

 © 2018, IJCSE All Rights Reserved 349

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-12, Dec 2018 E-ISSN: 2347-2693

Comparative Analysis on Parameter Optimization for ARPT

K. Devika Rani Dhivya
1*

, V.S. Meenakshi
2

1
Research Scholar, Bharathiar University, Coimbatore-8, Tamilnadu, India.

2
 Department of Computer Science, Chikkanna Government Arts College, Tirupur-2, Tamilnadu, India.

*Corresponding Author: devika58@gmail.com

Available online at: www.ijcseonline.org

Accepted: 18/Dec/2018, Published: 31/Dec/2018

Abstract— Software testing is a principal however complex piece of software development life cycle. It points towards

recognizing the bugs and faults in the program of functional behavior. It always needs generation of test cases and suites for

confirming their input ranges. The Optimization of Software testing is the foremost challenge. Subsequently to achieve greatest

coverage the test must be created from overall dispersed regions of input areas, known Partition testing. Random testing serve

better than partition testing nevertheless it also generating high computational overheads. Another technique is Adaptive

Random technique having adaptive nature of recovering and finishing a portion of the test cases back to the input for correcting

the next test cases lined to be passed. Adaptive Random Partition Testing (ARPT) was used to test software which utilized AT

and RT in an alternative manner. The computational intricacy issue of random partitioning in ARPT strategies was resolved by

utilizing clustering algorithms. It expends additional time and it prompts overhead procedure to estimate parameters of ARPT.

In this paper, the parameters of ARPT 1 and ARPT 2 are optimized using Bacterial Foraging Algorithm (BFA) and Improved

BAT algorithm which improves the accuracy of ARPT software testing strategies. However, the BFA has the most critical

parameter step size that has strong influence in the convergence and stability of algorithm. In order to solve these problems, the

improvised BAT optimization algorithm is proposed in this paper. It improves the accuracy and reduces time consumption of

parameter setting of ARPT testing strategies.

Keywords— Software testing, Adaptive Random Partition Testing, BFA, Improvised BA

I. INTRODUCTION

Software testing is a technique aimed at evaluating an

attribute or usability or capability of a product or program

and determining that it meets its quality [4]. Software testing

is the key to ensuring a successful and reliable software

product or service, yet testing is often considered

uninteresting work compared to design or coding. [3] The

process of software testing continues to challenge the

software community. This is crucial to the success of a

software project. Despite decades of effort to develop an

alternative technology to verify the quality of software,

system software testing remains the primary way. However,

software testing remains a labor-intensive, imperfect and

slower process. Hence it is more important to consider

testing can be performed more effectively at a lower cost

through the use of systematic and automated methods.

There are different systematic and automated methods are

developed for software testing. One of the basic approaches

to test software is randomly generating test cases from the

set of all input domain which is called Random Testing

(RT). Adaptive Random Testing (ART) [5] had been

developed to enhance the RT in which the adjacent program

inputs show a certain degree of similarity in failure revealing

behaviors. Partition Testing (PT) is one of the traditional

software testing strategies where the input domains are

divided into subdomains categorized according to some

separation conditions of test cases.

 Adaptive and Random Partition Testing (ARPT) [7] testing

strategy is a combination of AT and Random Partition

Testing (RPT) those are used in an alternative manner to test

software. By introducing RPT testing process the time

complexity of AT was reduced. [7] ARPT consists of two

options namely ARPT 1 and ARPT 2.

APRT 1 and ARPT 2 testing strategies consist of different

parameters. Those parameters values are varied based on the

software. It needs to estimate over and over for different

software. Thus the parameter estimation for different

software leads to computation overhead and time

consumption.

The computational complexity of random partitioning in

ARPT strategies was resolved by using clustering algorithms

in random partitioning of ARPT strategies. The time

consumption and overhead process of parameter estimation

were reduced by Bacterial Foraging Algorithm and

Improvised BAT (IBAT) algorithm. However, the BFA

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 350

required has the most critical parameter step size C which

has a strong influence in the algorithm stability and

convergence. It consumes more time to optimize the

parameters of ARPT. Therefore in the proposed improvised

BAT algorithm with ARPT, the weighted average of

solutions is calculated and then selects the best solution in

between weighted average solution and best solution which

reduces the time and improves the accuracy of parameter

setting of ARPT strategies.

This paragraph provides organization of this paper, Section I

contains the introduction of software testing strategy ARPT,

Section II contains the related work of adaptive testing,

random testing, and partition testing, Section III contains the

methodology used for optimizing ARPT, Section IV

describes results and discussion, Section V concludes

research work.

