
 © 2019, IJCSE All Rights Reserved 424

International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol.-7, Issue-1, Jan 2019 E-ISSN: 2347-2693

Deriving the Partial Order of Documents to Extend Clustering

Applications

A. George Louis Raja
1*

, F. Sagayaraj Francis
2

and P. Sugumar
3

1
Department of Computer Science and Applications, SCSVMV University, Kanchipuram, Tamil Nadu, India

2
Department of Computer Science and Engineering, Pondicherry Engineering College, Puducherry, India

3
Department of Computer Applications, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, India

Corresponding Author: george@shctpt.edu

Available online at: www.ijcseonline.org

Accepted: 21/Jan/2019, Published: 31/Jan/2019

Abstract – The exponential growth of text documents over the internet has paved the way for systematic document

organization. It is widely accepted that the document clustering has augmented the information retrieval process to a greater

extend. Basically all the text clustering algorithms tend to establish more appropriate clusters of text documents, and the

accuracy of text clustering algorithms are measured based on cluster cohesion and separation. Keeping to the basic principle of

clustering to minimize cohesion and maximize separation, all the algorithms deploy different strategies to generate better

quality clusters. It is observed from the detailed literature survey that Classification, Categorization, Plagiarism Detection and

Clustering are correlated. All these text mining tasks are performed based on indexing, searching or relating the key terms

present in the documents. Moreover, all the text mining methods focuses on establishing the similarity or difference among the

text documents, by which they perform their intended tasks. Hence, they tend to limit the application of clustering only to

complement information retrieval task. This paper tries to present an algorithm to establish the partial order among the text

documents and thus to extend the applications of clustering.

Keywords- Clustering, Partial Ordering, Classification, Categorization, Indexing

I. PARTIAL ORDERING

In mathematics, especially order theory, a partially ordered

set (also poset) formalizes and generalizes the intuitive

concept of an ordering, sequencing, or arrangement of the

elements of a set [1, 2]. It identifies and concludes the order

of precedence among the elements through the defined

binary relation between the elements. It is observed that not

all the pair of elements in a set need to be comparable,

yielding to the concept of total ordering in which all the

elements of a set are supposed to be comparable with one

another.

When the partial ordering is done for text documents, can be

used to extend the application of text clustering. Hence, this

paper attempts to construct an partial ordering of text

documents. The paper introduces the concept of partial

ordering of documents and proposes an algorithm to

partially order the documents. The further sections of the

paper, illustrates the algorithm and supplements it with the

results, and highlight the applications of the algorithm.

II. NEED FOR PARTIAL ORDERING OF

DOCUMENTS

In exponentially growing text corpuses, it is highly time

consuming to predict the hierarchy of the documents. The

hierarchy of the documents once established can help to

understand the evolution of the documents [3]. This

cumbersome and computationally costly process, if done,

can definitely help to organize the documents better, and

help to improve the information retrieval process at large [4,

5].

Consider the following group of sentences illustrated in

Figure 1 that defines a binary tree, though contextually they

are similar, they differ by their entropy.

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Order_theory
https://en.wikipedia.org/wiki/Set_(mathematics)

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 425

Figure 1. Sample Sentences

If the sentences are manually ordered according to their

entropy, the partial order may be S2, S3, S4, S1. Obviously

this ordering was based on the definition that gives more

details on a binary tree.

The partial order can be useful to establish the hierarchy of

the sentences based upon their entropy. This hierarchy will

reveal the most describing documents in the collection [6,

7].

III. STAGES OF PARTIALLY ORDER

DOCUMENT ALGORITHM (PODA)

The Partial ordering algorithm works in five phases as and

described in this section.

PHASE I: PREPROCESSING
The Stages I (Tokenizing), II(Removing the Stop Words),

and III (Stemming) of ATSCA are repeated.

PHASE II: KEY TERM EXTRACTION:

Key terms are the most describing words of a document.

The key terms are applied to carry out topic extraction,

topic assignment and text summarization. It was

established in the previous paper that key term extraction

can improve the clustering process. The ATSCA algorithm

supported with key graph key term extraction method was

proved to have produced better clusters.

The distinct stemmed words of the documents are analyzed

for their key terms. The Key Graph Algorithm is applied to

extract the key terms from the documents. The keywords

k11,k12,……..,kmn of each of the document D1,D2,…Dn of the

text corpus is arrived. These keywords are the premises in

the Partial order process.

