

 © 2019, IJCSE All Rights Reserved 386

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-1, Jan 2019 E-ISSN: 2347-2693

Identification of Tampered SMS Messages in iPhone – A Case Study

Eswara Sai Prasad Chunduru
1*

, Krishna Mangarai
2
, Subrahmani Babu

3
, Manohar B Pathak

4

1, 2, 4
Computer Forensic Unit, Central Forensic Science Laboratory, Hyderabad

3
Deloitte Shared Services India LLP, Bengaluru

Available online at: www.ijcseonline.org

Accepted: 22/Jan/2019, Published: 31/Jan/2019

Abstract: Mobile Phones, now-a-days have become the primary source of evidence in any type of investigation for providing

initial leads for framing the future investigation as well as primary evidence. The retrieval and analysis of SMS messages,

including deleted ones from the memory of smart mobiles is one of the main process of mobile phone forensics. With the

evolution of technology, criminals can manipulate the SMS database and tamper the messages to prove their virtue and mis-

guide the investigation. In the current paper we have discussed the method adopted for proving the authenticity of SMS

messages retrieved during the analysis of an iPhone.

Keywords: SMS Messages, iPhone, Tampering, Authenticity, iOS

I. INTRODUCTION

The use of mobile communication devices has increased

rapidly over the years. These wireless communication

devices were started as devices to store individual’s personal

information and transformed into hand held computers,

providing many services to the users. Short message service

(SMS) is one such popular wireless service throughout the

globe facilitating a user to be in touch with his counterparts.

This service is playing a major role in the current day to day

walks of life starting from sharing information to bonding

persons to performing transactions related to financial,

educational, governmental via m-commerce, m-banking, m-

governance etc. As we know that the technology is double

edged weapon, with these conveniences there bear amenities

through which fallacious benefits are gained by way of

manipulation of these services. Proving the authenticity and

veracity of these services sometimes may become the thrust

of investigation and analysis.

The forensic analysis of Mobile phones primarily involves

retrieving the Phone basic information i.e., Phone Book

Entries, Call Logs and SMS Text messages. Current day

Mobiles Phones store these entries basically in SQLite

Database formats. These SQLite databases are prone to

manipulation. Unwanted mileage can be gained by inserting

one or more SMS Text messages fraudulently as part of the

database of the Mobile Phones. Forensic analysis of the

Mobile Phones simply retrieves the SMS Text Messages

from the SQLite Database file, but unable to establish the

authenticity of the SMS database. In the present paper we

have tried to discuss a methodology to analysis the SQLite

database file i.e., sms.db file retrieved from an iPhone for

determining its authenticity.

II. BACKGROUND

Short Message Service (SMS) is a text messaging service

component of mobile communication systems. It uses

standardized communications protocols to allow devices to

exchange short text messages. SMS was the most widely

used data application. This service, using standardized phone

protocols has been adopted into the modern mobile

communication devices from radio telegraphy in radio

memo pagers. The protocols were defined in 1985 as part of

the Global System for Mobile Communications (GSM).

Initially, these protocols were for mobile communication

devices working on GSM technology, allowing exchanging

messages of up to 160 characters between GSM mobile

handsets. Later support for the service has been expanded to

include other mobile technologies, such as ANSI (American

National Standards Institution) CDMA (Code Division

Multiple Access) networks and Digital AMPS (Advanced

Mobile Phone System), as well as satellite and landline

networks. The SMS services began in the early 1980s. The

first action plan of the Conference of European Post and

Telecommunications (CEPT) Group GSM was approved in

December 1982. This plan included the exchange of text

messages either directly between mobile stations or

transmitted via message handling systems in use at that time.