II. RELATED WORK

Arcuri, A., & Briand, L.[1] presented theorems to define the

probability of random testing that detects the interaction

faults in software. Some faults of software are revealed only

if particular features are chosen from the delivered products.

Testing software with all combination of features is not

feasible and it consumes more time. Combinational testing

performs testing using t features in the delivered products.

The presented theorems describe the probability of random

testing which choosing the features for testing. However still

this random testing and combinatorial testing provides

minimum guarantees on the probability of fault detection at

any interaction level.

Lv, J., et al., [7] proposed Adaptive Testing with Gradient

Descent (AT-GD) which investigates the asymptotic

behavior of adaptive testing and improves the global

performance without losing local optimality of adaptive

testing. Here AT-GD is a local optimal testing strategy

converges to the globally optimal solution as the assessment

process proceeds. Gradient is extensively utilized in

deciding a search direction when a step size choice is create

to solve an optimization problem. This is introduced in

original Adaptive Testing framework which investigates the

asymptotic behavior of AT-GD and the upper bound of AT

strategies is explored. However this method still has

computational overhead problem.

Shahbazi, A., et al., [11] projected the use of Centroidal

Voronoi Tessellations (CVT) to address the problem in

Adaptive Random Testing (ART) and Quasi Random

Testing (QRT). In addition to that, a test case generation

method called as Random Border CVT (RBCVT) was

proposed to enhance the code coverage of the input space of

Random testing strategy. The test cases generated by other

testing strategies were given as input to the proposed

RBCVT and it returns an improved set of test cases.

Furthermore, a novel search algorithm was proposed to

reduce the time complexity of RBCVT. The RBCVT

outperforms than the ART and CVT methods. However the

RBCVT approach is not cost effective due to their relatively

high runtime.

Schwartz, A., & Do, H., [12] proposed two additional

Adaptive Test Prioritization (ATP) strategies utilizing

Weighted Sum Model (WSM) and fuzzy Analytical

Hierarchy Process (AHP) to test software. Three strategies

were developed in this paper. First strategy utilized the fuzzy

AHP which address the issue of the results from AHP and

the second strategy utilized a fuzzy expert system to obtain

the benefits of a strategy which does not require a pair wise

comparisons. The final strategy used WSM which

investigate the effectiveness of strategy for ATP.

Singh, K., et al., [13] described the Anti- Random testing to

found an error in software and demonstrated that this method

achieve high fault coverage. Random testing, test an

application based on the randomly selected test cases and it

does not consider the previous information. While in the

Anti Random testing, each test is applied its total distance

from all tests is maximum. It is a variation of Random

Testing that generates random input and send that input to a

system for test. In order to measure the difference hamming

distance and Cartesian distance is used.

Huang, R., et al., [5] proposed an enhanced Mirror Adaptive

Random Testing called as Dynamic Mirror Adaptive

Random Testing (DMART) to reduce the computation

overhead of Adaptive Random Testing (ART) strategy.

Mirror Adaptive Random Testing cannot decrease the order

of magnitude for computational overhead of ART strategy

while maintaining similar failure detection effectiveness.

The proposed strategy splits the input domain incrementally

along with the testing process by using new mirroring

scheme. The mirroring scheme of DMART is independent of

concrete ART strategy. This approach still takes more time

for generating the test cases.

Machado, B. N., et al., [8] presented a framework for search

based software testing (SBST) named as search based

software testing framework (SBSTFrame). This framework

worked as a top level layer of genetic optimization

frameworks and testing software tools. The main intend of

this framework is to support the software testers which are

not able to utilize optimization frameworks during a testing

activity. This framework supports the optimization of

software testing activities through supporting the application

of search techniques.

Mao, C. [9] presented a new Adaptive Random Testing

algorithm based on two-point partitioning to improve the

fault revealing ability of random testing. By using the new

algorithm, the midpoint of two points is determined and

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 351

current max region is partitioned by using the midpoints of

two points instead of using single point. The first point of

two points is generated randomly and second point is chosen

from the candidate set based on the farthest distance

criterion.

III. METHODOLOGY

In this section, the optimal parameter setting for different

software using BFA and IBAT optimization algorithm is

described in detail. Initially, the time consumption and

complexity of ARPT testing strategies were reduced by

using clustering algorithms. Then the parameters of both

ARPT 1 and ARPT 2 strategy are optimized by using BFA

and IBAT optimization algorithm. The new software is

tested using ARPT testing strategy the BFA and IBAT

algorithm optimize the parameters of ARPT 1 and ARPT 2

testing strategy. Then the optimized parameters are

initialized to ARPT 1 and ARPT 2 to detect the faults in

software. Thus the more effective parameters are obtained

by using the IBAT algorithm.

