
 © 2016, IJCSE All Rights Reserved 49

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-4, Issue-02 E-ISSN: 2347-2693

Natural Language Query Processing for Relational Database

using EFFCN Algorithm

B.Sujatha
1*

, S.Vishwanadha Raju
2

1
Department of CSE, Osmania University, India

2*
 Department of CSE, College of Engineering JNTUH Jagityal, India

www.ijcseonline.org

Received: 22/Jan/2016 Revised: 02/Feb/2016 Accepted: 14/Feb/2016 Published: 29/Feb/ 2016

Abstract— This paper addresses the procedure to develope an interface to natural language database that is efficient and flexible

to handle unrestricted natural language and interpret the request appropriately called as EFFCN, stands for EFFiciently

Compliant Natural language interface to database. The Experimental set up is created by developing a database named as

CPVBase. The database holds the tables instituted with the sample records of Customer, Product, Vendor and Invoice data. The

database tables have foreign key references to the other tables epitomizing a relation database management system. This paper

explains about various technical segments of the implementation of the EFFCN algorithm. The working procedure of the

algorithm for the natural language statement transformation into SQL query is depicted. The EFFCN algorithm's precision and

recall measures for the score of relevancy is obtained with the success rate of 84%. The PR curve shows the variation of

precision and recall measures tested on discrete set of input queries.

Keywords—Natural Language Query, First Order Logic, Structured Query, Precision, Recall, F1-measureNatural Language Query, First

Order Logic, Structured Query, Precision, Recall, F1-measure

I. INTRODUCTION

Database systems are used since 1970s for the storing

various kinds of data for different purposes such as

commercial and personal needs. Though there are many

types of architectures for database design like object

oriented, object based, file based, hierarchical based and

network based, the predominant designing of databases

follow relational database architecture to store the data by

using various types of storage devices. In relational

databases, the data is stored using tables. The table contains

set of rows and columns. Each column represent and

attribute and each represents the instance of the data for a set

of attributes. The data can be manipulated using various

operators with fixed set of keywords by following a set

syntax rules. By learning this structured query language one

can extract the required data from the whole set of data, can

also perform various operations such as update, manipulate

and deletion of the data.

The Relational database management systems are more

popular based on the characteristics like its robustness and

flexibility, high performance, scalability, data security and

protection and flexible data maintenance. Above all these

advantages, it allows to index, perform aggregation, filtering

and sorting can be done on the data using structured query

language.

There are some disadvantages with relational databases.

To perform operations on the data which is stored on

databases, it is required to learn the structured query

language. Hence , the naive user who knows only the natural

language cannot directly access the required information

from the databases. To come out from these limitations, it is

required to design a tool which can understand the

requirements of the naive user through natural language

query, convert the natural language query into an equivalent

structured language query. Then the obtained structural

query is used to access the required information from the

databases. This kind of tool ins termed as Natural Language

Interface to Databases or NLIDB system. Thus, the NLIDB

system take the input as natural language query and converts

it into a structures language query and returns the desired

information to the naive user.

The designing of a NLIDB system for various languages

and for different underlying databases is attempted by

various researchers since five decades. But, designing of an

most suitable NLIDB systems with high accuracy, precision

and recall is still an open research problem which need to be

addressed. The various earlier developed NLIDB systems

focused on particular databases. There is need of designing a

generic NLIDB system which can address the robustness and

scalability of the applications. It is required to attempt the

problem of portability to customize a NLIDB system to a

other language and to other set of datasets designed for

various domains.

International Journal of Computer Sciences and Engineering Vol.-4(02), PP(49-52) Feb 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 50

In this paper, it is focused on designing a NLIDB system

using EFFECN algorithm, the procedure to develope an

interface to natural language database that is efficient and

flexible to handle unrestricted natural language and interpret

the request appropriately. The procedure to implement the

proposed system is initiated by constructing ontology. The

proposed a system process the query using First Order

Logic and the parsed query is converted into SQL query.

The designed system maintains a high accuracy 84% for

customer database.

II. RELATED WORK

There are many designing models are proposed in the

literatures in the field of NLIDB such as pattern matching

systems, syntax based systems, semantic based grammar

systems and intermediate representation of languages

system.

The pattern matching systems takes input as a set of rules

and sample set of pattens. Based on the inputted word of

sentence with natural language, it will be compared with the

predefined patterns [1]. If there is a match between the input

and predefined pattern then an action will be generated and

these generated actions will be stored in the database. The

response given to the user is based on the action generated.

This kind of systems are limited to specific databases. The

accuracy of the system is depend on the complexity of the

patterns used to train and based on the set of rules used to

train the system [2]. The NLIDB system SANVY is a good

example for pattern- matching systems [3].

