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Abstract— In this work, we aim to detect and classify different dynamic textures representing scenes of outdoor and 

indoor environments from video sequences. These scenes constitute the vast majority of events in the world, and their 

detection offers a wide range of applications. Optical flow is one of the most popular methods for motion estimation due to 

its efficiency and low computational cost. It is based on the brightness constancy assumption, which assumes a constant 

brightness of the objects between each two frames over time. However, this assumption is not always verified for dynamic 

textures with non-uniform surface brightness, due to reflections, shadows, transparency or material diffusion. As an 

alternative, we propose a new flow estimation method based on texture constancy assumption, which describes the spatial 

texture components motion. The spatial texture of each point of the image, computed using the LBP operator, is assumed 

to be constant over time. The resulting flow is called texture flow. From its velocity vectors, we extract the magnitude and 

orientation, which we combine with the texture spatial features to form a shallow hybrid spatiotemporal descriptor. 

Experimental results on a benchmark database demonstrate both the ability of our method to distinguish between different 

types of dynamic textures, and its stability with respect to inter and intra-class differences. 
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I.  INTRODUCTION  

 

In the world around us, the vast majority of events are in 

motion (pedestrians, cars in the roads, trees shaken by the 

wind, water currents in streams and rivers, escalators, etc.). 

In the image-processing field, these moving events 

constitute dynamic textures. The latter can be broadly 

defined as patterns of spatial textures in motion, thus 

constituting a sequence of images with a certain 

stationarity in time [1], [2]. 

 

A better understanding of the characteristics and properties 

of these types of textures allows a wide range of 

applications, such as indoor/outdoor surveillance (fire, 

flood, traffic, security), autonomous driving, scene 

understanding and interpretation, motion recognition and 

segmentation, texture synthesis and content-based video 

retrieval. These automatic systems, based on visual motion 

information, are therefore supposed to make more reliable 

decisions.  

 

In order to describe these dynamic textures, several 

approaches have been proposed over time. Among them, 

optical flow is considered as one of the most popular 

because of its efficiency and low computational cost. 

Optical flow is defined as the random distribution of the 

brightness components motion in the image. It serves as an 

approximation of the real physical movement of the scene 

by providing a good description of the moving regions [3]. 

Its estimation is based on the brightness constancy 

assumption, which supposes a constant brightness of 

objects between each two frames of the video sequence. 

However, this assumption is not always verified for 

dynamic textures whose surface brightness is not always 

uniform, as it is the case for a wide range of dynamic 

textures in the environment. These changes in brightness 

are often due to reflections, shadows, transparency or 

material diffusion. 

 

In this work, we propose an algorithm for recognition and 

classification of dynamic textures based on the spatial 

texture components motion. A new method for motion 

flow estimation based on the texture constancy assumption 

is first introduced. In this method, we assume that the 

spatial texture of each point of the image, computed using 

the LBP operator, is constant in time. The flow resulting 

from the motion of these spatial textures is called texture 

flow. From the vertical and horizontal components of this 

flow, we compute the magnitude and orientation of the 

texture motion between each two frames. Two features 

representing the two spatial and temporal modes are then 

extracted: (1) for the spatial mode, we use the LBP 

histogram by cumulating the magnitude of the texture 

flow; (2) for the temporal mode, we use the histogram of 

the orientations of the proposed flow by once again 

cumulating the magnitude. For a local representation, these 
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histograms are computed from spatiotemporal windows of 

defined sizes called cuboids, then each cuboid is 

individually classified by feeding it to a previously trained 

SVM classifier. For a first experiment, we apply our 

approach to the DynTex database [4], where we extract the 

confusion matrix from a number of dynamic texture 

classes. We then compare our method to other baseline 

methods and their hybridization. 

 

The rest of the paper is organized as follows. Section 2 

gives an overview of previous work related to dynamic 

texture detection. Section 3 provides a brief description of 

used methods and the proposed approach. Experimental 

results for the evaluation of our algorithm are then 

presented in section 4. Finally, section 5 concludes the 

article. 

 

II. LITERATURE REVIEW  

 

In recent years, research on dynamic textures has aroused 

the interest of the computer vision community mainly 

because of the many potential applications. Several 

approaches have been proposed over time, and can be 

briefly classified into model-based, discrimination-based 

and motion-based methods.  

 

Model-based methods aim at building models founded on 

generative processes for dynamic texture description [1], 

[2], [5]. The parameters extracted from these dynamic 

textures are then classified according to the models that 

represent them. Doretto et al. [6] used the Gauss-Markov 

model for parameter modeling and estimation. This model 

is based on a linear dynamic system (LDS) which explores 

the spatial and temporal regularities of dynamic textures. 

