

 © 2017, IJCSE All Rights Reserved 314

International Journal of Computer Sciences and Engineering Open Access
Review Paper Volume-5, Issue-6 E-ISSN: 2347-2693

An Enhancement of Bubble Sorting Algorithm

Harsh N. Nankani
1*

, Mukesh Bhandari
2

1*
IT department, Vadodara Institute of Engineering, Gujarat Technological University, Vadodara, India

2
CE/IT department, Vadodara Institute of Engineering, Gujarat Technological University, Vadodara, Gujarat, India

*Corresponding Author: harshnankani196@gmail.com, Mobile no.: +919033622478

Available online at: www.ijcseonline.org

Received: 20/May/2017, Revised: 03/Jun/2017, Accepted: 20/Jun/2017, Published: 30/Jun/2017

Abstract: Sorting is an important technique of data structure which finds its place in many real-life applications. There are

various sorting algorithms are in existence till date. In this paper, we have tried to improve upon execution time of the Bubble

Sort algorithm by implementing the algorithm using an enhancement of it. An extensive analysis has been done by us on the

new algorithm and the algorithm has been compared with the traditional method of Bubble Sort. Observations have been

obtained on comparing this new approach with the existing approaches of Bubble Sort. The new proposed approach was tested

for Average Case analysis, Best Case analysis and Worst case analysis. It has been analysed that the new approach has given

very good results on Average Case and Worst Case analysis. The new approach was tested on random data of various ranges

from small to large. It has been observed that the new approach has given efficient results in terms of execution time. Hence,

we have reached to the conclusion through the experimental observations that the new algorithm given in this paper is better

than the traditional Bubble Sort.

Keywords— Sorting, Bubble sort

I. INTRODUCTION

An algorithm is a finite set of instructions defining the

solution of a particular problem. An algorithm can be

expressed in simple language what we call a pseudo code, in

a programming language, or in the form of a flowchart.

Every algorithm must satisfy the following criteria:

A. Input - Zero or more values, externally supplied.

B. Output - At least one value must be produced.

C. Definiteness – It should be clear and unambiguous.

Information growth rapidly in this world and to search this

info, it should be ordered in meaningful manner. Earlier, it

was estimated that more than half the time on many

commercial machines were spent for sorting. Fortunately

this is no longer true, since sophisticated methods have been

devised for organizing data, methods which do not require

that the data be kept in any special order [1].

In computer science, a sorting algorithm is an

efficient algorithm which perform an important task that

puts elements of a list in a certain order or arrange a

collection of items into a particular order. Sorting data has

been developed to arrange the array values in various ways

for a database. For instance, sorting will order an array of

numbers from lowest to highest or from highest to lowest, or

arrange an array of strings into alphabetical order. Typically,

it sorts an array into increasing or decreasing order. Most

simple sorting algorithms involve two steps which are

compare two items and swap two items or copy one item. It

continues executing over and over until the data is sorted.

Classification of sorting algorithm:

 System complexity of computational.

 Computational complexity in terms of number of

swaps.

 Memory usage is also a factor in classify the sorting

algorithms.

The different cases that are popular in sorting

algorithms are:

 O(n) is fair, the graph is increasing in the smooth

path.

 O(n log n): this is considered as efficient, because it

shows the slower pace increase in the graph as we

increase the size of array or data.

 O(n square) : this is inefficient because if we input

the larger data the graph shows the significant

increase

In mathematics, computing, linguistics, and related

disciplines, an algorithm is a finite list of well

defined instructions for accomplishing some task that, given

an initial state, will proceed through a well-defined series of

successive states, possibly eventually terminating in an end-

state. No generally accepted formal definition of "algorithm"

exists yet. We can, however, derive clues to the issues

 International Journal of Computer Sciences and Engineering Vol.5(6), Jun 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 315

involved and an informal meaning of the word from the

following quotation given by Boolos and Jeffrey (1974,

1999) [2]: "No human being can write fast enough, or long

enough, or small enough to list all members of an

innumerably infinite set by writing out their names, one after

another, in some notation. But humans can do something

equally useful, in the case of certain innumerably infinite

sets: They can give explicit instructions for determining

the nth member of the set, for arbitrary finite n. Such

instructions are to be given quite explicitly, in a form in

which they could be followed by a computing machine, or

by a human who is capable of carrying out only very

elementary operations on symbols".