The SMS concept was developed in the Franco-German

GSM cooperation in 1984 by Friedhelm Hillebrand and

Bernard Ghillebaert. Since telephony was identified as the

major application used those days, GSM was optimised for

the same. SMS has been implemented by using this

telephone-optimized system, to transport text messages

when no telephony signals existed. Initially the length of

messages has been limited to 128 bytes and later enhanced

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 387

to 160 seven-bit characters so that the messages could fit

into the existing signalling formats. Based on observations

and on analysis of the typical lengths of postcard and Telex

messages, 160 characters were enough to express most of

the messages concisely. (Hillebrand).

The Global Service for Mobile communications (GSM), has

several security vulnerabilities. In the GSM, only the airway

traffic between the Mobile Station (MS) and the Base

Transceiver Station (BTS) is optionally encrypted with a

weak and broken stream cipher (A5/1 or A5/2). The

validation is unilateral and susceptible. Such vulnerabilities

are inherent to SMS. In addition to these, SMS messaging

has some extra security vulnerabilities due to its store-and-

forward feature, and the problem of fake SMS can be

possible by exploring these vulnerabilities.

As the use of smart phones is on the rise, the same being

used as a tool to commit crime or store data related to an act

or manipulate the data stored to have a wrongful advantage.

It is to be accepted, today whenever a crime is reported the

Investigating agencies first piece of evidence gathering is

starting at a mobile phone. The investigation starts by

collecting the Call Logs/CDRs, Phone Book and SMS

Messages from the service provider and from the phone

itself. In many investigations the SMS messages retrieved

from the phone play vital role in resolving the cases.

In old days phones, as the internal memory is limited the

amount of space allocated for the storage of SMS messages

is also limited and the file system to maintain these

messages is also native to the Operating System of the

phone. The arrangement of SMS messages is mainly on

random indexing concept. The vulnerabilities associated

with the SMS messages is primarily network based.

Sometimes the SMS messages can be manipulated by

framing the desired sender or receiver or text with the help

of third-party tools. Authenticating the SMS messages in

these cases is very difficult as the storage sequence or

ordering of the SMS messages is random in nature.

Currently the SMS messages in the most modern mobile

phones are maintained in the SQLite format. The storage of

the SMS messages in the SQLite makes the arrangement of

SMS messages well defined by the database principles of the

SQLite. This gives the advantage of maintaining, migrating,

indexing, logging of the activities within the database

flexible across various mobile operating systems.

This forensic analysis of the SMS text messages in SQLite

format can give an investigator to identify the offline

manipulations if any performed with the Text messages. In

the current case the forensic analysis of the sms.db retrieved

from the backup of an iPhone reveals that the failure of the

authenticity of the SMS text messages parsed.

III. METHODOLOGY

In the present case an iPhone 4S with Model No. A1387

running iOS version 7.0 was referred for verifying the SMS

messages for their veracity. The backup of the iPhone was

taken with the help of iTunes version 11.3 on a system

running Microsoft Windows Vista Home Premium

Operating System.

The backed-up data is stored in a preconfigured folder for

each of the operating systems. In the current case as the

operating system is Microsoft Windows Vista the location of

the backup file is as follows:

\Users\(username)\AppData\Roaming\AppleComputer\Mo

bileSync\Backup\

The UDID (Unique device ID – 40 hexadecimal characters

long) of the backup folder is as follows:

9ef1112a27bf1313b38faf188c42fede0214c52e
The above iTunes backup folder contains hundreds of files

which are not in readable format and are uniquely named

with a 40-digit alphanumeric hex value without any file

extension.

 Example:

 0b11910eaa43489d869902c3081301cde166472c

The screen shot showing the portion of the backup folder is

shown at Fig. 01.

Fig. 01: Contents of the iTunes Backup folder

These files contain copy of everything on the iPhone under

analysis including contacts, SMS Text Messages, photos,

calendar, music, call logs, configuration files, database files,

keychain, network settings, offline web application cache,

safari bookmarks, cookies and application data, etc. It also

contains the device details like serial number, UDID, SIM

hardware number and the phone number.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 388

The files found in the above backup directory can be

classified into five categories:

• SQLite3 database files

• Plain text plist files

• Binary plist files

• Multimedia and text files

• Non-standard data files

The SQLite3 database files store a single database each in

SQLite3 format. Each database can contain an arbitrary

number of tables.

