

 © 2016, IJCSE All Rights Reserved 31

International Journal of Computer Sciences and Engineering Open Access

Review Paper Volume-4, Issue-12 E-ISSN: 2347-2693

Prediction of Bugs in Software Repositories

S. Gomathi
1

and L. Haldurai
2*

1
Department of Computer Science, Kongunadu Arts and Science College, Coimbatore, India

2*
 Department of Computer Science (PG), Kongunadu Arts and Science College, Coimbatore, India

e-mail: gomathi.selvaraj93@gmail.com, haldurai@gmail.com

Available online at: www.ijcseonline.org

Received: 21/Nov/2016 Revised: 01/Dec/2016 Accepted: 14/Dec/2016 Published: 31/Dec/2016

Abstract— Defective software modules can leads to ad hoc software failures, shoots up development & maintenance cost and result in

customer dissatisfaction. Defect mapping and awareness of its impact in different business applications paves way to improve its

quality. Previous researches show that it has treated all bugs alike. Proper Identification and categorization helps to handle and fix

bugs diligently. Evaluation of prediction techniques is mainly based on precision and recall measures. It focuses on the defects in a

software system. A prediction of the number of left-out defects in an inspected arte fact can be judiciously used for decision making.

An accurate prediction of quantum of defects during testing a software product contributes not only to manage the system testing

process but also to estimate its required maintenance. It goes a long way to improve software quality and testing efficiency by

building predictive models from code attributes to timely identification of fault-prone modules. In short, this paper provides the

prediction of bugs by using data mining techniques such as Association Mining, Classification and Clustering. This complements

developers to detect software defects and debug them. Unsupervised techniques come handy for defect prediction in software

modules, on a large scale in those cases where defect labels are not present.

Keywords- Software Defect Prediction, Bugs, Software Repositories, Data Mining, Classification, Clustering, Association Mining

I. INTRODUCTION

In recent years, there is increasingly a dramatic attention in

reporting incidences of bugs resulting out from software

applications. This is considered as an important and

invaluable source for application‟s memory. Past errors play a

pivotal role to carve future work of software applications.

This is achieved through avoidance of same type of errors or

accurately estimates the time and select good developers to

solve upcoming issues. Many studies [1] show that more than

90% of the software development cost is lavished on

maintenance and evaluation requirements. Software

applications errors are managed and maintained in bug

repositories or issue tracking systems [2].

Issue tracking system usually contains a knowledge base

on each defect such as problem description, quick fix

resolutions or impact analysis, project title, founder role,

phase detected and phase injected. It is an open

communication channel between multitude of people like end

users, programmers and testers to find out the appropriate

response about issues detected in software applications. Many

reasons for software bugs include lack of awareness in

requirements, dearth for good design in software application,

difficulty in implementing applications and insufficient

experience to code them. There can a plethora of defects types

in projects. Some defects can lead to method failure while

others can be deferred or missed such as spelling mistakes in

error message [3].

Defects are generally classified according to its impact

on the functionality in application. An adept developer is

assigned the responsibility to fix these errors with a

stipulation in time to resolve issue within. For instance,

security related issues / errors are complex in nature and

require more time and more experienced developer to fix

them which may not be required for performance related

issues [4].

During emergence of mistakes with end users funneled

via issue tracking systems, project manager will depute

coordinators to assist them to rectify the mistakes. A

Coordinator is one who selects the apt programmer and

designer to investigate a problem. Investigator are a group of

programmer / designer who find solutions to problems and

estimate time to fix it as shown in Figure 1.

Coordinators have a fair experience in assessing the

type of mistakes and assort them in precedence of importance.

In mammoth projects, there are quite a large number of

incoming defects noticed on a day-to-day basis. Coordinators

main job is to focus on criteria of finding out defects nature

and identify the correct person or action. This is really not an

easy process. Assuming the errors reception rate in a system

is 20-30 per day and the average time required to determine

defect type is 10 minutes, then coordinator may typically take

3-5 hours to estimate the right type and then select proper

destination for these defects. This above is from the

perspective of time. But from practical front, in order to

identify the defect type, coordinator have to necessarily view

source code, system design and unit test documents to judge

 *Corresponding Author: L. Haldurai

 e-mail: haldurai@gmail.com

 International Journal of Computer Sciences and Engineering Vol.-4(12), Dec 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 32

the right category of new born issues. They must also have

domain expertise about business applied in project to judge

error types. Assessment of defect nature is a manual process

and lot of time and efforts is consumed in classifying bug

types.