Efficient sorting is important to optimize the use of other

algorithms (such as search and merge algorithms) that

require sorted lists to work correctly; it is also often useful

for canonicalizing data and for producing human-readable

output. More formally, the output must satisfy two

conditions:

1. The output is in nondecreasing order each element is no

smaller than the previous element according to the desired

total order;

2. The output is a permutation, or reordering of the input.

Since a significant portion of commercial data processing

involves sorting large quantity of data, efficient sorting

algorithms are of considerable economic importance. There

is a good collection of algorithms on sortings techniques

categorized under their execution behaviour which is known

as complexity. Some algorithms like Bubble Sort, Selection

Sort, Insertion Sort have complexity O(n^2) where as other

algorithms like Quick Sort, Heap Sort have complexty

O(nlogn).

II. RELATED WORK

The bubble sort is the oldest and simplest sorting method in

use. Unfortunately, it's also the slowest. Thebubble sort

works by comparing each item in the list with the item next

to it, and swapping them if required. The algorithm repeats

this process until it makes a pass all the way through the list

without swapping any items (in other words, all items are in

the correct order). This causes larger values to "bubble" to

the end of the list while smaller values "sink" towards the

beginning of the list. The total number of comparisons, is (n

- 1) + (n - 2)...(2) + (1) = n(n - 1)/2 or O(n2). The bubble sort

is generally considered to be the most inefficient sorting

algorithm in common usage. Under best-case conditions (the

list is already sorted), the bubble sort can approach a

constant O(n) level of complexity. General-case is an

abysmal O(n2). While the insertion, selection, and shell sorts

also have O(n2) complexities, they are significantly more

efficient than the bubble sort. [2].

Don Knuth, in his famous The Art of Computer

Programming, concluded that "the bubble sort seems to have

nothing to recommend it, except a catchy name and the fact

that it leads to some interesting theoretical problems", some

of which he discusses therein. Bubble sort is asymptotically

equivalent in running time to insertion sort in the worst case,

but the two algorithms differ greatly in the number of swaps

necessary. Insertion sort needs only O(n) operations if the

list is already sorted, whereas naïve implementations of

bubble sort (like the pseudocode below) require O(n^2)

operations. (This can be reduced to O(n) if code is added to

stop the outer loop when the inner loop performs no swaps.)

[3]. Owen says that Bubble sort’s prime virtue is that it is

easy to implement, but whether it is actually easier to

implement than insertion or selection sort is arguable [5].

For example, in [6] we find: ―The bubble sort is worse than

selection sort for a jumbled array—it will require many more

component exchanges—but it’s just as good as insertion sort

for a pretty well-ordered array. More important, it’s usually

the easiest one to write correctly. Authors have tried to bring

the Bubble Sort closer to other sorts by using a new

variation.

Astrachanm in 2003 [8] has investigated the origin of bubble

sort and its enduring popularity despite warnings against its

use by many experts.

Jehad Alnihoud and Rami Mansi in 2010 [9] have presented

two new sorting algorithms i.e. enhanced Bubble Sort and

Enhanced Selection Sort. ESS has O(n^2) complexity, but it

is faster than SS, especially if the input array is stored in

secondary memory, since it performs less number of swap

operations. EBS is definitely faster than BS, since BS

performs O(n^2) operations but EBS performs O(nlogn)

operations to sort n elements.

III. EXISTING BUBBLE SORT ALGORITHM

The bubble sort is an exchange sort. It involves the repeated

comparison and, if necessary, the exchange of adjacent

elements. The elements are like bubbles in a tank of water-

each seeks its own level.

