

 © 2018, IJCSE All Rights Reserved 335

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-12, Dec 2018 E-ISSN: 2347-2693

Regression Test Case Minimization with Firefly based Algorithm

Ajmer Singh
1*

, Vandana
2
, Rajvir Singh

3

1, 2, 3

CSE Department, DCRUST, Murthal, India

*Corresponding Author: ajmer.saini@gmail.com, Tel.: +91-9813687398

Available online at: www.ijcseonline.org

Accepted: 15/Dec/2018, Published: 31/Dec/2018

Abstract— Software testing process ordinarily expends no less than half of the aggregate cost required in programming advancement.

Programming advancement associations spend significant part of their financial plan and time in testing related tasks. Software testing is an

indispensable component in the Software Development Life Cycle (SDLC) and can outfit brilliant outcomes; if directed appropriately and

successfully in an improved way. Lamentably, Software testing is frequently less formal and thorough than it ought to. Regression testing

means to reveal all the undesired reactions of code corrections on rest of the code. Regression testing ensures that settling of programming

deficiencies does not present whatever other issues, which were absent prior. Regression testing is iterative process, where size and many-

sided quality of experiments continues expanding. Along these lines, Optimization of experiments is profoundly sought to finish the

regression testing inside settled time and cost limitations. Streamlining of experiments amid regression testing is an open research problem as

there is no single procedure which can supersede every other system on all parameters. Along these lines, researchers ought to evolve new

experiment minimization systems for regression testing to improve its feasibility in view of different parameters. This paper reports a work

on building up a novel minimization procedure for regression testing utilizing firefly based optimization.

Keywords— Regression Testing,Test case Minimization, Soft computing ,Object Oriented Testing, Software Maintenance,

I. INTRODUCTION

Test Software testing is one of the essential parts of

SDLC. The main objectives of software testing are to firstly

check if the system fulfils the specified requirements and

then executing a program with the intent of finding errors.

Software testing is a practice used to help and differentiate

the accuracy, security, performance and dependability for a

selected program. Software testing is a vital component and

one of the essential part or phase in various SDLC models

while most of the budget and time is consumed by this phase

only, so according to various findings and research

approximately 40% of cost and 70% of time is devoted to

this phase. Testing is an imperative research zone in software

engineering, prone to end up noticeably much more vital

later on. The testing of program is an imperative method for

evaluating and deciding the quality of any software product.

There are many strategies for testing software under test

(SUT), White box and Black box testing. White box testing

aim is to determine a method that goes through internal

functionality to figure out the possible bugs and errors and

further subdivided in two ways: dynamic and static testing

[1]. It is also known as structural testing. It has certain test

data inputs which are used to test all the code paths. While

Black box testing is a kind of testing in which the main

agenda is to transform a set of defined inputs into expected

output and this whole process is performed internally and

unaware of how this process take place. Various techniques

of performing black box testing are cause-effect graphing

technique, boundary value analysis, decision table based

testing and equivalence class testing [2]

Test suite minimization is an enhancement issue to discover

a negligibly estimated subset of the experiments in a suite

that activities an indistinguishable arrangement of scope

prerequisites from the first suite. The key issue in

minimization of test suites is to expel the experiments in a

suite that tends to be repetitive in the suite as for the scope of

some specific arrangement of program prerequisites. One of

the major objectives in test case minimization is to reduce the

redundant and obsolete test cases during testing so as to

faster the application under test by correcting faults and

removing errors in the beginning to lower the chances of

failures. In this paper regression based test case minimization

method is used. Regression testing means to reveal all the

undesired reactions of code corrections on rest of the code.

Regression testing ensures that settling of programming

deficiencies does not present whatever other issues, which

were absent prior. Regression testing is iterative process,

where size and many-sided quality of experiments continues

expanding.