Chan and Vasconcelos [7] proposed the expectation-

maximization algorithm to extract the parameters of 

dynamic textures and classify them. The authors then 

represented the video sequences using a layered dynamic 

texture as a collection of stochastic layers. Although these 

methods are considered quite robust, their applications to 

local-scale moving scenes proved to be less efficient.  

 

On the other hand, discrimination-based methods rely on 

the statistical properties of the spatial distribution of pixels 

in the video sequence. Among the most widely used 

approaches are those based on Local Binary Patterns 

(LBP) [8], which were initially proposed for static textures 

and later extended to dynamic textures. The strength of this 

method lies in its ability to describe the texture locally by 

applying the comparison of each pixel with its 

neighborhood, independently of the compared values. 

Extensions of the LBP include Uniform LBP [9], 

Completed LBP [10], [11] and Extended LBP [12], [13]. 

Among its spatiotemporal extensions are the Volume Local 

Binary Patterns (VLBP) [14], which consider the entire 

three-dimensional neighborhood of the pixel; and the Local 

Binary Patterns from Three Orthogonal Plans (LBP-TOP) 

[15], which compute the LBP features in the three 

orthogonal planes XY, XT and YT. Nevertheless, these 

methods have the disadvantage of having quite large 

histogram sizes, ranging from 2
14

 to 2
26

, which is not very 

suitable for real-time applications. 

 

Finally, motion-based methods are the most popular 

because of their efficiency and low computational cost. 

These methods generally extract the motion properties of 

the dynamic texture from the optical flow. In [16], the 

authors have mapped the amplitudes and directions of the 

normal flow as spatiotemporal textures, allowing a 

representation where the spatial and temporal aspects of 

the texture are coupled. Péteri and Chetverikov [17] used 

the normal flow and the texture regularity to extract 

quantitative features such as orientation, divergence and 

periodicity. Fazekas and Chetverikov [18] adopted an 

analysis of local image distortions from optical flow for the 

extraction of scale-invariant and rotation-invariant 

features. Fazekas et al. [19] also addressed the so-called 

strong dynamic textures (having intrinsic dynamics) by 

evaluating three alternative methods of optical flow 

estimation, namely: gradient constancy, color constancy 

and brightness conservation (when an object can diffuse its 

brightness to its neighborhood). The brightness 

conservation proved to be the most adequate. Optical flow 

has also been combined with other discriminative methods 

in Chen et al. [20]. LBP and WLD (Weber Local 

Descriptor) were used for both spatial and temporal modes, 

and were combined with the Histogram of Oriented 

Optical Flow (HOOF) calculated from the optical flow. 

HOOF, being an optical flow-based approach describing 

the movement properties at each moment, has been widely 

used in events and human actions recognition [21], [22], 

[23]. Recently, Kaltsa et al. [24] have proposed an 

algorithm for recognizing and localizing dynamic textures 

in outdoor environments. The presented descriptor, called 

LBP flow, combines the features of the LBP with those of 

the optical flow by calculating the LBP of the optical flows 

obtained from the three orthogonal planes XY, XT and YT. 

However, motion-based methods rely on two assumptions 

that are not always verified in dynamic textures of a 

stochastic nature: local regularity, where the projected 

motion is assumed to be parallel to the image plane; and 

brightness constancy, which assumes a constant brightness 

of the objects between each two frames through time. In 

the case where the brightness is non-uniform, especially in 

dynamic textures containing a wide diversity of 

luminosities and colors, approaches based on optical flow 

reach their limits.  

 

III. PROPOSED METHOD  

 

The proposed method is divided into two main steps: the 

estimation of the flow and then the extraction of its 

features. For the flow estimation, we present a new 

technique based on the texture constancy assumption, 

where the texture between two frames is assumed to be 

constant in time. From the estimated flow, we extract two 

features, a spatial one based on the local texture and a 

temporal one based on its orientations. 
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A. Texture Flow Estimation 

Optical flow is the random distribution of the brightness 

components motion constituting a given image. Its 

application to a video sequence results in a field of velocity 

vectors that gives a general idea of the direction and 

magnitude of the motion. Thus, the optical flow serves as 

an approximation of the real physical movement of the 

scene and allows a good description of the moving regions 

[3]. 

 

The optical flow principle is based on the brightness 

constancy assumption, i.e. the brightness of each point of 

the image is assumed to be constant over time. Thus, 

between each two frames of the video sequence, the 

brightness of a pixel moves according to two horizontal and 

vertical components according to the following equation: 

 

              

 

With  𝑥 and  𝑦 are the spatial derivatives of the image 

brightness  , and  𝑡 its temporal derivative.   and   are the 

two horizontal and vertical components of the optical flow 

(velocity vectors). 