A. Parameters of ARPT

The ARPT consists of two options such as ARPT 1 and

ARPT 2. In ARPT 1 the stage of AT and RPT are initiated

through parameters. The test cases are partitioned and then

each partition is switch between AT and RPT testing

strategies which reduced the computational overhead of test

case selection. The other option of ARPT is ARPT 2 where

the test case is divided into two lengths. For the first length

of test cases AT testing strategy is applied and for the second

half of the test case, the RPT testing strategy is applied. The

parameter is set only to alter the length of the test case as

there is only one switching between the two AT and RPT

strategy. The parameters of ARPT 1 and ARPT 2 are

optimized by using BFA and IBAT algorithm. The optimal

parameters are used for different subject programs that

improve fault detection efficiency and reduce time

consumption. [4]

ARPT 1 consists of 5 different parameters are S, x, ,

k(0) and l(0). S represents the state of the current testing

process, the state denotes an AT segment and RPT segment,

 denotes signal retained to record whether any defect

is detected. k(0) represents the test case of AT testing

strategy and l(0) represents the test case of RPT testing

strategy[7]. ARPT 2 consists of two parameters are x and y.

x is a parameter utilized to determine when to change the

testing strategy and y is the testing length for the AT

process. These parameters are optimized using BFA and

IBAT algorithm. The fitness function of these optimization

algorithms are calculated based on the weighted sum of the

time consumption t, defect detection efficiency , memory

consumption M, number of test cases n and code coverage C

which is represented as follows:[2][4]

 ∑

 (1)

where

B. Optimal parameter setting using Bacterial Foraging

Algorithm [4]

Bacterial Foraging algorithm is an optimization algorithm

where a Bacteria search for nutrients is a manner to

maximize energy obtained per unit time. The individual

bacterium also communicates with others by sending

signals. A bacterium takes foraging decisions after

considering two previous factors. The process, in which a

bacterium moves by taking small steps while searching for

nutrients, is called chemo taxis. The key idea of BFA is

mimicking the chemotactic movement of virtual bacteria in

the problem search space. This algorithm is processed based

on the Chemotaxis, swarming, reproduction and elimination

dispersal.

In the Chemotaxis process simulates the movement of an

E.coli cell through swimming and tumbling via flagella.

Biologically an E.coli bacterium can move in two different

ways. It can swim for a period of time in the same direction

or it may tumble and alternate between these two modes of

operation for the entire lifetime. Suppose

represents the i-th bacterium at the j-the chemotactic, k-th

reproductive and l-th elimination-dispersal step. C(i) is the

size of the step taken in the random direction specified by

the tumble (run length unit). Then in computational

chemotaxis the movement of the bacterium may be

represented by

√
 (2)

In the above equation 2, represents a vector in

the random direction whose elements lie in [-1,1].

In swarming the cell to cell signaling in E. coli is

defined and it is represented as follows:

 () ∑

∑ ∑

∑

 (∑

]

In equation 3, () is the objective

function value to be added to the actual objective function

to present a time varying objective function, S is the total

number of bacteria, p is the number of variables to be

optimized, which are present in each bacterium and

 is a point in the p-dimensional search

domain, , , are different

coefficients.

Then the least healthy bacteria eventually die while each of

the healthier bacteria (those yielding lower value of the

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 352

objective function) asexually split into two bacteria, which

are then placed in the same location. This keeps the swarm

size constant. Finally in the elimination and dispersal

process, Gradual or sudden changes in the local

environment where a bacterium population lives may occur

due to various reasons e.g. a significant local rise of

temperature may kill a group of bacteria that are currently

in a region with a high concentration of nutrient gradients.

Events can take place in such a fashion that all the bacteria

in a region are killed or a group is dispersed into a new

location. To simulate this phenomenon in BFA some

bacteria are liquidated at random with a very small

probability while the new replacements are randomly

initialized over the search space.

BFA based Optimal Parameter setting algorithm [4]

Step 1: if (ARPT_strategy==ARPT 1)

Step 2: Initialize S bacteria with
 , and

 .