Figure 1. Bug Fixing Cycle [20]

II. RELATED WORK

In [5] built a model to detect defect correction effort based

on extended association rule mining. They defined defect

fixing effort as a variable and appropriate association rule

mining to treat with such variables. Data used are supported

from Japans Ministry of Economy, Trade and Industry

(METI). They use support and confidence as evaluation

factors. Their approach expressed results as a mean of

correction effort based on development level.

In [6] predicted severity of bug report using classification

model for severe and non-severe issues. They used online

summary field of bug report for prediction based on SVM,

Naive Bayes, Multinomial Nave Bayes and Nearest Neighbor

Classifiers which make better performance in results. Results

were evaluated using ROC (receiver operating characteristic)

curve [7]. Performance of Multinomial Naive Bayes was

found to be better than that of other classification algorithms.

In [8] developed an approach for predicting re-opened

defects through Eclipse projects. Their study depend upon

factors such as work habits dimension like: day which issue

is closed, the bug report features dimension like:

components, the bug correction dimension like: time needed

to fix bug.

Analyzed bugs classes according to bug life time. He

invented a model by sorting bugs with a shorter life time as a

higher priority level [9].

Mining techniques were applied [10] on the bug report

data to predict who should fix new coming bug. They used

Support Vector Machines (SVM), Naive Bayes and Decision

Trees algorithms on bug data of Bugzilla [11], Eclipse [12]

projects.

In [13] analyzed the features of different types of bugs

such as security and performance bugs to get useful

information for their behavior in terms of the bug fix time,

the number of developers assigned and the number of files

impacted. Their Results show that security bugs are more

complex, required more developers with experience, and

large number of files affected but took less fix time than

performance and other bugs. Similarly, performance bugs

need more experienced developers than the other bugs.

Another important research about bug type detection is

developed in [14] who proposed a text mining technique to

determine security bug reports (SBR) from the set of

undefined non-security bug reports (NSBR). A bug report‟s

summary and long description fields were used for training

the model. The bug data of Cisco software project was used

to train model. The classifier is evaluated using the precision,

recall and accuracy rate measures. Classifier is able to predict

with percentage (78%) of SBRs that have been manually

labeled as NSBRs. The research works on one kind of issues

that are security and compared to manual selection of

security issues.

From above discussion we did not find any related re-

search on predicting bug category except Gegick,. They deal

with security issues only that are selected manually and no

analysis found in open source data sets like Bugzilla and

Eclipse on defect category and impact analysis of bug

reports. Bugzilla does not interest in adding impact analysis

details on bug reports. Whereas Gegick‟s research select

Cisco bug repository to reach impact analysis and identify

bug classes.

III. ISSUE TRACKING SYSTEM

Issue tracking systems [15] is deployed to manage and

maintain bugs list received from different actors in

development life cycle. It works as a record for software

application characteristics. It acts as connection channel

between end users, developers, designers and testers.

Communications are established through different activities

like creating entirely new issues, reading existing issues,

adding details to existing issues, or resolving an issue. When

a user makes a change in the tracking system, all relevant

data‟s like action and who made it etc., are the recordings

which serves in maintaining a history of the actions taken.

Each user of the tracking system may have issues assigned to

him. He is responsible to find proper resolution to fix the

issue. They have the option of reassigning an issue to another

user, if needed. From security perspective, usually the

 International Journal of Computer Sciences and Engineering Vol.-4(12), Dec 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 33

tracking system authenticates its users before allowing access

to the systems. Tracking system is a knowledge base

containing information on each user, resolutions to common

problems etc. Bug report is a major constituent of issue

tracking. This is called a ticket. It is created from technical

support team, development team or testing team as a result of

an incident. By creating a ticket, a notification will be

popped up to project manager or coordinator. Ticket has

certain details about business scenario that causes

unexpected behavior from software application.