The plain text plist files are Extensible Markup Language

(XML)-like text files.

Their binary counterparts are XML-like files stored in binary

format which can be easily converted back to a plain text

format with the Mac OS X plutil utility.

In addition to the files described above, the backup directory

contains five more standard files, called meta files with a

fixed name

 Info.plist,

 Manifest.plist,

 Status.plist,

 Manifest.mbdb and

A. Info.plist:
This is property list file containing the device details like

device name, build version, IMEI, phone number, last

backup date, product version, product type, serial number,

sync settings and a list of application names that were

installed on the device, etc.

B. Manifest.plist:
This is property list file containing the third-party

application bundle details, Backup Keybag, a flag to identify

the passcode protected devices (WasPasscodeSet) and a flag

to identify the encrypted backup (IsEncrypted), etc.

C. Status.plist:
This is property list file containing the details about the

backup. It includes backup state, a flag to identify the full

backup (IsFullBackup), date and version, etc.

D. Manifest.mbdb:
This binary file contains information about all other files in

the backup along with the file sizes and file system structure

data.

In older version of iTunes, the backup file structure is

managed by Manifest.mbdb and Manifest.mbdx. The

Manifest.mbdx file acts as an index file for the backup and

indexes the elements that will be found in Manifest.mbdb.

From iTunes 10, index file (mbdx) is eliminated and the

backup is managed by a single mbdb file.

The iPhone stores a lot of user data in the backup files. Each

of the 40 digit hex file name shown in Fig. 01 is the SHA1

hash value of the file path appended to the respective

domain name with a ‘-‘ symbol. So, the hash of

DomainName-file path will match to the correct file in the

backup. In the backup folder of iTunes applications and

inside data are classified into 12 domains (11 system

domains and one application domain). iTunes stores/reads

the domain names and path names from Meta files i.e.,

Info.plist, Manifest.plist, Status.plist and Manifest.mbdb.

The categorization of backup files is described by their

domain. The domain for each file is written in its

corresponding record in the Manifest.mbdb file. Each file

has a domain name chosen from the following list:

• Application domain.

• Home domain.

• Keychain domain.

• Managed Preferences domain.

• Media domain.

• Mobile Device domain.

• Root domain.

• System Preferences domain.

• Wireless domain.

The application domain will contain number of sub domains

each related to the specific application installed in the

iPhone. The sub domain is further divided in to directories

with standard and similar structure across various

applications.

In file with 40 digit hex file name

3d0d7e5fb2ce288813306e4d4636395e047a3d28 (It may be

noted that the file with this 40 digit hex name in any

iTunes backup folder always contains data of SMS

messages) in the backup folder with UDID (Unique device

ID) 9ef1112a27bf1313b38faf188c42fede0214c52e has the

data related to SMS messages, to be analysed for their

veracity in the current case, in one of the directories of the

sub domain library of home domain as shown in Fig. 02.

Fig. 02: Directories under the sub domain library

The SMS database sms.db contains a series of tables that

store different pieces of data. These tables have relationships

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 389

through which the SMS messages or conversations are made

up.

The screenshot of various tables in the sms.db file are shown

in Fig. 03.

Fig. 03: List of tables in sms.db

Each table shown in the Fig. 03 have specific columns, and

the tables are interconnected to each other in a specific

structural relationship to form the complete database. The

description of these tables as to what and how the different

pieces of data related to SMS messages in an iPhone is

arranged is described below:

E. Message Table:
This is the main table where all the messages are stored. The

message table contains the content of each SMS message as

well as details of the sender or recipient, the message thread

that the message belongs to, and the status of the message.

The portion of the screen shot of the message table is shown

in Fig. 04.