Step 3: Call BFA algorithm

Step 4: else

Step 5: Initialize S bacteria with and

Step 6: Call BFA algorithm

C. Optimal parameter setting using Improvised BAT

algorithm

The BAT algorithm is used to optimize the parameters of

ARPT1 and ARPT2. This algorithm is performed based on

the echolocation characteristics of microbats. Initially the

number of bats in the population is initialized. The Bats are

flying randomly along with the velocity ,

position , fixed frequency , wavelength

 and loudness . The wavelength of each bat is

automatically adjusted by the emitted pulse and pulse rate

between 0 and 1 that is depending upon the proximity

effect. The loudness is varied in positive values to

minimum constant value . Mostly, the solution of BAT

algorithm is depending on the virtual bat moment, loudness

and pulse emission.[10] [14]

Consider the searching dimension n and the fixed frequency
 and the wavelength . The

minimum frequency is fixed as 0 and the dimension

solution is selected as . The frequency ,

velocity and the position of the new

solution is updated as follows:

 (4)

 (5)

 (6)

In equation 4, rand (0,1) denotes the uniformly distributed

random number between 0 and 1. In local search, the local

solution is generated for each bat after the solution is

acquired from the midst of the current best solution and the

generation of local solution is achieved by using the random

walk which is written as follows:

(7)

In equation 7, denotes the old position,

 denotes the uniformly distributed random

number from -1 to 1 and represents the average pulse

rate of all bats at step time t. The pulse emission and

loudness are expressed as follows:

 (8)

 (9)

In equation 8 and 9, and are the constants. In this the

objective function is to decrease the time consumption t,

memory utilization M and number of test cases n, increase

the defect detection efficiency and code coverage C. In

the improvised BAT algorithm is same as the BAT

algorithm, instead of generating new solution randomly, it

generates new solution in between calculated weighted

average of solutions and selected best solution which

improvise the parameter setting of ARPT1 and ARPT2

strategies.[14] The following algorithm defines the

improvised BAT algorithm for optimal parameter setting.

Improvised BAT based Optimal Parameter setting

algorithm

Step 1: if (ARPT_strategy==ARPT 1)

Step 2: Initialize X BAT with
 ,

and .

Step 3: Call BAT algorithm

Step 3: else

Step 5: Initialize S bacteria with and

Step 6: Call BAT algorithm

BAT algorithm

Step 7: Randomly initialize the bat velocity
Step 8: Define pulse frequency at

Step 9: Initialize pulse rates and the loudness

Step 10: Calculate the objective function of each bat using

equation 1

Step 11: while (t < maxiterations)

Step 12: Generate new solutions by adjusting frequency and

updating velocities and locations using equation 4 to 6

Step 13: if (rand>)

Step 14: Select a solution among the best solution

Step 15: Calculate the weighted average of solution

Step 16: end if

Step 17: Generate a new solution by flying between

weighted average of solution and best solution

Step 18: if (rand< & F () < F ())

Step 19: Accept the new solutions

Step 20: Increases and reduce

Step 21: end if

Step 22: Rank the bats and find the current best

Step 23: end while

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 353

The above improvised BAT algorithm optimizes the

parameters of ARPT 1and ARPT 2 which is used to select

the optimized test suite for software testing process.

IV. RESULTS AND DISCUSSION

The experiment is conducted and results are analyzed in this

section to prove the effectiveness of the proposed

optimization algorithms in ARPT strategies. The

experiments are conducted in terms of time consumption,

defect detection efficiency, memory utilization, number of

test cases and code coverage between existing and proposed

optimization techniques for parameter setting of ARPT

strategies.

There are three benchmark software used called

univocityparser, marc4j, and jsoup which used in the

experiment. The univocity-parser is a suite of extremely fast

and reliable parsers for Java. It provides a consistent

interface for handling different file formats, and a solid

framework for the development of new parsers. The marc4j

is software which provides an easy to use Application

Programming Interface (API) for working with MARC and

MARCXML in Java.[6] jsoup is a Java library for working

with real-world HTML. It provides a very convenient API

for extracting and manipulating data, using the best of DOM,

CSS, and jquery-like methods. The number of test case

analyzed 1000 and Number of programs undergone for the

test are more the 130. The following are parameters are

following:

A. Time Consumption

Time consumption is a measure of the amount of time taken

to test software based on optimized ARPT testing strategy.

Figure 1. Comparison of Time Consumption

Figure 1, shows the comparison of time consumption

between existing and proposed optimization techniques with

different software. X axis represents software and Y axis

represents the Time in seconds. From figure 1, it is proved

that the proposed Improvised BAT optimization technique

consumes less time than the other optimization technique in

both ARPT testing strategies.