In next two sections, let us describe bug report contents and

bug life cycle.

A. Bug Report Contents

A major component of an issue tracking system is the

Bug report. This has unique information on the incidents and

a set of fields. Some fields describe incident in a natural way

without any rules while some other fields brings in a set of

predefined values. Description represents a 360 degree

definition to regenerate the issue. Severity explains the

criticality on how an issue will affect the software

application. Additionally, it also carries a range of values

such as critical / blocker, major, medium, minor and low.

Founder role represents who has found the issue. It includes

tester, end user, developer or analyst. “Phase detected” gives

information as in which phase this issue is generated. Phase

values depend upon organization development cycle that

may include requirement, design, coding, function test and

user acceptance test. “Phase Injected” represents in which

phase issue originates. And lastly, impact analysis is the one

which represents why this issue is generated and what are the

changes needed to fix it. Defect category represents how this

issue affects an application. It can be any one of a function,

standard, graphical user interface or logic related.

B. Bug Life Cycle

Issue tracking systems have different states or phases or

gates for a bug which can be best tracked through the status

assigned to it. The moment an issue report is submitted, it gets

a unique identifier by which it can be referred to in further

communications. Was the issue gets processed, the report

runs through a life cycle. The progress or the position in the

life cycle is determined by the state of the issue report.

Initially, every issue report will get a state of New Issue. The

coordinator then checks its validity and uniqueness. One

when these checks are passed / cleared, a developer / designer

will be „assigned‟. It is important to identify if the issue is

crucial to decide proper selection of developer and finding the

resolution of issue. After this, Status of the report becomes

„Assigned‟. At this point of time, the issue report is also

assigned a priority. The higher the priority, the sooner it is

going to be addressed. The developer now works on the issue;

state of issue is changed to „Under Investigation‟. If developer

finds a problem in source code, system design or application

configuration and comes up with a resolution, then the status

will be move „Resolved‟, otherwise the issues will be

„closed‟. At this stage, developer records the defect category.

As the problem is now „fixed‟, two more steps remain: the

testers must confirm the success of the fix (resulting in under

testing state). If the tester found issue is fixed, report will go

to state „Closed‟. Otherwise issue will go back to „Under

Investigation‟ state.

Figure 2. Bug Life Cycle [20]

IV. DATA MINING TECHNIQUES FOR DEFECT

PREDICTION

Data for analysis is retrieved from software repositories. It

has volumes of information that is useful in assessing the

quality of software. Data mining techniques and can be

applied on these repositories to extract the defects of a

software product.

A. Clustering

Clustering is a type of unsupervised learning in which

class labels are not provided. Clustering is the first data

mining task deployed on a collection of data records that are

grouped based on their similarity. In other words, Clustering

is the task of organizing data into groups of similar nature and

putting them into same cluster group. The groups are not

predefined and hence clustering is deployed to partition data

in a set of meaningful sub-classes. Clusters are subsets of

objects that are similar. Clustering helps end users to

understand the natural grouping or structure in a data set. Its

schemes are evaluated based on the similarity of objects

 International Journal of Computer Sciences and Engineering Vol.-4(12), Dec 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 34

within each clusters. This approach offers benefits to experts

who must decide the labels. Instead of inspecting and

labelling software modules one at a time, the expert can

inspect and label a given cluster as a whole; he or she can

assign all the modules in the cluster to the same quality label.

Software Defect Prediction Using Clustering

In [16], [17], k-mean technique of clustering has been

used for Software Defect Prediction. K-mean clustering is a

non-hierarchical clustering procedure in which items are

moved amongst sets of clusters until the desired set is

reached. It has certain drawbacks. To overcome these

drawbacks, Quad Tree-based k-mean clustering method was

proposed. The objectives: first, Quad-trees are applied to

finding initial cluster centres for k-mean algorithm. Second,

the Quad tree-based algorithm is applied for predicting faults

in program modules. Quad tree-based k-mean clustering

algorithm was evaluated in comparison to the original k-mean

algorithm for predicting faulty software modules. The result

suggests that the number of iterations of k-means algorithm is

less in case of Quad tree-based k-mean as well as percent

errors were in fairly acceptable limits.