 

In order to solve this equation with two unknowns, different 

methods have been proposed. Among these is the Lucas-

Kanade method [25], which has been used successfully in 

recent years. The method assumes that the displacement of 

the brightness components between two consecutive frames 

is small, and is approximately constant in a spatial 

neighborhood of a considered point. It is therefore possible 

to assume that the optical flow equation is valid for all the 

pixels of a given window, which makes it possible to 

extract the velocity vectors. These velocity vectors are then 

used to calculate the orientation and magnitude of the 

motion. 

 

However, the optical flow is based on the brightness 

constancy assumption, which means that the brightness of 

an object is assumed to remain unchanged from frame to 

frame. This condition is not always satisfied in natural 

dynamic textures, as in surfaces with non-uniform 

brightness because of reflections, shadows, transparency or 

material diffusion. An example of this type of dynamic 

textures is water, whose appearance changes with location 

and external conditions. Figure 1 shows different aspects of 

the same dynamic texture with a non-uniform surface 

brightness.  

 

 

 
Figure 1. Different aspects of water as a dynamic texture with a 

non-uniform surface brightness (DynTex database [4]). 

 

Other alternatives to brightness constancy have been 

proposed in the literature, among which are gradient 

constancy [26] and color constancy [27].  

 

Gradient constancy was used to bypass changes in 

brightness in the image. The optical flow constraint 

equation based on the gradient constancy assumption (using 

Laplacian here) is given as follows: 

                                        

 

Color consistency has also been used to overcome problems 

caused by brightness changes. The optical flow constraint 

equations based on color constancy are given as follows: 
  
     

     
   

  
 

    
 

    
 

  

  
     

     
   

       

 

With r, φ and θ the components of spherical coordinates in 

RGB space. 

We propose in this work a new method for flow estimation 

based on texture. The estimation of the flow will be based 

only on the texture constancy assumption.  

 

As with brightness and color, texture is considered as an 

important feature for object recognition and description in 

the image. In the case of natural dynamic textures, we 

notice that they can change both brightness and color, but 

generally keep their basic textures. Figure 2.a shows an 

example of a dynamic texture with non-uniform surface 

brightness. This texture contains two regions of different 

illuminations. Based on the brightness constancy 

assumption for optical flow estimation, the two regions 

would have velocity vectors of different magnitudes, the 

larger of which would correspond to the regions of high 

brightness. After the application of the LBP in figure 2.b, 

only the texture is taken into account, and we notice a 

homogenization of the aspect of the dynamic texture 

surface, independently of its brightness. 
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Figure 2. (a) Frame of a dynamic texture with a non-uniform 

surface brightness, and (b) its LBP image. 

 

Based on this principle, we believe that the texture flow, 

calculated from surfaces with different illuminations or 

colors but belonging to the same dynamic texture, will be 

described with approximately similar velocity vectors. 

First, we apply the LBP operator to each frame of the video 

sequence to convert the brightness image into a textured 

image. The LBP is a discriminative method that acts locally 

by comparing each pixel value with its neighborhood. This 

comparison provides a binary sequence that describes the 

texture of each pixel independently of the rate of the 

compared values, thus providing invariance to brightness.  

 

The LBP equation is given as follows: 

       ∑  
   
    (     )

  
    

 

Where s(𝑥) is the sign function, and  𝑐 and  𝑝 are the 

values of the pixel to be evaluated and those of its 

neighborhood respectively. The binary sequence is 

multiplied by the binomial weight of each neighbor (2p), to 

obtain the LBP code of the pixel. 

 

Under the texture constancy assumption, we assume that 

the LBP code of each pixel is constant in time and that it 

moves spatially along two components   and  . This 

assumption can be formulated as follows: 

 

     𝑥    𝑦    𝑡          𝑥 𝑦 𝑡          
 

Where LBPI is the LBP image calculated from the image 

brightness  . 
 

Applying the first-order Taylor approximation of the above 

equation, we obtain the following flow equation: 

 

                         

Where      
 is the temporal derivative of the LBP image, 

whereas       and       are its horizontal and vertical 

spatial derivatives respectively. 

 

In order to solve this equation with two unknowns, we 

apply the same Lucas-Kanade method previously presented 

for the brightness constancy to extract the velocity vectors.  