PHASE III: NGD COMPUTATION:

Stage I: Construct the Document Term Matrix

From the reduced set of the mxn key terms

(k11,k12,……..,kmn) from the n documents (D1,D2,…Dn), a

Document Term Matrix (DTM) is constructed. The DTM

is a KxK matrix, where k=mxn, representing the key words

are symmetrically represented in both rows and columns,

the key term kij is presented in i
th

 row and j
th

 column.

Stage II: Estimate the Normalized Google Distances

The Normalized Google Distance (NGD) is a semantic

similarity metric, which was applied in the UTSCA

clustering algorithm. The application of NGD was found to

estimate the semantic similarity of terms with precision.

In this stage, the NGD values among the key terms are

computed, the NGD value of the key term i with key term

j, NGD(i,j) is found and stored in the entry DTM[i,j] of the

Document Term Matrix.

Stage III: Reduction:

The NGD values are interpreted to identify the semantic

similarity of the terms. It is assumed that when the NGD

values of the terms x and y are closer or equal to zero the

terms are similar and greater NGD values deem the terms

to be different. This attribute of NGD gives rise to the

intuition to deduce the terms with higher NGD values from

the Document Term Matrix.

The reduced DTM will have the keyterms which are

semantically analogous to one another.

PHASE IV: CLUSTERING
The resultant Document Term Values with the NGD

values of the semantically closer terms is put through the

centroid based clustering algorithm. The resultant clusters

{c1,c2,….cn} along with their relating key terms

{k1,k2,…….kn} are created. The keyset of the cluster ci

generates its lexicon Li. Till this stage the steps of Partial

Ordering is an amalgamation of Lexicon Extraction and

Semantic Clustering processes.

S1: In a binary tree every node is considered to have a maximum of two children.

S2: A binary tree is a specialization of a tree, in which every node including the root node will

have at-most two sub trees, the left sub tree and the right sub tree.

S3: It is observed that in a binary tree every node can have zero, one or two children.

S4: A binary can be empty or can have nodes with at most two children.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 426

PHASE V: PARTIAL ORDERING:

The documents of a cluster are ranked based on their

calculated score. Then, the frequency of distribution with

these representative scores results the partial order of the

documents.

The following procedure briefs on the frequency

distribution calculations:

(i) Identify the number of levels in the hierarchy

with l = , where n is the number of documents

in the cluster.

(ii) In every cluster, the range can be defined as

range= maximum score – minimum score.

(iii) The number of documents (nd) in each range can

be fixed as .

(iv) Sort the scores of documents in increasing order.

(v) Split the documents into two groups initially on

the mean value, place the first group of (n/2)

documents in first level and second group of (n/2)

documents in the second level.

(vi) Repeat the process (v)iteratively until the number

of levels equals nd.

The process results with the partial order of

documents. The Algorithmic interpretation of the

process is depicted in Figure 2.

Algorithm Compute_Frequency_Distribution;

Input: Dataset A, Cluster C, Documents D, Lexicon Scores S

Output: Partially ordered documents of Cluster C

1. begin

2. for each cluster c in the data set A

3. l= ;

4. range = maximum(s) - minimum(s);

5. ;

6. repeat

7. sort the documents in cluster c on scores;

8. find the mean range of each cluster;;

9. group the documents;

10. groups++;

11. until (groups==nd);

12. end for;

13. return;

14. end;

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 427

Figure 2. PODA Algorithm

IV. EXPERIMENTAL RESULTS

The Partial Ordering algorithm was experimented with a

data set with three hundred text documents in the category

of Internet of Things, Big Data, Software Engineering and

Text Mining.

The algorithm yielded the partial order or hierarchy of

documents illustrated in Figure 3, 4, 5 and .6. The Figure

3 illustrates the partial order of documents of Big Data,

Figure 4, the partial order of documents of Internet of

Things, Figure 5, the partial order of documents of

Software Engineering and Figure 6, illustrates the partial

order of documents of Text Mining clusters.

Each section marked by a rectangle in the figure 3, 4, 5

and 6 refers to a level of Hierarchy, which is represented

from top to bottom. The numbers in each rectangle

represents the file numbers given as the input. The top

most rectangle in each hierarchy depicts the list of file

numbers in the top hierarchy (documents regarded as most

important), with the downward rectangles representing

files with least importance.