Fig. 04: Portion of the table MESSAGE

The details of the various fields in the Message Table and

their details are given in Table 01.

Table 01: Fields in Message Table

Field Name Type Value / description

ROWID Integer

Primary

Key

Autoincr

ement

Primary key

address Text Null or a name or a phone number

(with or without spaces) of the other

person (sent to or received from)

date Integer Message date

text Text Message content

flags Integer Unknown, possible values: 0, 2, 3, 5,

35, 16387. Probably a bit-set. The

value 35 was set in a SMS that

couldn't get sent out and is still

marked with a red exclamation mark

letting you send it again.

replace Integer Unknown, possible values: 0, 1, 2

svc_center Text Null

group_id Integer 0 or foreign key to msg_group.rowid

association_id Integer Often 0, but sometimes a copy of the

date field

height Integer Always 0

UIFlags Integer Unknown, possible values: 0, 4, 5, 6,

7

version Integer Always 0

subject Text The subject of an imessage/mms-

message, or null if it's a sms or if

subject is not used on a

imessage/mms-message

country Text Null or an iso country code (eg: 'in'

for india)

headers Blob Always NULL

recipients Blob Normally null, one entry had an xml

value in it

read Integer 0 or 1 (assume 0 = unread and 1 is

read though madrid messages are

always 0 so it probably doesn't apply

to them)

madrid_attrib

utedBody

Blob Blob, content unknown. The only

strings in it are "jfif" and "exif", so

this is probably meta-data.

madrid_handl

e

Text Null if not an imessage or a phone

number of the other person (sender or

receiver)

madrid_versi

on

Integer Null if pre-ios 5.0 or 0

madrid_guid Text Guid (unique to the message) or null

if not an imessage

madrid_type Integer 0 or null if pre-ios 5.0

madrid_room

name

Text Null

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 390

madrid_servic

e

Text 'Madrid' or null if not an imessage

madrid_accou

nt

Text Null if not an imessage or 'p:' & own

phone number or 'e:' & email

registered for imessage

madrid_flags Integer Message type. Known values: null (if

not an imessage), 12289 (received),

32773 (send error), 36869 (sent),

45061 (sent), 77825 (received

message containing parsed data eg:

phone, email, website), 102405 (sent

message containing parsed data eg:

phone, email, website)

madrid_attach

mentInfo

Blob Null or blob. The blob contains these

strings: streamtyped, nsmutablearray,

nsarray, nsobject, nsmutablestring,

nsstring, and a guid. Format

unknown.

madrid_url Text Always an empty string

madrid_error Integer Empty string if message is pre-ios 5.0

or 0 if after

is_madrid Integer Specifies if it's an imessage or not,

value 0 or 1 (0=sms/mms,

1=imessage)

madrid_date_

read

Integer Null if message is pre-ios 5.0, 0 if

sms or a sent imessage, integer value

representing the date read

madrid_date_

delivered

Integer Null if message is pre-ios 5.0, 0 if

sms or a received imessage, integer

value representing the date sent

madrid_accou

nt_guid

Text Guid of account used (multiple

entries may be found representing

either the phone or email registered

with imessage) or empty if not an

imessage

F. Attachment Table:

This table contains the details of the message attachment, if

the message is an MMS (Multi Media Service) and provides

details of type of content i.e., image, audio, video, where the

images are backed up to, MIME type, file size, etc., and

whether is an incoming or outgoing etc., The portion of the

screen shot of the table is given at Fig. 05.

Fig. 05: Portion of the table ATTACHMENT

The details of the various fields in the Attachment Table and

their details are given in Table 02.