The syntax based systems takes the user query as input

and parse the given input syntactically. The parse tree

generated for the input query is overlapped with the one

structured query of the database expressed using structured

query language. LUNAR is a best example for syntax based

NLIDB systems [4]. In these systems, the grammar rules are

derived to match the various user questions with syntactic

structures [5]. This system is used to answers the questions

on rocks which were collected from the moon. With the

corrections in the dictionary errors, the performance of the

system has increased [8].

In the semantic grammar system, the parse is simplified

by eliminating unimportant nodes or by combining two or

more nodes into one node. The complexity of structured

query can be reduced in semantic grammar system. Semantic

grammar systems are more simpler when compared with

syntax based systems. But these systems need to be trained

with a prior knowledge of the various elements of a domain.

PLANES and LADDER are the good examples for Semantic

grammars systems [6,7].

In many NLIDB systems, the natural language query is

transformed into an intermediate logical query. The logical

query is represented using a meaningful representative

language such as first logic language or Boyce codd normal

form. This kind of representative languages, represents the

meaning of the users queries in high order level of concepts.

These concepts are independent from the structure of the

database. This representative query is then transformed into

an expression in the structured query language which can

extract the relevant data from the databases.

In the intermediate representation of natural language

systems, the natural language query is inputted to the

system. This query is processed for syntax rules using a

parser. Based on the set of syntax rules of a natural language,

it generates a parse tree. By using the semantic rules of

semantic interpreter module, the generated parse tree is

translated into an intermediate logic query. In the semantics

rule, left hand side of the syntax rule contains the logic

expression of the constituent where as right-hand side of the

syntax rule is a function of the logic expressions of the

constituents. The logic expressions represents the words

which are corresponds to lexicon. To get the required

information from the database, the logic query is to be

transformed into a structured query which is supported by

the underlying Database Management System.

MASQUE/SQL is an example of intermediate representation

language systems [7].

By using semantic grammar techniques which

interleaves semantic and syntactic processing in distributed

databases, LADDER system is used to parse natural

language questions to database understandable queries [7].

The another NLIDB system implemented using the language

called Prolog was CHAT-80. This system transforms the

natural language inputted English queries into Prolog

expressions. These Prolog expressions are evaluated using

the Prolog database. ROBOT which was a prototype of a

NLIDB system named INTELLECT which was a

commercial natural language interface to database systems

[9]. ASK is the another NLIDB system which allows the

users to train the system with new words and concepts while

inter actioning with the system. By using the system, it is

possible to make interactions with various external sources

such as external databases, chating, Facebook, twitter, email

programs and many other applications.

Generic Interactive Natural Language Interface to

Databases (GINLIDB) was designed by the using UML and

developed using Visual Basic.NET. The system was a

generic system and it works for underlying suitable database

and knowledge base [10]. SynTactic Analysis using

Reversible Transformations (START) is also another Natural

Language System. It was the first Web-based question

answering system. It was available online and continuously

operating till now [11]. It utilizes various language

Dependant functions such as parsing, semantic analysis,

word sense dis-ambiguous, natural language annotation for

International Journal of Computer Sciences and Engineering Vol.-4(02), PP(49-52) Feb 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 51

appropriate information segmentation and presentation for

the user [12].

JUPITER was a NLIDB system to know the weather

information worldwide. The user can pose a question to the

system in their native language to forecast the weather

information over the telephone. The Oracle Structured Query

Language SQL can be learned by the students using the

NLIDB system called SQL-Tutor. If the student asked the

new questions by typing at terminal then also, the SQL-

Tutor can answer the question by using the existing

knowledge [13]. KUQA system divides the query based on

possible answer and after that it uses NLP techniques and

also WorldNet to identify the answers which suitable to its

corresponding category. But, this system can not handle any

linguistic information [11]. QuALiM another NLIDB

system designed based on complex syntactic structure which

were based on certain syntactic description question patterns

[11].

III. EFFCN ALGORITHM

The Interface of the system takes a natural language user
generated query. The query internally is divided into parts
based on the occurrence of the preposition or verb phase
obtained after preprocessing for POS tagging, the ontology
built assists in mapping to the appropriate columns of the
corresponding table and gives the response as the structured
representation that is the subset of the database table. The
algorithm presented in the figure 3.1 partitions the query
natural language query partitioning.