Algorithm PODA

Input: Dataset A containing the documents to be ordered

Output: Clusters of the partially ordered documents of the dataset A

1. begin

2. for each document da in the data set A

3. remove the punctuators, delimiters and spaces;

4. for each token kin document da

5. delete the words specified in the stop words list;

6. end for;

7. for each term t in document da

8. stem them to the root word with porter stemming;

9. end for;

10. end for;

11. for each document d in dataset A

12. extract the keywords from the document d using keygraph algorithm;

13. end for;

14. for each keyword ki,j in the dtm[i,j]

15. compute NGD[i,j];

16. end for;

17. for each entry in dtm

18. if(NGD[i,j]>=1)then remove the entry dtm[i,j];

19. end for;

20. for each entry in dtm

21. find the closest pair of NGD values to estimate the similar documents;

22. Mark the NGD(x,y) as a Lexicon entry in li;

23. end for;

24. call ATSCA_Clustering;
25. for each document d in the cluster c

26. compute
27. end for;

29. call Compute_Frequency_Distribution;

30. return the arranged partial order of the documents.

31. end;

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 428

Figure 3. Partial Order of Big Data documents

Figure 4. Partial Order of Internet of Things documents

Figure 5. Partial Order of Software Engineering documents

1,32,62,35,37,4,6,65,67,12,43,74,15,19,23,27,53

3,34,64,36,5,66,2,33,63,50,58,7,16,20,24,28,54

38,50,56,57,39,46,8,40,9,47,48,49,61,17,21,25,29

51,52,31,59,11,42,13,44,55,14,45,10,41,18,22,26,30

47,5,27,2,44,24,22,64,1,43,23,10,52,32,14

12,54,34,4,46,26,11,53,33,3,45,25,21,63,50,8,30,15,48,57,6,28,37,17,20,59,62,39,42,49,7,29,19,61,41,65

18,56,60,36,40,16,58,38,51,9,31,13,55,35,66

12,36,60,30,54,6,1,25,49,13,37,61,21,45,69

10,34,58,23,47,71,31,55,7,11,35,59,16,40,64,73

14,39,62,17,41,65,22,46,70,74

20,44,68,2,26,50,15,38,63,18,42,66,24,48,72,27,3,51,29,5,53,75

19,43,67,28,4,52,33,57,32,56,8,9

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 429

Figure 6. Partial Order of Text Mining documents

The following Table 1 summarizes the number of hierarchy

levels in each cluster along with the number of files

identified in each level.

Table 1 Summary of Number of Files in each Level

Cluster Level1 Level2 Level3 Level4 Level5 Total

Big Data 15 16 10 22 12 75

Internet of

Things

17 17 16 17 - 67

Software

Engineering

15 36 15 - - 66

Text Mining 7 12 16 30 27 92

The Table 2 correlates the number of levels in each of the

clusters with the number of top level clusters generated from

Phase III using the ATSCA algorithm. It can be observed that

the number of clusters and levels are approximately equal in

number.

Table 2 Comparison of Clusters Vs. Levels

Cluster Top Level Clusters
Hierarchical

Levels

Big data 4 5

Internet of Things 3 4

Software Engineering 3 3

Text Mining 4 5

V. OUTPUT ANALYSIS

The output of the partial ordering algorithm was manually

evaluated for its precision. This analysis was done to verify

the correctness of the partial ordering of documents

produced by the algorithm. Since, the manual method yields

100% precision accuracy in linguistic analysis specifically in

partial ordering. The documents were manually ordered and

the outputs were used for comparison. The following Table

3 summarizes the outputs of the partial ordering algorithm

with the manual outputs.

Table 3 Precision of PODA

Cluster Level
Number of

Documents

Number of

Matching

Documents

Precision

%

Big Data

Level 1 15 12 80

Level 2 16 14 87.5

Level 3 10 10 100

Level 4 22 20 90.9

Level5 12 10 83.3

Average % of Precision in Big Data Cluster 88

Internet of

Things

Level 1 17 15 88.2

Level 2 17 14 82.3

Level 3 16 15 93.75

Level 4 17 16 94.11

Average % of Precision in Internet of Things Cluster 89

Software

Engineering

Level1 15 14 93.3

Level2 36 31 91.1

Level3 15 14 93.3

Average % of Precision in Software Engineering

Cluster
89.9

 Level1 7 7 100

1,3,62,64,33,35,22

13,71,42,2,63,34,23,80,51,4,59,90

28,85,56,66,8,37,31,88,21,79,27,50,27,84,55,68

18,76,47,20,78,49,24,81,52,10,19,6,77,39,48,60,91,16,74,45,11,69,40,65,7,36,29,86,57,9