Recent studies shows that various Evolutionary Algorithms

like Artificial Immune System, Simulated annealing, Cuckoo

Search Algorithm (CSA) etc. are being functionalized in the

field of Software Engineering to obtain optimal solutions.

 International Journal of Computer Sciences and Engineering Vol.6 (12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 336

Nowadays, test case minimization and test case generation

on multi-objectives are trending in research community

rather than working on single objectives.

This paper presents regression test case minimization with

Firefly based Optimization Algorithm. The organization of

this article is as follows section II consists of related work of

different researchers in the same field, section III describes

the Firefly algorithm. Section IV highlights the results and

their inferences. Finally section 5 concludes the research

with some possible future avenues.

II. RELATED WORK

Test case minimization is a vital part in regression testing.

Alongside the quick expanding of the scale and multifaceted

nature of test suites, the issues turn out to be increasingly

hard to unravel.

Authors in [3] observed that regression testing is a costly,

however imperative process. Unfortunately, there might be

inadequate assets to take into account the re-execution of all

experiments amid regression testing. In this circumstance,

test case prioritization techniques plan to enhance the

viability of regression testing by executing most valuable

tests first. The study of [4] presented experimental work on

regression experiment prioritization concentrated on

avaricious calculations. Be that as it may, it is realized that

these calculations may deliver problematic outcomes since

they may develop comes about that signify just nearby

minima inside the pursuit space. By differentiation, meta-

heuristic and transformative hunt calculations intend to

maintain a strategic distance from such issues.

The authors in [5] studied the effectiveness of time ware

prioritization technique for regression testing. The results

indicate that time aware approach can be helpful in

minimizing the overall cost of test case execution. The study

in [6] presented a review of test case minimization

techniques. The authors discussed various techniques like

Heuristic H, GRE, and Divide and Conquer approach

Genetic algorithm, selective redundancy, TestFilter, Integer

Linear Programming based, DILP, Cluster analysis and set

theory based.

Authors of [7] presented a technique in which the tests cases

were minimized using configuration-aware structural testing.

Cuckoo search algorithm (CSA) is used to optimize and

search for an optimal solution by covering the d-tuples list.

For the purpose of evaluation, a user-configurable system is

used as a case study. In addressing the usefulness of the

study more effectively, different faults were seeded in the

software-under-test through mutation testing techniques. The

approach of [8] applied ACO technique which generated

optimal paths in the control flow graph. The optimal paths

will cover the whole software with minimum redundancy. In

the proposed algorithm, the suit of paths is prioritized in a

new way so that we can decide which paths are to be tested

first. The parameters used in the experiment are transition

count, current node, feasible set, probability, updated

pheromone, updated heuristic, updated weight, path, and

priority.

The researcher [9] worked on regression testing where

distinguished 27 papers announcing 36 exact reviews, 21

examinations and 15 contextual investigations. In all out 28

systems for regression test determination are assessed. They

exhibit a subjective investigation of the discoveries, a review

of systems for regression test choice and related experimental

confirmation. No strategy was discovered unmistakably

unrivaled since the outcomes rely on upon many shifting

components and further they recognized a requirement for

observational reviews where ideas are assessed as opposed to

little varieties in specialized usage.

Study of [10] focused on Ant Colony Optimization (ACO)

technique for solving issue of test case prioritization. Finite

state machine is used for prioritizing the test cases from a

given test suite to generate optimal solutions. According to

their study the Ant colony Optimization algorithm is more

effective and optimistic to solve the problems related to test

case prioritization. The study of [11] analyzed the literature

to review the work on multi-objective test case minimization

techniques using evolutionary methods. The authors

conclude that very less work has been done using multi-

objective optimization technique for the test case

minimization. Authors also suggest the possible avenues in

this filed based on evolutionary methods like Particle Swarm

optimization (PSO), Baits optimization and firefly based

optimization.