B. Defect Detection Efficiency

Defect detection efficiency (DDE) is the number of defects

detected during a phase/stage that is injected during that

same phase divided by the total number of defects injected

during that phase. It can be calculated by using following

formula: [4]

 Figure 2. Comparison of Defect Detection Efficiency

Figure 2, shows the comparison of Defect Detection

Efficiency between existing and proposed optimization

techniques with different software. X axis represents

software and Y axis represents the Defect Detection

Efficiency in %. From figure 2, it is proved that the proposed

Improvised BAT optimization technique has high defect

detection efficiency than the other optimization techniques

in both ARPT testing strategies.

V. CONCLUSION AND FUTURE SCOPE

In this paper, two optimization algorithms are introduced to

improve the ARPT testing strategies. It consists of two

testing strategies are ARPT 1 and ARPT 2 and which consist

of different parameters. These parameters are optimized by

using efficient algorithms called BFA and improvised BAT

optimization algorithms. These algorithms select the most

optimal parameters with less time consumption and with

high accuracy that improves the ARPT testing strategies.

The experimental results are conducted in three different

software are university parser, marc4j and jsoup to prove the

effectiveness of the proposed optimization technique in

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 354

terms of time consumption and defect detection efficiency.

In future advanced metaheuristic algorithms can be used for

optimizing the ARPT.

REFERENCES

[1] Arcuri, A., & Briand, L.” Formal analysis of the probability of

interaction fault detection using random testing”. IEEE

Transactions on Software Engineering, 38(5), 1088-1099, 2012

[2] Bashir, M. B., & Nadeem, A. (2017). Improved Genetic

Algorithm to Reduce Mutation Testing Cost. IEEE Access.

[3] Deak, A., Stålhane, T., & Sindre, G., “Challenges and strategies

for motivating software testing personnel.”, Information and

Software Technology, 73, 1-15. 2016.

[4] Devika Rani Dhivya K., Meenakshi V.S. “An Optimized Adaptive

Random Partition Software Testing by Using Bacterial Foraging

Algorithm”, Lecture Notes in Computational Vision and

Biomechanics, vol 28. Springer, Cham, Print ISBN978-3-319-

71766-1, Online ISBN978-3-319-71767-8. Pg.No. 542-555, 2018.

[5] Huang, R., Liu, H., Xie, X., & Chen, J. “Enhancing mirror

adaptive random testing through dynamic partitioning”.

Information and Software Technology, 67, 13-29, 2015.

[6] Iyad Alazzam1 , Izzat Alsmadi2 and Mohammed Akour ,”Test

Cases Selection Based on Source Code Features Extraction,”

International Journal of Software Engineering and Its Application,

Vol.8, No.1, pp.203-214. 2014.

[7] Lv, J., Hu, H., Cai, K. Y., & Chen, T. Y. , “Adaptive and random

partition software testing”, IEEE Transactions on Systems, Man,

and Cybernetics: Systems, 44(12), 1649-1664, 2014.

[8] Machado, B. N., Camilo-Junior, C. G., Rodrigues, C. L., &

Quijano, E. H. “SBSTFrame: a framework to search-based

software testing”, In Systems, Man, and Cybernetics (SMC), 2016

IEEE International Conference on (pp. 004106-004111), 2016.

[9] Mao, C. Adaptive Random Testing Based on Two-Point

Partitioning. Informatica (Slovenia), 36(3), 297-303. 2012.

[10] M. Beskirli and I. Koc, "A Comparative Study of Improved Bat

Algorithm and Bat Algorithm on Numerical Benchmarks," 2015

4th International Conference on Advanced Computer Science

Applications and Technologies (ACSAT), Kuala Lumpur, pp. 68-

73, 2015.

[11] Shahbazi, A., Tappenden, A. F., & Miller, J. ,“Centroidal voronoi

tessellations-a new approach to random testing”, IEEE

Transactions on Software Engineering, 39(2), 163-183, 2013.

[12] Schwartz, A., & Do, H. “Cost-effective regression testing through

Adaptive Test Prioritization strategies”, Journal of Systems and

Software, 115, 61-81, 2016.

[13] Singh, K., & Rani, S. “Anti-random test generation in software

testing”. Journal of Global Research in Computer Science, 2(5),

17-24, 2011.

[14] X.-S. Yang, A New Metaheuristic Bat-Inspired Algorithm, in:

Nature Inspired Cooperative Strategies for Optimization, (Eds. J.

R. Gonzalez et al.), Studies in Computational Intelligence,

Springer Berlin, 284, Springer, 65-74, 2010.