15,73,44,12,70,41,25,82,53,61,92,30,87,58,14,72,43,32,89,26,83,54,17,67,75,38,46

44,12,70,41,25,82,53,61,92,30,87,58,14,72,43,32,89,26,83,54,17,67,75,38,46,

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 430

 Level2 12 11 91.6

 Level3 16 14 87.5

 Level4 30 28 93.3

 Level5 27 22 81.4

Average % of Precision in Text Mining Cluster 89.1

Average % of Precision achieved by Partial Order

Algorithm
89

VI. EXTENDING THE APPLICATIONS OF

CLUSTERING

The core intuition behind establishing the partial order of

documents is to extend the horizons of clustering

applications. The outputs of PODA algorithm augments

information retrieval and can be tailored to perform

plagiarism detection and categorization.

Plagiarism Detection through PODA

The formulated levels from PODA represent the documents

with same frequency of contextually similar terms. This

frequency can be deployed to measure the amount of

similarity among the documents. In terms of plagiarism

detection, similarity is an indicator of plagiarism. The

intuition is to identify the contextually best document in

each level, which contains the largest frequency of the key

terms in that level. Based on the estimation of percentage of

terms replicated from this document with each of the rest of

documents may determine the amount of similarity or

plagiarism observed.

It is observed that arranging the documents according to

their proximity in each level may be used to estimate the

amount of plagiarism. Each level is illustrated with the most

describing document, and the ratio of similarity of all other

documents with it. For example it can be observed that in the

level 1 (big data) with 15 documents, the document

numbered 12 contains the larger number of terms in the

corpus and is identified as the contextually significant

document. The amount of similarity between the document

12 and other documents in the level is calculated. Thus, this

table can be used to observe the amount of intra cluster

plagiarism or plagiarism exhibited in the documents of the

test corpus.

Text File De-duplication through PODA

The task of file de-duplication is to identify similar files in

the given set of input documents. The documents gathered in

each level of PODA represent the similar files. Hence, it can

be inferred that the documents in the same level of PODA

are duplicates The task of file de-duplication is to identify similar files in the given set of input documents. The documents gathered in each level of PODA represent the similar files. Hence, it can be inferred that the documents in the same level of PODA are duplicates

CONCLUSION

The Applications of clustering is bounded to Information

Retrieval, though the horizon can be widened to other data

mining activities. In this paper, a concept is presented to

extend the application of Clustering to partial ordering of

Text Documents. When the clustered documents are

organized in a hierarchical structure, the structure can be

developed to perform document classification and

plagiarism detection.

This paper has presented an algorithm to partially order the

text documents, and demonstrated the partial ordering of the

test corpus. The outputs of the algorithm are found to

approximate the manual output of partial ordering.

REFERENCES

[1] 1.www.wikipdia.com/ Hierarchy

[2] 2.www.wikipedia.com/Poset- Wikipedia.html.

[3] 3.Michelangelo Ceci and Donato Malerba, “Classifying web

documents in a hierarchyof categories: a comprehensive study”,

Journal of Intelligent Information Systems, ISSN: 0925-9902,

Volume 28, Issue 4, pp. 37-78, 2007.

[4] 4.W.T. Chuang, A. Tiyyagura, J. Yang and G. Giuffrida, “A fast

algorithm for hierarchicaltext classification”,Proceedings of the

Second International Conference on Data Warehousing and

Knowledge Discovery (DaWaK 2000), pp. 409-418, New York ,

U.S.A, 2000.

[5] 5.S. D. Alessio, K. Murray, R. Schiaffino, and A. Kershenbau,

“The effect of using hierarchical classifiers in text

categorization”, Proceedings of the

6thInternationalConferenceonRecherchedInformationAssistdep

arOrdinateur(RIAO2000), pp. 302-313, Paris, France,2000.

[6] 6.D. Koller and M. Sahami, “Hierarchically classifying

documents using very few words”, Proceedings of the 14th

International Conference onMachineLearning , pp. 170-178,

California, U.S.A, 1997.

[7] 7.M.K. M. Rahman and Tony W. S. Chow, “Content based

hierarchical document organization using multi layer hybrid

network and tree structured features”, Expert Systems with

Applications, ISSN: 2874-2881, Volume 37, 2010

http://www.wikipedia.com/Poset-%20Wikipedia.html

