

the latter problem by introducing our own fast approximate 

nearest-neighbor process, which takes advantage of the tree-

based structure of the metric to greatly reduce the number of 

pair-wise distance computations needed to compute a set of 

Nearest-neighbors for a query point x. 

 
Algorithm 3: Fast Approximate HFD Nearest Neighbors 
T=0 

Step I: 

For t < T do 

O=O U [TREENEIGHBOURS (t;0;a)] 

t=t+1 

end for 

Step II: 

for x belongs to final candidate neighbor set do 

INFREDISTANCE (x; a) 

end for 

Step III: 

return the k points in final candidate neighbor set with the 

smallest distance 

function TREENEIGHBOURS (t; l; a) 

Step IV: 

if l is a leaf node then 

Otl = kO   points sampled from l 

if |Xtl| < ko  then 

Sample from parent node(s) as needed 

end if 

return Otl 

else 

Retrieve split features Ktl and build a Ktl 

Apply (6) to a
Ktl

  to get Stl (a) 

return TREENEIGHBORS (t, Stl(a), a) 

end if 

end function 

IV.      PROBLEM STATEMENT 

 

To implement a Novel tree based Non-linear metric method 

with improved performance. 

V. PROPOSED SYSTEM 

 

A novel semi-supervised nonlinear distance metric learning 

procedure based on forests of cluster hierarchies constructed 

via an iterative max margin clustering procedure. A novel 

relaxed constraint formulation for max-margin clustering 

which improves the performance of the method in 

hierarchical problem settings. A novel in-metric approximate 

nearest-neighbour retrieval algorithm for our method that 
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greatly decreases retrieval times for large data with little 

reduction in accuracy. 

 

 
Fig1: Proposed System Architecture Diagram 

 

VI. CONCLUSION 

A novel semi-supervised nonlinear distance metric learning 

procedure based on forests of cluster hierarchies. These 

forests of cluster hierarchies constructed via an iterative max-

margin clustering procedure. This paper presents a semi-

supervised metric learning method based on forest of cluster 

hierarchies. The novel relaxed constraint formulation for 

max-margin clustering improves the performance of the 

method in hierarchical problem settings. The proposed 

algorithm can improve the performance. The algorithm 

shows that it can compete with currently implemented 

methods on small as well as large scale datasets. The nearest-

neighbor retrieval algorithm that reduces the retrieving time 

on large dataset with small compromise with accuracy. 
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