 

The magnitude and orientation of the flow are then 

calculated as follows: 

  √         

       (
 

 
)   

 

Figure 3 shows the LBP images of two consecutive frames 

of a video sequence and their resulting flow. The video 

sequence is obtained from the Video Water database [28]. 

The orientations of the arrows show the orientation of the 

flow and their sizes show its magnitude. We notice that the 

resulting flow is characterized by homogeneity over the 

entire dynamic surface, and that it was able to uniformly 

describe the movement of water on both bright regions and 

those containing reflections. 

 

 
Figure 3. LBP images of two consecutive frames at time t and 

their resulting flow (Video Water database [28]). 

 

B. Extraction of Flow Features 

Dynamic texture can be recognized by both its dynamics 

and its physical appearance. The texture flow previously 

introduced has the particularity to describe the physical 

aspect of the dynamic texture as well as the dynamics of 

this aspect. First, the video sequence is divided into n × m × 

t non-overlapped regions. For each of these cuboids, we 

extract the features of the two spatial and temporal modes. 

 

1) Spatial Features  

For the spatial mode, we extract the LBP histogram at each 

time t for each n × m block of the frame. This histogram 

contains 2P bins, where P is the number of neighbors used 
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for the calculation of the LBP. Each pixel of the LBP image 

block contributes with its magnitude   (7) obtained 

through the texture flow.  The equation of the histogram 

extracted for each instant 𝑡 is given as follows: 

 

     ∑   
   ∑   

                          

  𝑡        𝑥 𝑦  {
         

            

   

 

These histograms are then concatenated to obtain a spatial 

descriptor vector of size 2P × t. 
 

2) Temporal Features  

Inspired by the success of the Histograms of Oriented 

Optical Flow (HOOF) [21], which is an optical flow-based 

approach describing the motion characteristics at each 

instant, we use a similar descriptor based on texture flow, 

which we call Histogram of Oriented Texture Flow 

(HOTF). 

 

For each instant 𝑡 in an n × m block, the magnitudes of the 

texture flow are cumulated in a histogram of orientations   

(8) using   bins. The orientation of each pixel of the block 

is assigned in a bin as follows: 

 
 

 
  

   

 
         

 

 
  

 

 
                

 

The histograms obtained are then concatenated to obtain a 

temporal descriptor vector of size B × t. 
 

 
Figure 4. Feature extraction scheme from the texture flow applied 

to an n × m sized patch during 𝑡 consecutive frames. 

Finally, the two spatial and temporal descriptor vectors are 

concatenated and then normalized to form a shallow 

spatiotemporal descriptor vector of size (2P+ B) × t for each 

cuboid n × m × t.  
 

Figure 4 shows the feature extraction scheme from the 

texture flow applied to a patch of size n × m during 𝑡 

consecutive frames. 

 

IV. EXPERIMENTAL RESULTS 

 

We first start by defining the parameters that we will use 

during the experiment in which we evaluate our method on 

the DynTex benchmark database [4]. For this, we use the 

different dynamic texture classes of the database, where 

each class is subdivided into two thirds for training and the 

other third for testing. 

 

A. Parameters Settings 

To estimate the texture flow, two parameters are involved: 

the number of neighbors P, used for the calculation of the 

LBP operator of each frame; and the size of the 

neighborhood of each point, which is assumed to be 

constant during the flow estimation using the Lucas-Kanade 

method. In order to assimilate the texture flow to the 

standard optical flow which is based on brightness varying 

from 0 to 255, we have defined the number of neighbors P 

to 8 immediate neighbors, thus allowing the LBP codes to 

also vary between 0 and 255. For the flow estimation 

window, the use of a small window has the ability to 

capture the most subtle movements, but risks missing larger 

movements. Contrary, a larger window shows an inverse 

behavior, which gives some resistance to occlusions, but 

increases considerably the computational cost. As a 

compromise between these two behaviors, a size of 21 × 21 

was adopted when estimating the texture flow.  

 

For the extraction of spatial and temporal features, the 

cuboid size n × m × t constitutes a compromise among the 

descriptors accuracy, their local or global nature, and the 

computational cost. A small spatial window will be able to 

describe the dynamic texture in a more local way, but may 

not contain enough details for a proper discrimination; 

while a larger spatial window may confuse different 

textures of the same scene or ignore some of them. Since 

the emphasis here is on recognition rather than 

segmentation, we choose for the experiment a spatial 

window with dimensions n = m = 101. The time window 

also plays an important role in the accuracy of the 

descriptors. A high number of considered frames results in 

larger descriptor vectors, containing more information for 

better discrimination, but increasing the computational cost. 

For each of the videos in the database, we set t = 10 frames 

only. 