A. Regression Testing

Regression Testing also known as approval testing is a costly

movement as it devours a lot of time and cost. Regression

testing is a part of maintenance phase where it is verified that

after certain alterations or modifications in the program or

code new fault are introduced or not. The main aim of this

kind of testing is to rerun the tests performed earlier and

rechecking the existence of faults after the alteration in the

program code [12]. Basically there are three activities carried

out during the process of regression testing that are: Test

selection, Test minimization and Test prioritization. In

software testing regression testing is required to detect faults,

fixing faults and adding new feature to the software without

exploiting the basic functionalities of the software.

 International Journal of Computer Sciences and Engineering Vol.6 (12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 337

Regression testing is carried out using automation tools not

manually as time required for the process is high so it

becomes very time consuming to do all the testing part

manually as well as maintaining the quality of the product. It

is a kind of black box testing where the main agenda is to

transform a set of defined inputs into expected output and

this whole process is performed internally and unaware of

how this process take place.

Fig 1. Activities of Regression Testing [13]

Regression testing guarantees changed projects against

unintended revisions. Since a few surely understood

programming disappointments can be faulted for not testing

changes and revisions in a product framework completely

and legitimately, numerous procedures have been created to

bolster proficient and viable regression testing [14]

a. Re-Test All

Amid advancement of some product items, their test suites

turn out to be to a great degree vast. So it would be

exorbitant to run the entire test suite both as far as time and

human exertion, which in the long run winds up being

extremely costly regarding cash also. Along these lines, this

is illogical to retest the whole test suite. [15].

b. Selective Re-testing

Re-test All Method is unfeasible, on the grounds that it

requires the re-running the whole test suite. Then again, if

just a couple test cases are run, it may be deficient for

distinguishing a considerable lot of the issues in altered

programming, so the entire regression testing will flop as

being inconsistent

B. Test Suite Minimization (TCM)

In these procedures expel the repetitive experiments for all

time to diminish the extent of test suite. Be that as it may, the

blame location ability of a test suite may diminish because of

decrease in the quantity of experiments. Test suite

minimization is an enhancement issue to discover a

negligibly estimated subset of the experiments in a suite that

activities an indistinguishable arrangement of scope

prerequisites from the first suite. The key issue in

minimization of test suites is to expel the experiments in a

suite that tends to be repetitive in the suite as for the scope of

some specific arrangement of program prerequisites. The

conduct of tests adequacy regarding designated assets (work,

cash, time, calculation) is asymptotic. This implies, among

every conceivable test, just a piece of them is financially

helpful [16]. Test suite minimization is an enhancement issue

to discover a negligibly estimated subset of the experiments

in a suite that activities an indistinguishable arrangement of

scope prerequisites from the first suite

C. Test Case Selection (TCS)

In test case selection method a portion of the experiments is

selected and concentrated only on that piece of work or test

cases on which different operations to be performed. [17]

D. Test Case Prioritization (TCP)

These procedures distinguish the productive requesting of the

experiments to amplify certain properties, for example, rate

of blame discovery or scope rate [18]. A critical review by

[19], confirm that these prioritization procedures can be

valuable to the regression testing

E. Optimization

It is the way toward accomplishing certain target utilizing

least assets and endeavours in view of an approach superior

to anything other contemporary methodologies.

"Improvement calculations are pursuit strategies where the

objective is to locate an ideal answer for an issue, keeping in

mind the end goal to fulfil at least one target capacities,

perhaps subject to an arrangement of constraints

III. FIREFLY ALGORITHM FOR TEST CASE

MINIMIZATION

This section highlights the various components of the

proposed methodology.