Algorithm

Bubble_Sort(A[] , n)

Step 1: Repeat For i = 1 to n – 1 Begin

Step 2: Repeat For j = 1 to n – i Begin

Step 3: If (A[j] > A[j + 1])

Swap (A[j] , A[j + 1])

End For

End For

Step 4: Exit

IV. PROPOSED WORK

Algorithm

proposed_Bubble_Sort(A[] , n)

Step1: Set c=0

 International Journal of Computer Sciences and Engineering Vol.5(6), Jun 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 316

Step 2: Repeat For i= 0 to n – 1 Begin

Step 3: Repeat For j = 0 to n – 2 Begin

Step 4: If (A[j] > A[j + 1])

Set c=1

 If(j != n – 2 && A[j + 1] > A[j + 2])

Swap (A[j] , A[j + 2])

 Else if(j != n – 2 && A[j] > A[j + 2])

Swap (A[j] , A[j + 1], A[j + 2])

 Else

Swap (A[j] , A[j + 1])

 End For

If(c==0)

 Set i = n

End For

Step 7: Exit

V. CONCLUSION

In this paper, efforts are made to find out some deficiencies

in earlier work related to bubble sorting algorithms. By

going through all the experimental results and their analysis

one can easily conclude that the proposed algorithm is better

for the data elements generated which are randomly ordered.

In an existing algorithm, first complete list is entered, then

the list is processed for sorting, by comparing each element

with its successive element but in case of proposed

approach, in addition, the list is sorted by comparing each

element also with its successive element’s immediate

element. The proposed algorithm can process three elements

in each iteration. The proposed algorithm saves the time for

traversing and comparing the list after obtaining all the

elements.

VI. REFERENCES

[1] Kruse R., and Ryba A., Data Structures and Program Design in

C++, Prentice Hall, 1999.

[2]Boolos, George & Jeffrey, Richard (1974, 1980, 1989, 1999),

Computability and Logic (4th ed.), Cambridge University Press,

London, ISBN 0-521-20402-X: cf. Chapter 3 Turing machines

where they discuss "certain enumerable sets not effectively

(mechanically) enumerable".

[3] Knuth, D. The Art of Computer Programming, Vol. 3: Sorting and

Searching, Third edition. Addison- Wesley, 1997. ISBN 0-201-

89685-0. pp. 106-110 of section.

[4] Cormen T., Leiserson C., Rivest R., and Stein C., Introduction to

Algorithms, McGraw Hill,2001

[5] Owen Astrachan Bubble Sort: An Archaeological Algorithmic

Analysis, SIGCSE ’03, February 19-23, Reno, Nevada, USA.

Copyright 2003 ACM 1-58113-648-X/03/0002.

[6] Cooper, D. Oh My! Modula-2! W.W. Norton, 1990.

[7] Aho A., Hopcroft J., and Ullman J., The Design and Analysis of

Computer Algorithms, Addison Wesley, 1974.

[8] Astrachanm O., Bubble Sort: An Archaeological Algorithmic

Analysis, Duk University, 2003.

[9] Jehad Alnihoud and Rami Mansi, “An Enhancement of Major

Sorting Algorithms,” The International Arab Journal of

Information Technology, Vol.7, No. 1, January 2010.

[10] Knuth, D. The Art of Computer Programming: Sorting and

Searching, 2 ed., vol. 3. Addison-Wesley, 1998.

[11] Iverson, K. A Programming Language. John Wiley,1962.

[12] http://linux.wku.edu/~lamonml/algor/sort/bubble.html

Authors Profile

Mr. Harsh N Nankani pursued Diploma in

Information technology from Polytechnic

of Maharaja Sayajirao University of

Baroda, India in year 2015. He is currently

pursuing Bachelor of Information

technology from Vadodara Institute of

Engineering of Gujarat Technological University, India

since 2015. He is a member of Indian Society of Technical

Education(ISTE) since 2015. His main research work

focuses on Sorting and Searching algorithm.

Mr. Mukesh Bhandari pursued Bachelor

of Technology in Information Technology

from Graphic Era University of Dehradun,

India in 2008 and Master of Technology in

Computer Engineering from Government

Engineering College of Rajasthan

Technical University, India in 2011. He is currently working

as an Assistant Professor in Department of CE and IT of

Vadodara Institute of Engineering, Gujarat Technological

University, India. He is a member of member of ISTE, CSI

and IEEE computer society. He has published more than 13

research papers. His main research work focuses on

Algorithms, Artificial Intelligence, Deep learning. He has 6

years of teaching experience, 2 years of research experience

and 1.5 years of industry experience.

