
 © 2019, IJCSE All Rights Reserved 41

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-7, Issue-6, June 2019 E-ISSN: 2347-2693

A Study on Race Condition & Dynamic Data Race Detection Techniques

Mithilesh Kumar Dubey
1
, Devesh Lowe

2*
,

Bhavna Galhotra

3

1
Lovely Professional University, Punjab, India

2,3
Jagan Institute of Management Studies, Rohini, New Delhi, India

Corresponding Author:devesh.lowe@jimsindia.org Tel.: 9810571097

DOI: https://doi.org/10.26438/ijcse/v7i6.4146 | Available online at: www.ijcseonline.org

Accepted: 14/Jun/2019, Published: 30/Jun/2019

Abstract: Multithreaded programming has always presented a problem of race conditions which is one of the most common

programming errors. If not handled properly, can lead to bugs with the potential to crash a system. A lot of work has been done

in the past for detection of data races with a view to minimise the losses. Datarace can be detected at compile time (static race

detection) and at runtime (dynamic race detection). This paper presents a study to understand the concept of parallel

programming, race condition, semaphore, synchronization. We have also put in a detailed view on various techniques

developed so far for dynamic data race detection.

Keywords: Parallel Processing, Race Condition, Semaphore, LockSet, Happens Before, Hybrid, Dynamic Data Race Detection

I. INTRODUCTION

With the increasing volume of processes and transactions on

computing machines, there was an ever need to increase

power and speed of our devices. The transition from

sequential programming to parallel processing was slow but

effective. This lead to growth of more operating systems and

programming languages which support threads. Threads are

lightweight and can be executed concurrently but leave a

huge drawback that can be sometimes difficult to debug. It is

evident that programming errors are frequent in large

concurrent systems. Errors like deadlocks, starvation and

race conditions have always been an area of concern for

programmers and researchers working with multi-threaded

programs. Simple errors in synchronized code may lead to

race conditions which may turn out to be nightmare for

programmers. We have included a discussion on parallel

processing and Race condition in section 2 of this paper.

There have been significant work done in area of race

detection and synchronization. Race detection algorithms

can be categorized in two broad areas as Static and

Dynamic. Static approaches analyse the program source,

while dynamic approaches analyse a trace or abstract-state

representation generated by executing a program [1]. Data

races can result in segmentation fault and deformation of

data, therefore it is important to trace these data races by

using any of the detection strategies. Some researchers

classify race detection techniques in three categories as

static, on-the-fly and post-mortem [2]. As per some

researchers’ view, algorithms that processes the programs

event in parallel to execution are termed as on-the-fly

detectors. Whereas writing event details in text files for a

later review is called post-mortem strategy. Generally

detecting race conditions statically is more demanding and

requires overhead. There are different views presented for

static race detection like of Flanagan [3], Boyapati et al. [4],

Bacon et al. [5] etc. Static tools yield high coverage of

shared resources by tracking all the possible situations of

data races that might occur. Main benefit of static

approaches is that they are highly efficient due to very

limited runtime overhead. But they can be highly inefficient

due to precision factor. Static approaches face a problem of

high level of false positives and inefficiency due to scanning

whole program. Precision of results is the area where most

of Dynamic Data Race Detection algorithms score over

static algorithms. Dynamic data race detection algorithms

generate very few to no false positives. But they also face

the problem of extra overhead and limited coverage of code.

Most techniques are based on lockset based algorithms or

happens before relations. We have included a discussion on

crux of most of the Dynamic Detection techniques in section

3 of this paper. Our goal is to identify and present the work

done by researchers in this field and prepare a detailed

account of comparison on algorithms based on Happens

before, Lockset or both.

II. PARALLEL PROGRAMMING & RACE

CONDITION

In multi programming Operating Systems many process stay

in main memory. OS is like resource manager which

allocates shared resources to processes. Shared resources

means that it is not personal resource to any process, all

processes need to access it in a systematic manner. For e.g.

printer is a sharable resource but it has to be used in non-

sharable fashion i.e. mutually exclusive manner. We need a

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 42

policy or scheme so as to decide about how to use a shared

resource. Let’s consider an example case: In a program, a

variable ‘a’ is assigned a value 10. Two processes p1 and p2

are using this shared variable ‘a’. Let code of process as

follows:

void p() {

read a;

a=a+1;

store a;

}

Figure 1: sample Code 1

Scenario 1: Let p1 and p2 both execute in a synchronized

fashion i.e. first p1 executes and makes value of a as 11.