A. Firefly Behavior

The blazing light of fireflies is an astounding sight in the mid

year sky in the tropical ecosystem and calm areas also known

by other name i.e. lightening bug. Most fireflies deliver

short, cadenced flashes and there is around 2000 species of

fireflies. The example of flashes is frequently interesting for

specific animal varieties. [20]. In the given equation (1) the

light force I diminish as the separation r increments. Besides,

the air retains light, which winds up noticeably weaker and

weaker as the separation increments. These two joined

elements make most fireflies visible as far as possible

separation, generally a few hundred meters during the

evening, which is sufficient for fireflies to convey

The basic principles in depicting the standard firefly

algorithm are:

1. A firefly gets attracted to other flies irrespective of their

sex as all the fireflies are unisex

2. According to the nature of fireflies the attractiveness of

Regression Testing Activities

Test Case

Selection

Test Case

Minimization
Test Case

Prioritization

 International Journal of Computer Sciences and Engineering Vol.6 (12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 338

the firefly is directly proportional to firefly's brightness.

In this phenomenon the less bright firefly tends to move

towards the brighter firefly. Both attractiveness and

brightness increase as the distance decreases. A

particular firefly will move randomly if there is no

brighter one.

The landscape of the objective function determines the

brightness of a firefly

B. Measuring Light intensity and attractiveness

In the firefly calculation, the two vital issues are:

definition of the allure and the variety of light power. The

light intensity I(r) is obtained as follows,

 ()

 (1)

where Is = Intensity at the source.

Variation in the light intensity I along with distance for

a given medium while keeping the light absorption

coefficient fixed is depicted by the following equation,

 (2)

where I0 = The original light intensity at zero distance = 0.

Gaussian form to remove singularity:

 ()
-

 (3)

Equation for depicting the attractiveness of a firefly:

 (4)

where 0 is the attractiveness at r = 0.

The attractiveness function (r) can be any monotonically

decreasing functions such as:

 ()
 () (5)

The Cartesian distance between two fireflies, respectively,

 ‖ ‖ √∑ ()

 (6)

The movement of a firefly i attracted towards another firefly

j is shown by

(

)
 (7)

C. Controlling Randomization

By varying the randomization parameter a we can further

improve the convergence of the algorithm. As shown in

following equation

 ()

(8)

 where t [0, tmax] = The pseudo time for recreations

 tmax = the maximum number of eras

 α0 = the underlying randomization parameter

 α∞ = the last esteem. We can likewise utilize a

comparable capacity to the geometrical strengthening

plan. That is,

 (9)

 where (0, 1] is the randomness reduction

constant.

In most applications, we can use = 0.95 ~ 0.99 and 0=

1. Moreover, in the present variant of the Firefly Algorithm

calculation, we don't unequivocally utilize the current

worldwide best g*, despite the fact that we just utilize it to

decipher the last best arrangements. Our reproductions

demonstrated that the productivity may enhance on the off

chance that we include an additional term λ ϵi(g* - xi) to the

refreshing recipe. It merits bringing up that is an arbitrary

walk, one-sided toward the brighter fireflies. In the event that

β0= 0, it turns into a straightforward arbitrary walk.

Moreover, the randomization term can undoubtedly be

reached out to different dispersions.

Description of proposed algorithm

In view of the above depiction, firefly algorithm can take

care of development reconfiguration issue. The calculation

can be separated into two phases, the Particle swarm

optimizations arrange and the Genetic algorithm organizes.

[21]

Step 1: In this step M hubs are initialized haphazardly

along with the maximum cycle time Ncmax. The hybrid

likelihood and transformation likelihood are 0.9 and 0.05

individually.

Step 2: In this step the target work estimations is

calculated for all hubs, the position of the hub is stored with

the base target work, an incentive as the worldwide best hub.

Step 3: GA stage.

Selection Operator

Roulette wheel choice procedure is generally utilized as a

part of genetic algorithm since it can guarantee that the

choice likelihood of every hub is relative to its wellness, i.e.

the better a hub's wellness, the more probable it will be

chosen

Crossover Operator

Hybrid occurs between two guardians which are freely

chosen from the populace. Youngsters are made by the

single-point hybrid operation. It can be characterized as takes

after:

 International Journal of Computer Sciences and Engineering Vol.6 (12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 339

 () (10)

And

 () (11)

Mutation Operator

Mutation operator is mainly used to maintain node diversity

premature along with avoiding the premature convergence

for the population. The mutation operator which is adaptive

by nature is defined as follows:

()

 ()
 () (12)

Where,

() = The ith dimension of the jth node in the kth

generation [22].