Table 02: Fields in Attachment Table

Field Name Type Value / Description

RowId Integer

primary key

autoincrement

Primary key

Attachment_guid Text Guid - this matches the

subfolder name in the

folder attachments

Created_date Integer Unsigned integer value with

the creation date

Start_date Integer 0

Filename Text Complete filename (with

path)

Uti_type Text 'Public.jpeg' or 'public.vcard'

Mime_type Text 'Image/jpeg' or 'text/vcard'

Transfer_state Integer 5

Is_incoming Integer 0

Message_id Integer -1

G. SQLITE_SEQUENCE Table:
This table contains the details of increment in various fields

and gets autoincremented as and when any new entry is

added to the message table. The screen shot of the table is

shown in Fig. 06.

Fig. 06: Portion of the table SQLITE_SEQUENCE

H. CHAT_MESSAGE_JOIN Table:

This table links the ROW IDs of chats and the messages

inside them. The portion of the screen shot of the table is

given at Fig. 07.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 391

Fig. 07: Portion of the table CHAT_MESSAGE_JOIN

The description of the fields in the above table is as below:

 chat_id the id of the chat

 message_id the id of the message that is part of

the chat

I. SQLITE_STAT1 Table:

This table is used to store statistical information about the

tables and indexes analysed. The portion of the screen shot

of the table is given at Fig. 08.

Fig. 08: Portion of the table SQLITE_STAT1

The description of the fields in the above table is as below:

Column

Name

Description

tbl The table name that was analysed.

idx The name of the index that was analysed.

stat Information about the table and indexes analysed

that will be later used by the query optimizer.

J. CHAT Table:

This table is used to store the details of message

conversations. The portion of the screen shot of the table is

given at Fig. 09.

Fig. 09: Portion of the table CHAT

The description of the various fields in this table are as

below:

Field Name Type Value / Description

Rowid Integer

Primary Key

Autoincrement

Primary key

Style Integer Only known value is 45

State Integer Only known value is 3

Account_Id Text Guid Of the Imessage Account

You Used

Properties Blob Null for the second row or a

bplist (see below)

Chat_Identifier Text Phone number of the other

person in international format,

no spaces

Service_Name Text 'Madrid'

Guid Text Same as chat_identifier, but

with a '-' in front of it

Room_Name Text Null

Account_Login Text 'P:' & own phone number or

'e:' & email registered for

imessage

Participants Blob Bplist

K. _SQLITEDATABASEPROPERTIES Table:
A list of nine properties of the database such as the client

version and GUID. This table is used to store the

configuration details. The portion of the screen shot of the

table is given at Fig. 10.

Fig. 10: Portion of the

table_SQLITEDATABASEPROPERTIES

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 392

The description of some of the fields in the above table are

as follows:

 counter_out_all: 946 - counts the number of outgoing

messages (since last counter reset)

 counter_out_lifetime: 946 - counts the number of

outgoing messages (since forever, isn't affected by a

counter reset)

 counter_in_all: 1971 - counts the number of incoming

messages (since last counter reset)

 counter_in_lifetime: 1971 - counts the number of

incoming messages (since forever, isn't affected by a

counter reset)

L. MESSAGE_ATTACHMENT_JOIN Table:

This table contains two columns, the message_id column

and the attachment_id column, which correspond to the

ROWID column of the message table. This will join the

messages to their attachments if any via ROWID

relationship. The screenshot of the table is given at Fig. 11.

Fig. 11: Portion of the table

MESSAGE_ATTACHMENT_JOIN

All the above tables in the sms.db file are related as shown

in the Fig. 12.

Fig. 12: Relational diagram of tables in sms.db

IV. TEST METHODOLOGY

The above iTunes backup folder has been analysed with the

help of the Mobile Phone Forensic Tool Oxygen Forensic

Suit 2014 Version 6.2.1.103. Also, iPhone Analyser Version

2.1.70 downloaded from crypticbit.com, DB Browser for

SQLite and SQL Parse GUI have been used in the test

analysis process.

For testing the integrity of the SMS messages with in the

sms.db file retrieved we have focused our analysis on the

content of the message table.

The control that could be providing the evidence to identify

a manipulation of SMS database is the message sequencing.