Then p2 executes and makes value of a as 12. So final values

of shared resource a is 12 which is universal now.

Scenario 2: Let’s take another situation in which same two

processes are executing but simultaneously i.e. process p1

starts, reads value of ‘a’ as 10, then context switch happens

and control is transferred to p2 which reads value of ‘a’ as

10, makes it 11 and stores it back then exits. Now control is

again transferred to p1 which starts from the point where it

left i.e. it has value of ‘a’ as 10, it increments it makes it 11

and stores it back. Final value of shared variable ‘a’ is 11.

In first situation final value was 12 and in second situation

final value was 11. This kind of problem is called as ‘race

condition’.

A. Race Condition

Race Condition commonly means that in case of shared

resources, output changes if we change the order of

execution of simultaneous processes. Or as defined by

Savage et. al. [6] it is a situation which occurs when a

common shared variable is accessed by two concurrent

threads when at least one access is write, and no specific

mechanism is used to synchronize access of shared space.

When a process executes, there are different areas where it

access its private and shared resources. Area where a process

executes shared resources is called Critical Section. We

observe that if two processes are accessing shared resource

in systematic manner then they will not create a race

condition. Problem (race condition) arises when they both

access shared resource at the same time.

A Sample scenario on Race Condition: Let’s observe the

processes below, and try to find the total number of different

results with value of B that can possibly come if both

following codes (sample code 2) execute under race

condition when B is a shared variable with initial value 2.

P1()

{

 C=B-

1;…………………1

 B=2*C; ……………….2

}

P2()

{

 D=2*B;

…………………….3

 B=D-1;

……………………..4

}

Figure 2 Sample code 2

Above example will lead to 6 different permutations of

statement execution with 3 different types of output.

Following are 6 different cases of statement execution

{1234, 3412, 1342, 3124, 1324, 3142} with output values of

B as 3,4,2,3,2,2 respectively i.e. 3 different solutions just by

changing the execution sequence of statements. In the above

example, since both the processes are under execution in

concurrent manner and both have write permission without

mutual exclusion, this develops into a race condition giving

three different types of outcomes.

B. Critical Section

It is that part of the code where process access shared

resources. If a process tries to access critical section then it

should not make our system inconsistent. There are a

number of solutions possible for critical section problem like

semaphore, Peterson’s solution etc. Every solution is judged

on the basis of three criteria namely Mutual Exclusion,

Progress and Bounded Wait. First two are mandatory criteria

which every solution to critical section problem must satisfy.

Third criteria of Bonded Wait is though not mandatory but is

desirable.

o Mutual Exclusion: (Mandatory Criteria) critical section

must be accessed by one process at a time. i.e. in a

mutual exclusive manner.

o Progress: (Mandatory Criteria) this clause specifies that

only those processes which need to access the critical

section, must be the processes in the race to access it.

This eliminates the processes which do not want to

access critical section. Effect of this clause is that the

simplest method of ‘Round Robin’ is automatically

eliminated since it will enforce all the processes to

enter critical section according to their turn. If we do

not enforce this clause then program logic will work

but it will not be an efficient program since we are

involving those processes in the race which do not need

to. Similarly all the processes which are interested in

accessing critical section should be given a fair chance.

o Bounded Wait: (Not mandatory but advisable)

sometimes when processes are waiting in queue

according to mutual exclusion, then they may end-up in

a very long wait or starvation. So we can enforce this

bounded wait option which makes sure that every

process has access to resources after a particular time

frame. But this criteria is not easy to maintain so it is

advisable not mandatory.

o

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 43

C. Solutions to critical section problem

a) Two process solution with mutual exclusion: - Though

in reality we need to perform n process solution, but let us

understand two process solution first. In the following

example code 3, we have two processes. P1 and P2 both

running for infinite times.