D. Modified Firefly algorithm for Test Case

Minimization

Step1. Population is initialized with m nodes.

Step2. Fitness of each node is computed and the fitness and

 position of every node is updated and a record is

 maintained.

Step3. Global best solution with minimum objective function

 is identified.

Step4. If the stopping criteria is satisfied then optimal

 solution is obtained else go to step 5.

Step5. If the stopping criterion in step 4 is not satisfied then

 the population is divided into two smaller populations

 based on the hybrid probability P.

(i) Nodes objective function value is

evaluated.

(ii) Update position of the nodes.

(iii) Update velocity of all the nodes.

(iv) Also update the best solution for all the

nodes.

(v) Perform selection based on fitness for

each node.

(vi) Perform crossover and mutation for each

node.

Step6. If all the necessary conditions are satisfied, update all

the nodes else go to step

IV. RESULTS AND ANALYSIS

The Firefly algorithm presented in this paper was simulated

on MATLAB. The proposed algorithm was empirically

evaluated by executing it with testing data of CloudSim.

Results obtained were compared with the PSO. The figure 2

below depicts the coverage ratio of PSO and Firefly

algorithm. The results are encouraging ones. Also the cost of

best cost for PSO and Firefly Algorithm are calculated. The

computations are shown in figure 3 below.

Figure 2.Comparison of Test Coverage of PSO and Firefly algorithm

Figure 3.Comparison of MAX Test Case Coverage of Minimization using

PSO and Firefly Algorithm

It was observed that best coverage was achieved after 803

iterations in case of PSO whereas Firefly algorithm gave best

coverage after 401 iterations. The difference in performances

of the two is very significant.

V. CONCLUSION AND FUTURE SCOPE

This research work has demonstrated Firefly calculation

based approach for test case minimization. The new

calculation contemplates minimization of test cases as a

streamlining issue with taking in test weights and test span.

The Firefly calculation is picked as a result of its broadly

useful nature and capacity to take a shot at a minimization

issue. The new calculation is to be sure relevant and

successful in limiting suites with huge suite examine

decrease and permits to 99% test scope when contrasted with

~75% of PSO construct calculation relying on the experiment

chose. The instrument can produce coordinated experiments

in the wake of investigating different experiment situations.

In Future we are planning to evaluate the work with more

number of attributes. Also the time complexity of the

execution of Firefly algorithm is to be considered as another

important feature of evaluation

 International Journal of Computer Sciences and Engineering Vol.6 (12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 340

REFERENCES

[1] M. Utting and B. Legeard, Practical model-based testing: a tools

approach. 2010.

[2] P. R. Srivastava, M. Ray, J. Dermoudy, B. Kang, and T. Kim, “Test

Case Minimization and Prioritization Using CMIMX Technique *,”

vol.333031, pp. 25–26.

[3] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for

regression test case prioritization,” IEEE Trans. Softw. Eng., vol.

33, no. 4, pp.225–237, 2007.

[4] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case

prioritization: A family of empirical studies,” IEEE Trans. Softw.

Eng.,2002.

[5] P. Parashar, A. Kalia, and R. Bhatia, “How Time-Fault Ratio helps

in Test Case Prioritization for Regression Testing,” no. 1, 2016.

[6] R. Singh and M. Santosh, “Test Case Minimization Techniques : A

Review 1,2,” Int. J. Eng. Res. Technol., vol. 2, no. 12, pp. 1048–

1056, 2013.

[7] B. S. Ahmed, “Test case minimization approach using fault

detection and combinatorial optimization techniques for

configuration-aware structural testing,” Eng. Sci. Technol. an Int.