A. Query Partitioning

if (Preposition exists and is before verb and relative

pronoun)

{

Split at preposition into two parts Left and Right

Right: Scan for table names and conditions

Left: Scan for columns and associate these columns with

first found table in the right part

}

else if((verb exists and is before prep and relative

pronouns)OR (relative pronoun exists))

{

Split at Verb or Relative Pronoun

Left: Scan for table name and columns for that table

Right: Scan for table and associate column in the

condition with the last found table

}

else

{

Do not split query

Scan for table and columns and associate columns with the

found table

}

Fig 3.1: Pseudo code for splitting query

The splitting of query is done based on the place of
occurrence of the verb and prepositions in the query in
connection with the question words such as who, what,
where etc. Depending on these locations, the logic stated in
the figure 3.1 applied gives the respective column and table
references from the CPVBase.

B. Paradigm for Joining of Tables

1. Shortest route algorithm could be used to find the join

conditions but since the 4 tables are joined in a path like

formation the tables given ids and sorted. Customer = 1,

invoice = 2, product = 3, vendor = 4.

2. If the query is ‘show all products purchased by

customer'. From the query only two tables can be inferred:

product and customer. The ids are 3 and 1. These are sorted

to 1, 3 and the missing table 2: invoice is also joined.

3. Tables are given aliases c,i,p,v and these aliases are used

to specify the columns in the conditions and the columns to

be displayed

Fig 3.2: Conditions for Joining of tables

The criterion for joining the related tables is

accomplished by giving a numeric integer identity for the
CPVBase tables. If the natural language query involves
multiple tables references then the tables are selected in the
numeric order obtained using the table Id’s as quoted in the
figure 3.2.

C. Paradigm for Selecting Columns

(*) if column_list is empty and "show, give, tell, find, which,

what, whose" is used then all columns are selected provided

other wise if column_list is not empty then the columns in

the column_list are displayed

(*) if on the other hand "how, count" is used in the query

then count(*) is shown

Fig 3.3: Conditions for Column Selection

The norm for column selection is presented in the figure

3.3. The decision of the requirement of specific columns or
all the columns from a table is retrieved from the
column_list element.

IV. RESULTS AND ANALYSIS

The EFFCN system performance is measured in terms of

retrieval efficacy using the information retrieval system

metrics known as precision and recall. The attainment of

relevant information by the user as per the natural language

query in English gives the retrieval efficacy. The precision

is the measure of retrieved results that are relevant to the

International Journal of Computer Sciences and Engineering Vol.-4(02), PP(49-52) Feb 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 52

need, evaluated using the fraction of relevant documents

retrieved to the total number of documents retrieved.

Mathematically it can be expressed as

Precision=
CorrectlyAnsweredQueries

AnsweredQueries
(4 .1)

 Recall measures the relevant results retrieved as per

the user statement. That is the fraction of relevant documents

retrieved to the total number of relevant documents present

in the system.

Recall=
CorrectlyAnsweredQueries

TotalNumberofQueries
(4 . 2)

based on the precision and recall measurements, the

system was tested for a random of 100 queries, giving the

result tabulated displayed in table 4.1

Total Queries : 100

Answered Queries: 97

Unanswered Queries: 3

Correct Results: 84

Wrong Results: 13

Precision: 84/97 = 86.5%=0.86

Recall: 84/100 = 84.0%=0.84

Table 4.1 Implementation Results

The results shows that the system offers a precision and a

recall rates 86.55 and 84% probability of generating correct

responses to the user queries. This proves the effective and

optimal working of the system. The result is determined by

taking portion of queries and is obtained as presented in the

table 4.1.

The table 4.2 contains system data generated by testing

using different amount of queries and obtained the counts of

correctly answered queries (correct_q), wrongly answered

queries(wrong_g) and unanswered queries due to improper

mapping or no corresponding record (unans_q) with their

respective measures of precision and recall. The precision

and recall is decreasing if irrelevant queries are observed.

Thus the precision and recall can be well defined if the data

search is acquired with maximum relevant terms in the

query.

No. of

queries

Correct_q Wrong_

q

Unans_q Precision Recall

20 18 2 0 0.9 0.9

40 35 3 2 0.92 0.875

60 52 6 2 0.89 0.866

80 70 9 2 0.897 0.875

100 84 13 3 0.86 0.84

Table 4.2: Precision and Recall for varying number of

Queries

A. PR CURVE

The data of table 4.2 is plotted on a two dimensional

graph and a Precision-Recall Curve is obtained shown in the

figure 4.1.

PR CURVE

0

20

40

60

80

100

120

1 2 3 4 5

P-R SCALE

Q
U

E
R

IE
S

Recall

Precision

No.of Queries

Fig: 4.1 PR Graph

The X-axis holds the Precision and Recall Values with

respect to the number of queries. The Precision and Recall

are constant showing the desirable and obtained relevancies

are near approximately. Another graph plotted in the figure

4.2 shows the Precision and recall variations.