P1 P2

While(1)

{

 While(! flag=0);

 Critical section;

 Flag=0;

}

While(1)

{

 While(! flag=1);

 Critical section;

 Flag=1;

}

Figure 3 Sample Code

We have used a global variable flag which varies between

0 and 1, and the process to enter critical section is decided

by value of flag. P1 commences but faces a loop which

goes infinitely if flag is 0. This means P1 will move to

critical section only when it exits this loop which requires

flag to be 0. Before exiting P1 sets value of flag to 1. P2

requires flag value to be 1 only then it will enter critical

section. Here we also see that one process can context

switch another process even in critical section but it will be

of no use since other process was pre-empted so it will not

change value of flag. Certainly it will not allow other

process to enter critical section. Hence we can say that

here both the processes are mutually exclusive which

means it satisfies the first condition of mutual exclusion.

But this solution does not satisfy the ‘progress’ criterion

since we are following a strict alternation approach like

round robin. What if p2 does not need to enter critical

section, we are still forcing P2 to enter critical section. If

p1 wants to enter critical section again, it has to wait for P2

to first enter CS, exit successfully change the value of flag

and allow P1 to enter CS. So this solution is fulfilling the

criteria of mutual exclusion but not of progression.

b) Two process solution with mutual exclusion and

Progress: In the following example we can see that both

the processes P1 and P2 are alternating but at the same

time maintaining their own flags which indicate not only

which process is inside critical section, but also their intent

to enter the critical section. To implement this, we

maintain an array of flags as flag [0] and flag [1] for both

processes respectively.

P1 P2

While(1)

{

flag[0]=T

While(flag[1]);

 Critical section;

 Flag[0]=F;

}

While(1)

{

Flag[1]=T

While(Flag[0]);

 Critical section;

 Flag[1]=F;

}

Figure 4: Sample code 4

Interesting thing is that both the processes are mutually

exclusive and also they are following the system of

progress i.e. only those processes are competing which are

interested in entering critical section. Moreover if a

process which has just exited the CS and wants to enter

again, provided that other processes are not indicating to

enter CS, it can surely enter the CS repeatedly. If they set

their own flag value to true, they can enter critical section

next time.

Problem: Given a situation where P1 is executing and

immediately after statement (1), context switch happens

and now P2 wants to enter critical section. Since statement

(1) has already executed, so value of flag [0] is true which

will not allow P2 to enter critical section. Now even

though no process is in critical section, still both processes

cannot enter it since flag [0] and flag [1] are both set to

true. Hence clause of ‘progress’ fails and system moves

into a deadlock.

c) Peterson’s solution: Peterson’s solution is

implementation of observation of the previous two

methods. We will now integrate both techniques of array

of flags for processes to indicate their willingness to enter

into CS, and a turn variable to control entry of processes in

CS.

P1 P2

While(1)

{

flag[0]=T

turn=1;

While(turn==1 &&

flag[1]==T);

 Critical section;

 Flag[0]=F;

}

While(1)

{

Flag[1]=T

Turn=0;

While(turn==0 &&

Flag[0]==True);

 Critical section;

 Flag[1]=F;

}

Figure 5: Sample code 5

In this case (ref Figure 5) whenever a process enter CS it

sets turn to a value suitable to next process and checks a

suitable condition build as a combination of willingness of

other process to enter CS and their turn to enter CS. This

will not only ensure mutual exclusion but also the rule of

progression. Both the mandatory conditions ensure that if

one process is interested then it can go for multiple entries.

Also note that if both processes are interested, still they

will not be entering into a deadlock even if context switch

happens immediately after a process enters the procedure.

Also to mention that if another process shows interest in

entering the CS when first process is already in CS, it is

allowed to enter immediately after the exit of first process.

This way the third criteria of Bounded Wait is also

satisfied by Peterson’s algorithm. There is a limitation of

Peterson’s solution that it will only work efficiently for

two processes but not for n processes.

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 44

d) Semaphores: Semaphores are simple integer variables

which can give n process solution to multi-thread

application trying to access shared resources. Apart from

solving problems like critical section, semaphore can be

used to solve problems like deciding the order of execution

among processes or even resource management. A

semaphore (let semaphore be s initialized to 1) is an

integer variable which apart from initializing, is only

accessed through two standard atomic operations wait(s)

and signal(s). Wait(s) is a simple atomic operation which

reduces the value of s by 1 whereas signal(s) increments

the value of s by 1. Where signal works in simple manner

as Signal(s) {s++ ;} but wait creates a condition like

wait(s) {while(s<=0); s-- ;}. Now we can have n processes

with embedded code for wait and signal. Any process p1

when wants to enter critical section, has to call wait(s) and

when exiting CS has to call signal(s).