J., 2016.

[8] S. Biswas, M. S. Kaiser, and S. A. Mamun, “Applying Ant Colony

Optimization in software testing to generate prioritized optimal path

and test data,” in 2nd International Conference on Electrical

Engineering and Information and Communication Technology,

iCEEiCT 2015, 2015.

[9] E. Engström, P. Runeson, and M. Skoglund, “A systematic review

on regression test selection techniques,” Information and Software

Technology. 2010.

[10]S. Sharma and A. Singh, “Model-based test case prioritization using

ACO: A review,” in 2016 4th International Conference on Parallel,

Distributed and Grid Computing, PDGC 2016, 2016.

[11]Vandana and A. Singh, “Multi-objective test case minimization

using evolutionary algorithms: A review,” in Proceedings of the

International Conference on Electronics, Communication and

Aerospace Technology, ICECA 2017, 2017, vol. 2017–Janua.

[12]M. Rani, “Review of Regression Test Case Selection Techniques,”

vol. 3, no. 5, pp. 1029–1034, 2014.

[13]S. Yoo and M. Harman, “Regression Testing Minimisation,

Selection and Prioritisation : A Survey,” Test. Verif. Reliab, vol. 00,

pp. 1–7, 2007.

[14]T. L. Graves, M. J. Harrold, J. Kim, A. Porters, and G. Rothermel,

“An empirical study of regression test selection techniques,” in

Proceedings of the 20th International Conference on Software

Engineering, 1998, pp. 188–197.

[15]H. Srikanth, L. Williams, and J. Osborne, “System test case

prioritization of new and regression test cases,” in 2005

International Symposium on Empirical Software Engineering,

ISESE 2005, 2005, vol. 00, no. c, pp. 64–73.

[16]P. McMinn and M. Holcombe, “The state problem for evolutionary

testing,” … Evol. Comput. 2003, 2003.

[17]C. Catal and D. Mishra, “Test case prioritization: A systematic

mapping study,” Softw. Qual. J., vol. 21, no. 3, pp. 445–478, 2013.

[18]B. Korel, L. H. Tahat, and M. Harman, “Test prioritization using

system models,” in IEEE International Conference on Software

Maintenance, ICSM, 2005, vol. 2005, pp. 559–568.

[19]P. Gaur and R. S. Singhal, “A critical review on test case

prioritization and optimization using soft computing techniques,”

International Journal of Control Theory and Applications. 2016.

[20]R. Kruse, C. Borgelt, C. Braune, S. Mostaghim, and M.

Steinbrecher, Computational Intelligence: A Methodological

Introduction. 2016.

[21]A. Alert and L. Grunske, “Test data generation with a Kalman

filter-based adaptive genetic algorithm,” J. Syst. Softw., 2015.

[22]H. Duan, Q. Luo, G. Ma, and Y. Shi, “Hybrid Particle Swarm

Optimization and Genetic Algorithm for Multi-UAV Formation

Reconfiguration,” Ieee Comput. Intell. Mag., 2013.

Authors Profile

Mr. Ajmer Singh pursed Bachelors and Masters of
Technology from Kurukshetra University, india. He
is currently pursuing Ph.D. and currently working as
Assistant Professor in Department of Computer
Science and Engineering, DCRUST Murthal,
India..He is a member of IAENG. He has 10 years of
teaching experience and 4 years of Research Experience.

Mr. Rajvir Singh is B.Tech and M.Tech in Computer
Science and engineering. He is pursuing PhD in
Software testing domain. and currently working as
Assistant Professor in Department of Computer
Science and Engineering, DCRUST Murthal,
India..He is a member of IAENG. He has 10 years of
teaching experience and 4 years of Research Experience.

 Vandana is a M.Tech Scholar at DCRUST Murthal, Her area of

interest include soft computing technique and software testing