B. Classification

Classification is defined as a process of finding a set of

models which describes and distinguishes data classes or

concepts. It is the organization of data in given classes (also

known as supervised learning) where the class labels of some

training samples are given. These samples are invariably

used to supervise the learning of a classification model.

Classification approaches normally use a training set where

all objects are already associated with known class labels.

The classification algorithm learns from the training set and

builds a model. The model is used to classify new objects.

Fraud detection and credit risk applications are particularly

well suited to this type of analysis. This approach frequently

employs decision tree or neural network-based classification

algorithms. The data classification process involves learning

and classification. In Learning, the training data are analyzed

by classification algorithm. In classification, test data are

used to estimate the accuracy of the classification rules.

.

Software Defect Prediction Using Classification

Innumerable classification methods have been suggested

to build software defect prediction models. In [18], an

association rule classification method is proposed to derive a

comprehensible rule set from the data. They have compared

CBA2 [19] with other rule based classification method to

check if classification algorithms based on association rules

are suitable for software fault prediction. Studies has also

been made to find out whether rule sets learned on one data

set are applicable to others data sets. They have thoroughly

investigated the performance of an association rule based

classification method for software defect prediction.

Experiments were conducted, results were compared with

other classifiers and finally concluded that results were

satisfying the performance requirements without losing

comprehensibility.

C. Association Mining

Association mining task consists of a series of activities -

identifying the frequent item sets, forming conditional

implication rules etc. It is the task of finding correlations

between items in data sets. Association Rule algorithms must

be able to generate rules with confidence values less than

one. Association rule mining is undirected or unsupervised

data mining over variable-length data and it produces clear,

understandable results. Association rules mining consist of

two steps. First step involves the finding of the set of all

frequent item sets. The second step involves the testing and

generating all high confidence rules among item sets. It has a

simple problem statement, that is, to find the set of all

subsets of items that occur frequently in database records or

transactions, and to extract the rules telling us how a subset

of items influences the presence of another subset.

Software Defect Prediction Using Association Mining

In association rule mining technique we use defect type

data to predict software defect associations that have relation

among different defect types. The defect associations can be

used for three purposes: Firstly, to find as many related

defects as possible to detect defects and make more effective

corrections to the software. Secondly, it helps to evaluate the

reviewer‟s results during an inspection. Thirdly, it helps in

assisting managers to improvise the software process through

analysis the reasons why some defects frequently occur

together. Association rule mining aims at discovering the

patterns of co-occurrences of the attributes in the database.

Results of analysis show that this technique does not yield

higher support and higher confidence levels leading to lesser

prediction accuracy.

V. CONCLUSION

Software defect prediction is the process of tracing

defective components in software prior to the start of testing

phase. Occurrence of defects is unavoidable, but we should

try to limit these defects to minimum count. Defect

prediction leads to reduce the time of development, cost,

rework and it increases the customer satisfaction and

reliability of software. Therefore, defect prediction is an

important activity to achieve software quality and to learn

from past mistakes. This paper elucidates the application of

various data mining techniques for conquering software

defects among existing repositories. To precise it predicts the

availability of defects and is categorized.

 International Journal of Computer Sciences and Engineering Vol.-4(12), Dec 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 35

REFERENCES

[1] Erlikh.l, “Leveraging Legacy System Dollars for e-business”,
IT Professional, Volume-02, Page No (21 -22), March 2000.

[2] Joel spolsky, “Painless Bug Tracking”, IT Professional,
November 2000.

[3] Allen., mitch., “Bug Tracking Basics: A beginner‟s guide to
reporting and tracking defects”, The Software Testing &
Quality Engineering Magazine. Volume- 4, Issue 3, Page No.
(20–24), June 2002.