Process (P) {

 Wait(s)

 Critical Section

 Signal(s)

}

This ensures that value of s will be =0 whenever a process

is inside CS, making CS unavailable to other processes.

But once a process P1 moves out of CS it calls signal

which again increments value of s to 1 hence clearing way

for any other process Pn. This way semaphore satisfies

conditions of mutual exclusion and progress.

After discussing all these techniques, it is also to be noted

that detection of race condition is more important and

fruitful than handling a race condition. Many scholars and

researchers have contributed to this in form of developing

several techniques of static and dynamic race detections. In

following section we discuss all major work contributions

in this area.

III. DYNAMIC DATA RACE DETECTION

Detecting a bug in a multi-threaded program can be

difficult. A well-structured multi-threaded program, if

starts producing bugs, may take weeks to decode. A lot of

work has been done and published in the area of race

detection. Race Detection algorithms are broadly classified

in two categories i.e. Static Race Detectors and Dynamic

Race Detectors. Dynamic race detection is on-the-fly

approach where race condition is detected while execution

of the program. A major advantage of dynamic data race

detection is precision of work i.e. minimum probability of

false positives. It also has a limitation that it doesn’t cover

all aspects of the program as compared to static race

detectors. It can only detect data races while are reported

in one instance of execution. So there is always a

possibility of leaving out races undetected.

A pioneering work in field of early detection of race

condition was done by Hoare [7] when they introduced the

concept of ‘monitor’. It is a group of shared variables, and

a set of procedures that are required to access these

variables. Both of these shared variables and procedures

are packed together with a single lock which is

automatically acquired and released at entry and exit of

procedure. Monitors provide a cover to shared variables

thereby making them unavailable and inaccessible to

outside code. In other words monitors provide a compile

time guarantee that accesses to shared variables are

serialized and therefore free from data races. Monitors are

generally considered effective when race conditions are to

be detected at compile-time and all shared resources are

declared in advance. But when it comes to dynamic nature

of shared resources, more algorithms were required.

Most of the early work done in the field of Dynamic Race

Detection is done based on Lamport’s Happens before

Relations [8]. Lamport gave an algorithm for solving the

synchronization problems. However he concentrated

majorly on spatially separated computers, but the work is

appreciated for all multi-threaded applications evenly. His

algorithm presents a concept of happens before relation in

case of multiple processes based on time clocks for partial

ordering of events. Premise of this algorithm is that if two

processes happen to access a shared variable, then access is

to be granted to the one which occurred first i.e. it

happened before the other one. If events occur within a

single a single process, then they are ordered according to

their order of creation. In case of multi-threaded

application, events are ordered according to the

synchronization properties of the shared resource. Lamport

also indicated that if two processes are accessing same

resource without happens before ordering then there is a

strong possibility of a data race. Savage et. al. [6] pointed

out that though most dynamic race detectors are based on

happens before algorithm, but they have recorded

limitations. Firstly these algorithms are difficult to

implement as they need to record a huge amount of thread

specific information w.r.t. concurrent access to every

shared location. Secondly it is very much dependent on

scheduler of host system which generated interleaving

event information.

Savage et. al. [6] presented a dynamic data race detection

testing tool called ‘Eraser’ which claimed detection of

more data races than ‘happens before’. Eraser was aimed

specifically at the lock-based synchronization. It followed

a locking discipline, a programming policy, which ensured

detection of more data races. Eraser uses a lockset

refinement principle where it maintains separate set C (v)

for each shared variable v containing all the possible locks

of existing threads w.r.t. that shared variable v. As soon as

any thread tries to access or acquire lock on any variable, it

updates its set with the intersection of C (v) with the locks

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 45

held by the current thread. By this it ensures that any lock

that protects v is contained in C (v). Eraser was tested on

operating system kernels, Alta-Vista and Vesta Cache

server and showed an increase in number of detected data

races. But this method found out to be over conservative

and also produced false alarms.