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

1 2 3 4 5

precision

recall

Figure 4.2 Precision- Recall Graph

International Journal of Computer Sciences and Engineering Vol.-4(02), PP(49-52) Feb 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 53

The graph plotted in the figure 4.2 represents the relation

between Precision and Recall with respect to the EFFCN

system. The curvy edges in the graph change in the precision

with the minor effect in the recall. The precision and recall is

decreasing if irrelevant queries are observed. Thus the

precision and recall can be well defined if the data search is

acquired with maximum relevant terms in the query.

The NLIDB system based on authorizing queries has a

success rate of 96.8% but with a drawback of having low

precision compared to which the EFFCN system gives a

success rate of 84% and high precision 86.5%. The other

NLIDB system based on semantic parsing accomplished a

success rate of 70%.

V. CONCLUSIONS AND FUTURE SCOPE

The research aimed at developing an interface that eases

the work of the naive user to formulate a database request

and generate appropriate responses. The system vitally uses

the ontology constructs, Parsing rules and FOL logic to

extract the requisite information in forming a standard

database Query. The system is flexible and can be adapted to

any of the Database management systems or a relational

database management system. EFFCN is a domain

independent and highly portable system. It uses the

semantics and syntactic knowledge to generate the correct

match of the input statement’s SQL query. Using the power

of ontology and enhanced parsing mechanisms to filter query

up to a refined level where it incorporates needed

information as per the user. Compared to which the EFFCN

system gives a success rate of 84% and high precision of

86.5%.

The NLIDB system future growth is directed towards

improving the success rate by applying concepts of neural

networks, machine learning parsing techniques and the use

of SQL standard aggregate functions such as average, min

and max along with the operator precedence concepts. The

analysis of the system from the perspective of abbreviations

and the temporal queries also needs careful interpretation

along with the complex restrictions of FOL logic.

REFERENCES

[1] Mrs. Neelu Nihalani, Dr. Sanjay Silakari and Dr.

Mahesh Motwani, “Natural Language Interface for

Database: A Brief Review”, IJCSI International Journal

of Computer Science Issues, vol. 8, no. 2, pp. 600-608,

Mar. 2011.

[2] T. Johnson, “Natural Language Computing-The

Commercial Applications”, The Knowledge

Engineering Review, vol. 1, no. 3, pp. 11-23, 1984.

[3] Androutsopoulos, G.D. Ritchie and P. Thanisch,

“Natural Language Interface to Databases-An

Introduction”, Department of Computer Science,

University of Edinburgh, King‟s Buildings, Mayfield

Road, Edinburgh EH9 3JZ, Scotland, U.K. , Mar. 1995.

[4] W.A. Woods, R.M. Kaplan and B.N. Webber, “The

Lunar Sciences Natural Language Information System:

Final Report”, BBN Report 2378, Bolt Beranek and

Newman Inc., Cambridge, Massachusetts, 1972.

[5] C.R. Perrault and B.J. Grosz, “Natural Language

Interfaces”, Exploring Artificial Intelligence, Morgan

Kaufmann Publishers Inc., San Mateo, California,

1988, pp. 133-172.

[6] G. Hendrix, E. Sacerdoti, D. Sagalowicz, and J. Slocum,

“Developing a Natural Language Interface to Complex

Data”, ACM Transactions on Database Systems, pp.

105-147, 1978.

[7] W. Woods, “An experimental parsing system for

transition network grammars in Natural Language

Processing”, Algorithmic Press, New York, USA,

1973.

[8] L.R.Harris,“Experience with INTELLECT: Artificial

Intelligence Technology Transfer”, The AI Magazine,

pp. 43-50, 1984.

[9] Faraj A. El-Mouadib, Zakaria S. Zubi, Ahmed A.

Almagrous and Irdess S. El-Feghi, “Generic Interactive

Natural Language Interface to Databases (GINLIDB)”,

International Journal of Computers, vol. 3, no. 3, 2009.

[10] “START Natural Language Question Answering

system Online.

[11] M. Joshi, R. A. Akerkar, “Algorithms to improve

performance of Natural Language Interface”,

International Journal of Computer Science &

Applications, vol. 5, no. 2, pp. 52-68, 2008.

[12] Seymour Knowles and Tanja Mitrovic, “A Natural

Language Interface For SQL-Tutor”, Nov. 5, 1999.

[13] D.L. Waltz, “An English Language Question

Answering System for a Large Relational Database”,

Communications of the ACM, pp. 526-539, 1978.