[4] Zaman S., Adams B., Hassan A.E., “Security versus
performance bugs: A case study on Firefox”. In Proceedings of
the 8th Working Conference on Mining Soft-ware
Repositories, May 2011.

[5] Shuji M., Akito M., Tomoko M ., “ Defect data analysis based
on extended Association Rule Mining”, In Proceedings of
International Workshop on Mining Software Repositories
(MSR), 2007.

[6] Lamkanfi A., Demeyer S., Soetens Q D., Ver- donck T.,
“Comparing mining algorithms for predicting the severity of a
reported bug”. In Proceedings of the 15th European
Conference on Software Maintenance and Reengineering,
March 2011.

[7] Ling C., Huang J., Zhang H., “AUC: A better measure than
accuracy in comparing learning algorithms”, In Lecture Notes
in Computer Science Page No. (26–71), Springer-Verlag,
2003.

[8] Emad S., Akinori I., Walid I., Ahmed H., “Predicting reopened
bugs: A case study on the eclipse project”. In Proceedings of
the 17th Working Conference on Reverse Engineering
(WCRE) 2010.

[9] Kim S., Ernst M D., “Prioritizing warning categories by
analyzing software history”. In Proceedings of the 4th Inter-
national Work shop on Mining Software Repositories,
Minneapolis, USA, May 2007.

[10] Anvik J., Hiew L., Murphy G C., “Who should fix this bug?”
In Proceedings of the 28th International Conference on
Software Engineering, Shanghai, China, May 2006.

[11] Mozilla Products track system, https://bugzilla.mozilla.org/

[12] Eclipse Bug repository https://bugs.eclipse.org/

[13] Zaman S., Adams B., Hassan A E., “Security versus
performance bugs: A case study on Firefox”. In Proceedings of
The 8th Working Conference on Mining Software
Repositories, May 2011.

[14] Gegick M., Rotella P., Xie T., “Identifying security bug reports
via text mining: An industrial case study”. In Proceeding of the
7th Working Conference on Mining Software Repositories,
May 2010.

[15] Joel Spolsky, “Bug Tracking System Definition”, Empirical
Software Engineering, November 08, 2000.

[16] Partha Sarathi Bishnu., Vandana Bhattacherjee., “Software
Fault Prediction Using Quad Tree-Based K-Means Clustering
Algorithm”, IEEE: International Conference on Transactions
on knowledge and data engineering, Volume- 24, Page No. 6,
June 2012.

[17] Qinbao Song., Martin Shepperd., Michelle Cartwright.,
Carolyn Mair., “Software Defect Association Mining and
Defect Correction Effort Prediction”, IEEE: International
Conference on Transactions on Software Engineering,
Volume- 32, Page No. 2, February 2006.

[18] Baojun Ma., Karel Dejaeger., Jan Vanthienen., Bart Baesens.,
“Software Defect Prediction Based on Association Rule
Classification”, The 2010 International Conference on E-
Business Intelligence.

[19] Liu B., Ma Y., Wong C K., “Improving an association rule
based classifier,” In Proceedings of the Fourth European
Conference on Principles and Practice of Knowledge
Discovery in Databases, 2000.

[20] Mostafa M. Ahmed ., Abdel Rahman M., Hedar., Hosny
M.Ibrahim., “Predicting Bug Category Based on Analysis of
Software Repositories”, 2nd International Conference on
Research in Science, Engineering and
Technology(ICRSET‟2014), Page No. (21-22) March 2014
Dubai.

Authors Profile

Ms. S. Gomathi had done her Bachelor of Science and Master of

Science from Bharathiar University. She

currently pursues Master of Philosophy in

Computer Science at Kongunadu Arts and

Science College. Her main research work focuses

on Data Mining and Software Engineering.

Mr. L. Haldurai had done his Bachelor of Science, Master of

Computer Applications and Master of Philosophy

from Bharathiar University. He currently works

as Assistant Professor in Department of

Computer Science (PG), Kongunadu Arts and

Science College. His main research work focuses

on Data Mining and Data Communications. He

has 8 years of Teaching experience and 2 years of

Research experience.

https://bugzilla.mozilla.org/
https://bugs.eclipse.org/