Muhlenfeld and Wotawa [9] suggested reducing number of

false alarms of Eraser by user of polymorphic object

destruction. Their work with polymorphic destruction of

C++ objects reduced false alarms by 65%. Ali et al [10]

suggested adding of happens before concept to Eraser

algorithm. This resulted in reduction of number of false

positives. Working with happens before is much slower

than lockset based algorithm but when used in

combination they can produce effective results. Bannerjee

et.al. [11] Suggested more improvements over existing

algorithms to detect more data races using limited access

history.

Another key work was done by Choi et. al. [12] in their

paper published in 2002 where they focussed on improving

the performance of existing data race detection algorithms.

Authors observed that most of the existing on-the-fly race

detection algorithms either compromise on precision of

algorithms to score on reducing extra overheads, or have to

give in extra overhead just to be accurate. Problem of large

number of false positives was observed, which was an

extra burden. Choi et. al. worked on increasing the

precision of datarace detection algorithms but without

compromising on performance. Authors presented a

concept of ‘weaker than’ relationship which they used to

identify probable memory accesses which were redundant.

Robert O’Callahan and Jong-Deok Choi et al, [12]

presented a model in 2003 which combined the advantages

of both styles of dynamic data race detection i.e. lockset

based and happens-before-based techniques. In the paper

they called it Hybrid Dynamic Race Detector, which

reduced overheads as compared to previous detectors

particularly on large web servers. The algorithm was not

purely based on happens-before, and presented a two stage

approach to identify error prone program points and then

focussing on those points of instrumentation. Metzger et.

al. [13] in 2015 presented a unique approach where they

suggested to integrate a race detector with debugger. Since

it would substantially increase user work flow, authors

proposed a method to reduce the overhead by allowing the

user to define the scope of analysis. They extended the role

of happens before algorithm and gave user the option to

choose the parts of the program to check for data races.

This kind of narrow analysis presented an efficient

approach where false positives can be reduced.

Benjamin Wester et al. [14] suggested an improvement in

speed of race detection by spreading the work over

multiple cores. They used uniparallelism, to execute epoch

in parallel to provide scalability, but executing all threads

from a single epoch on a single core hence eliminated

locking overhead. They implemented this uniparallelism

strategy on two different algorithms of happen before style

and lockset based detector and achieved results which were

4X faster as compared to original algorithms. Bodden et al.

[1] presented a detection algorithm called Racer, an

extension of Eraser modelled on memory model of Java,

which was based on a language extension of AspectJ, an

aspect oriented programming language based on java.

They introduced three new point cuts as a language

extension. It still faced a challenge of false positives,

which they improved and re-implemented in 2010.

Serebryany et al. [2] presented their algorithm called

Thread Sanitizer for dynamic data race detection. Thread

Sanitizer is a hybrid algorithm which used benefits of both

happen-before and lockset. They proposed an API called

dynamic annotations which as an extension of debugger,

informs user about any synchronization errors.

K Leung et al [16] proposed a different perspective of race

prevention called View Oriented Data Race Prevention

(VODAP) to prevent data races in view oriented parallel

programing model. It is a programming model cantered

around view as a bundle of shared resources and data

access. Authors used a memory protection mechanism

available in UNIX with use of system calls such as

mprotect(). When a view is acquired from mprotect(), only

then any process is allowed to access that shared resource.

Authors used this utility to trace any segmentation fault

arising from any such asynchronous thread situation and

handle it properly using like flashing error message to

user, rather than crashing the system. Hence solving the

problem of data race.

Baris kasikci et al, [17] in 2013, presented their unique

algorithm as Race Mob which had low overhead and good

accuracy. Proposed algorithm detects potential races

statistically and dynamically traces whether they are true

positives. Implementation of Race Mob was done on ten

different systems to detect data races.

Cormac Flanagan et al, [18] in 2009, proposed an efficient

and precise algorithm called Fast-track. Authors proposed

to replace heavyweight vector clock with lightweight

alternatives to support constant space and constant time

operations. Fast-track was comparable to Eraser in terms

of speed and showed speed in order of magnitude.

IV. CONCLUSION

In modern working environment it is hard to imagine an

application which is not working on distributed system or

multiple threads. Multithreaded or concurrent programs

often show race conditions emerging as performance

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 46

hindrances. Though considerable amount of work has been

done in area of dynamic data race detection, but problem of

data race or race condition is one of the most common

problem which still persists. In this paper we presented a

study on various scholarly work done in the area of dynamic

data race detection, and we acknowledge the quality of work

done. But we also have to accept that this problem has still

not faced a permanent solution.