When a new message is sent or received, it is inserted at the

end of the message table as a new record. In doing so the

message receives a new ROW ID value in sequential order.

In doing so the date and time values as well as the ROW ID

values increment as one moves through the messages table

from the earliest to the newest messages.

In the event a message or messages are inserted manually by

using third party utilities, it is possible that the chronological

sequence of the message dates and time values with that of

the ROW IDs will be out of sequence.

The other controls that could provide evidence of

manipulation are verifying the trigger for message count. If

the trigger is active and updates the value in the

newest_message field to reflect the message id for the

inserted message. It should have the highest message id

value for each group listed in the msg_group table. If there is

any mismatch is an indication that a message or messages

are being inserted. But in the current scenario the msg_group

table is not present indicating no existence of group

conversation in the current case.

As such in the current case we have relied on analysing the

SMS messages in the message table by arranging them in the

sequence of ROW ID and study if any anomaly in the date

and time, which indicate the tampering in the database.

V. RESULTS

Fig. 13 shows the portion of the SMS messages retrieved by

using the Mobile Phone Forensic Tool Oxygen Forensic Suit

2014 Version 6.2.1.103. From the figure, it is evident that

the parsed SMS messages does not indicate specifically any

information related to their authenticity.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 393

Fig. 13: Portion of SMS Messages in the retrieved messages

table of sms.db file

As such, the message table of the sms.db has been exported

as .csv file. By keeping the values in the ROW ID column

arranged sequentially in the increasing order, the date (Prior

to iOS 5, all text messages in sms.db were stored with a

Unix Epoch time stamp, i.e., number of seconds since

January 1, 1970. Since the release of iOS 5, standard SMS

messages are still stored with a Unix Epoch time stamp;

however, iMessages are stored with a different timestamp:

Mac Epoch, or the number of seconds since January 1,

2001 and from iOS 6 onwards irrespective of whether the

service is SMS or iMessage the date values are stored with

Mac Epoch time stamp, or the number of seconds since

January 1, 2001) converted to IST (Indian Standard

Time), by applying conversion factor of seconds since

January 1, 2001, field has been studied for any oddity. It has

been observed incongruities at various places, that the date

of receipt/sending is not in the sequentially ascending order

with ROW ID as shown in the Fig. 14 and Fig. 15.

Fig. 14: Screen shot showing the oddity in the SMS

messages

Fig. 15: Screen shot showing the oddity in the SMS

messages

 Page 1 of 2

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 394

It is to be noted that for manipulating the SMS messages in

an iPhone directly in the phone itself requires a process

called jailbreaking, which facilitates access to various

internal memory resources of the iPhone with out any

restrictions. Alternatively, it can be achieved by way of

backup of iPhone data through iTunes application software

and performing required manipulations to the SMS messages

and restoring the modified backup to the iPhone. Further,

while manipulated SMS database is reinserted into the

iTunes backup, various control vales with in the iTunes

backup needs to be adjusted to reflect that the modified SMS

database has been inserted. Failure to do so will restrict the

restoration of the backup to iPhone. The adjustment of the

control values with in the iTunes backup for the manipulated

SMS database is a tedious and tricky process and manually

doing the same is a jargon. But the same can be tackled in a

lucid manner with the help of third-party applications. In

the present case it has been observed that the iPhone is not

jailbroken. As such it can be concluded that for

manipulating the SMS messages the alternative method

discussed above might has been adopted.

VI. CONCLUSION

Aforesaid manual interpretation procedure will greatly help

the forensic examiners in understanding the sms.db file to

find out whether any messages have been manually inserted

or otherwise in iPhone devices by using third party utilities

or by jailbreaking the iPhone devices in verifying and

proving the veracity of the SMS messages, where most of

the third-party commercial forensic toolkits will not be able

to highlight these anomalies.