REFERENCES

[1] K. H. Eric Baudden, "Aspect Oriented Race Detection in Java,"

IEEE Transactions on Software Engineering, 2010.

[2] T. I. Konstantin Serebryany, "ThreadSanitizer - Data Race

Detection in Practice," Communications of ACM, 2009.

[3] S. N. F. Cormac Flanagan, "Type Based Race Detection for

Java," ACM, 2000.

[4] M. R. C Boyapati, "A prameterized type system for race free

java program," ACM, 2001.

[5] R. E. S. A. T. David F Bacon, "Guava: A Dialect of Java

without datarace," ACM, 2000.

[6] M. B. G. N. P. S. t. A. Stefan Savage, "Eraser: A Dynamic Data

Race Detector for Multithreaded Programs," ACM Transactions

on Computer Systems, vol. 15, no. 4, pp. 391-411, 1997.

[7] C. A. R. Hoare, "Monitors: An Operating Systems Structuring

Concept," Communications of ACM, vol. 17, no. 10, 1974.

[8] L. Lamport, "Time, Clocks, and the ordering of Events in a

Distributed System," Communications of ACM, vol. 21, no. 7,

1978.

[9] F. W. Arndt Muhlenfeld, "Runtime race detection for multi-

threaded C++ server applications," ACM Proceedings of the

25th conference on IASTED International Multi-Conference:

Software Engineering, 2007.

[10] K. B. V. P. W. T. Ali Janessari, "Helgrind+: An efficient

dynamic race detector," 23rd IEEE International Symposium on

Parallel and Distributed Processing, IPDPS 2009, Rome, Italy, ,

2009.

[11] Z. M. B. B. P. P. Utpal Banerjee, "A Theory of Data Race

Detection," Proceedings of the 2006 workshop on Parallel and

distributed systems: testing and debugging, 2006.

[12] K. L. A. L. R. O. V. S. M. S. Jong-Deok Choi, "Efficient and

Precise Datarace Detection for Multithreaded Object Oriented

Programs," ACM, 2002.

[13] X. T. W. T. Markus Metzger, "User Guided Dynamic Data Race

Detection," International journal of Parallel Programming,

2015.

[14] D. D. P. M. C. J. F. S. N. Benjamin Wester, "Parallelizing Data

Race Detection," ACM, 2013.

[15] T. I. Konstantin Serebryany, "ThreadSanitizer: data race

detection in practice," ACM, 2009.

[16] Z. Q. P. W. K Leung, "Data Race: tame the beast," Springer J

Supercomput, 2010.

[17] C. Z. G. C. Baris Kasikei, "RaceMob: Crowdsouced Data Race

Detection," ACM, 2013.

[18] S. N. F. Cormac Flanagan, "FastTrack: Efficint and Precise

Dynamic Race Detection," ACM, 2009.

[19] K. H. Eric Boden, "Racer: Effective Race Detection using

AspectJ," ACM, 2008.

Authors Profile

Mithilesh Kumar Dubey currently working as Associate

Professor in Lovely Professional University, Jalandhar

Punjab. Mithilesh does research in Computer

Communications (Networks)

Devesh Lowe is currently working as Assistant Professor

with JIMS, Sector-5 Rohini, New Delhi for past 5 years.

Before joining at this profile, he had a work experience of

10 years in IT Industry and Academia. After starting his

career in software development and Marketing for 2 year,

he switched to academia and was associated with many

colleges and universities under different profiles. He is a

keen researcher and has published various papers in field

of E-Learning, Computer Networks and cloud computing.

His current areas of research include Sentiment Analysis

and Dynamic data race detection.

Ms. Bhavna Galhotra is associated with Jagan Institute of

Management Studies as an Assistant Professor since 8

years. She is Pursing Ph.D. and completed MTECH (IT)

from USICT, GGSIPU. She has also done MCA from

GGSIPU and is a graduate from Delhi University. She has

also completed DOEACC 'O' and 'A' level Diploma’s from

Delhi University. Overall she has an experience of more

than 10 years. Her research areas are Network Security

commerce and Cloud Computing. She has published

papers in International Journals on Computer Networks,

Network Security, and Cloud Pay as per use system.