VII. Acknowledgments

The authors are very thankful to Shri. Surya Prasad

Yanamandra, Head of Computer Forensic Unit, Central

Forensic Science Laboratory, Hyderabad for his valuable

guidance and also to Shri. Venkata Ramana Potturi for his

support in this manuscript drafting, scrutiny and

grammatical corrections.

REFERENCES

[1] Practical Investigations of Digital Forensics Tools for Mobile

Devices by Maynard Yates II, M.S. Florida Agricultural and

Mechanical University Department of Computer and Information

Sciences Technical Building A, Room 211 Tallahassee, FL

32307-5100 Maynard1.yates@famu.edu retrieved December

2018.

[2] Barrios, Rita M. and Lehrfeld, Michael R., "Ios Mobile Device

Forensics: Initial Analysis" (2011). Annual ADFSL Conference

on Digital Forensics, Security and Law. 4.

http://commons.erau.edu/adfsl/2011/friday/4 December 2018

[3] Hoene, Thomas & Creutzburg, Reiner. (2011). iPhone forensics: a

practical overview with certain commercial software.

10.1117/12.884589. December 2018.

[4] Cheema, Ahmad & Iqbal, Waseem & Ali, Waqas. (2014). An

Open Source Toolkit for iOS Filesystem Forensics. 10.1007/978-

3-662-44952-3_15. December 2018.

[5] Forensic Analysis on iOS Devices Author: Tim Proffitt,

tim@timproffitt.com https://www.sans.org/reading-

room/whitepapers/forensics/forensic-analysis-ios-devices-34092

December 2018.

[6] iPhone and iOS Forensics: Investigation, Analysis and Mobile

Security for Apple iPhone, iPad and iOS Devices by Andrew

HoogKatie Strzempka.

[7] Bader, M., & Baggili, I. (2010). iPhone 3GS forensics: logical

analysis using apple itunes backup utility. Small scale digital

device forensics journal, 4(1), 1-15 January 2019.

[8] SQLite Wikipedia article. URL

https://en.wikipedia.org/wiki/SQLite January 2019.

[9] How to back up your iPhone, iPad, and iPod touch URL

https://support.apple.com/en-in/HT203977 January 2019.

[10] Parsing the iPhone SMS Database article. URL

https://linuxsleuthing.blogspot.com/2011/02/parsing-iphone-sms-

database.html January 2019.

[11] Wikipedia article. URL

https://www.theiphonewiki.com/wiki/Messages#msg_group

January 2019.

[12] https://smarterforensics.com/2014/09/sqlite-parser-theres-a-new-

gui/ January 2019.

[13] https://smarterforensics.com/2017/09/time-is-not-on-our-side-

when-it-comes-to-messages-in-ios-11/ visited on 19/01/2019.

[14] https://linuxsleuthing.blogspot.com/2012/10/whos-texting-ios6-

smsdb.html visited on 19/01/2019.

[15] https://www.codeproject.com/Articles/833535/Accessing-Backed-

Up-iPhone-SMS-Messages visited on 19/01/2019.

[16] https://blog.jverkamp.com/2015/01/27/ios-backups-in-racket-

messages/ visited on 19/01/2019.

[17] http://mrdreigon.com/ios6-sms-database-investigation/ visited on

19/01/2019.

[18] https://www.vivekmchawla.com/2013/04/erd-crows-foot-

relationship-symbols-quick-reference.html/ visited on 19/01/2019.

[19] Forensic investigations of Apple’s iPhone by Mats Engman, 2013.

https://www.diva-

 Page 1 of 1

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 395

portal.org/smash/get/diva2:651693/fulltext01.pdf retreived

January 2019.

[20] Smartphone Forensics Analysis: A Case Study by Mubarak Al-

Hadadi and Ali AlShidhani International Journal of Computer and

Electrical Engineering, Vol. 5, No. 6, December 2013. January

2019.

Authors Profile

Mr. Eswara Sai Prasad Chunduru pursed
Master of Science in Physical Chemistry from
Andhra University, Vishakhapatanam, Andhra
Pradesh, India in 1996 and Master of Science
in Information Tehnology from Nagarjuna
Univerity, Guntur, Andhra Pradesh, India in
2017. He has completed his Postgraduate
Diploma in Chemical Analysis and Quality
Managewment from University of Hyderabad.
He is a Information Security Management System Lead Auditor
from BSI Management Systems, AccessData Certified Computer
Forensic Examiner, Certified ProDiscover Computer Forensic
Examiner, Certified Cyber Forenisc Examiner from C-DAC,
Trivandrum, Certified Computer Hacking Forensic Investigator
Version 8 from EC-Council, Certified e-Suraksha Proffesional
from C-DAC, Hyderabad. He is currently working as Scientist B in
Computer Forensic Unit of Centra Forensic Science Laboraotry,
Directorate of Forensic Science Services, Government of India,
Hyderabad. During his tenure he has analysed more than 1500
cybercrime cases referred by various investigation agencies and
provided reports. His main research work focuses on Windows
Forensics, Mobile Phone Forensics and Registry Foreniscs. He has
20 years of rich experience in dealing with various types of
cybercrime related issues. He has 03 years of teachning experience.

Mr. Krishna Mangarai pursed Master of

Science in Chemistry from Osmania

University in 1987. He has his M. Tech (IT)

from Ahnadabad Agricultural University. He

is a GCIH - GIAC Certified Incident Handler

from SANS, USA. He is a Certified

ProDiscover Computer Forensic Examiner,

Certified Computer Hacking Forensic

Investigator Version 8 from EC-Council,

Certified e-Suraksha Proffesional from C-DAC, Hyderabad. He is

currently working as Assistant Director/Scientist C in Computer

Forensic Unit of Centra Forensic Science Laboraotry, Directorate

of Forensic Science Services, Government of India, Hyderabad.

During his tenure he has analysed more than 1750 cybercrime cases

referred by various investigation agencies and provided reports. His

main research work focuses on Windows Forensics, Mobile Phone

Forensics and Registry Foreniscs. He has more than 20 years of

rich experience in dealing with various types of cybercrime related

issues.

Mr. Subrahmani Babu pursed Master of
Information Technology M.Sc[IT] at
Alagappa University, Karaikudi, Tamilnadu,
India in 2002 and Master of Philosophy in
Computer Science M.Phil [Computer
Science] at Bharathidasan University, Trichy,
Tamilnadu, India in the year 2004. He is a
GCFA - GIAC Certified Forensic Analyst
from SANS, USA. He is currently working
with Deloitte Shared Services as Manager in cyber security and
digital forensics investigation, Pentest, CASB, DL, eDiscovery and
Vulnerability management systems since 2018. Prior to this he
worked with Mphasis, Bangalore as Global Head in Digital

Forensics Investigation and E-Discovery as part of Chief Risk
Office and as Digital Forensic Scientist, Scientist C in Cyber
Forensics Division, Indian Computer Emergency Response Team
(CERT-In) from August 2008 to March 2016. During his tenure at
these organisations he has analysed various cybercrime cases of
national and international importance. His main research work
focuses on Cryptography Algorithms, Network Security, Cloud
Security and Privacy, Big Data Analytics, Data Mining, IoT. He
has 14 years of rich experience in dealing with various types of
cybercrime related issues.

Mr. Manohar Bhushan Pathak pursed his
Master degree in Chemistry from MJPRU,
Barelly, Uttar Pradesh, India. He got training in
the field of Cyber Forensics from NICFS, C-
DAC. He is currently working as Assistant
Central Intelligence Officer Grade I with
Central Forenasic Science Laboratory,
Directorate of Forensic Science Services,
Hyderabad science 2010. During his tenure he
has involved in conducting forensic analysis of various impotant
cases. He has 09 years of rich experience in dealing with various
types of cybercrime related issues.