 

For the extraction of the flow orientations histogram, a high 

number of bins describes the most subtle dynamic texture 

movements, but this is likely to generate noise; while a 
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lower number describes the movement in a coarser way. 

We use in this work 24 orientations spaced by 15°.  

 

As output, we obtain a spatiotemporal descriptor vector of 

size (2
8 

+ 24) × 10 for each patch of size 101 × 101. This 

vector is then passed to an SVM classifier for individual 

classification. 

 

B. Database 

For the evaluation of our algorithm, we used the renowned 

DynTex database [4]. It is one of the main databases 

dealing with dynamic texture classification. It contains a 

wide variety of high quality videos divided into several 

classes, sometimes with high intra-class variance. These 

classes represent dynamic textures found mainly in outdoor 

environments (sea, trees, automobile traffic, flags, etc.), but 

also indoor environments (escalators). Each class is divided 

into two thirds for training and one third for testing.  

 

Figure 1 shows examples of dynamic textures extracted 

from DynTex database. Although these textures belong to 

different classes (sea, calm water, fountains), they can also 

be classified under a single mother class (water). 

 

C. Recognition 

The recognition experiments give a general idea of the 

algorithm's performance in extracting the different 

characteristics constituting the spatiotemporal behavior of 

each dynamic texture, as well as its ability to distinguish 

them. For this purpose, we evaluate the accuracy of the 

algorithm by assigning the video sequences from the test 

data to their corresponding representational categories. 

Each input video is thus associated to a unique class 

according to its SVM output. 

 

Eight classes from DynTex database were used for the 

experiment, namely: flag, grass, trees, fountains, sea, calm 

water, escalator, and traffic. These classes essentially 

represent dynamic textures found in outdoor environments, 

and can also be subdivided into subclasses belonging to 

more general classes. 

 

Table 1 presents the confusion matrix of the classification 

accuracies obtained for these eight classes. As indicated, 

our method achieves high accuracy for 6 out of the 8 

classes. The classes containing flags, fountains, escalators 

and traffic are perfectly distinguished and are not confused 

with any other dynamic texture, although they may have 

roughly similar temporal behaviors. 

 

 
Table 1. Confusion matrix of the classification accuracies of eight classes from DynTex database. 

 

 

This is explained by the nature of our method which 

focuses on the motion of the local spatial behavior of the 

texture, rather than its apparent motion. Moreover, it 

combines these spatial and temporal behaviors to describe 

the dynamic texture in a spatiotemporal way. Thus, 

dynamic textures with similar dynamics would not be 

confused since they would look different, and vice-versa. 

However, this allows our algorithm to overcome intra-class 

differences that may be encountered within some more 

general classes. As mentioned in the table, 

misclassifications of some classes refer to other classes of 

the same nature. The two classes 'calm water' and 'sea', 

which have been confused, can in fact be considered sub-

classes of the more general 'water' class, which indicates 

that our algorithm has been able to recognize the 

spatiotemporal behavior of water. Although fountains also 

represent water, they have not been confused because their 

spatiotemporal behavior is usually different from that of 

surface water (spouting, dripping). On the same principle, 

the 'trees' class has also been confused with the 'grass' one, 

both of which may belong to the general class 'vegetation'. 

We then compare our method to other similar methods also 

used. Table 2 includes two baseline methods and their 

hybridization, namely: the Histogram of Oriented Optical 

Flow (HOOF) [21] and the LBP operator [8]. For the 

feature extraction of each of these methods, we used 

spatiotemporal windows of the same size, and an identical 

number of bins equal to 24 for both HOOF and HOTF 

(Histogram of Oriented Texture Flow). 

 

It is easily noted that the results are less efficient when 

using a descriptor acting on a single dimension, in 

particular the LBP for the spatial dimension and the HOOF 

for the temporal one. However, during their hybridization, 

dynamic textures are more adequately distinguished. 

Indeed, a dynamic texture class can usually resemble 

another either spatially or temporally, but hardly 

spatiotemporally. Nevertheless, LBP+HOOF is 

 Flag Grass Trees Fountains Sea Calm water Escalator Traffic 

Flag 100%        

Grass  100%       

Trees  14.3% 85.7%      

Fountains    100%     

Sea     100%    

Calm water     14.3% 85.7%   

Escalator       100%  

Traffic        100% 
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characterized by a weak intra-class distinction. As shown in 

the table, the two classes 'sea' and 'calm water', 

characterized by a high similarity, are generally 

misclassified, both with an accuracy of 71.43%, against 

100% and 85.71% respectively when hybridizing with the 

texture flow (LBP+HOTF). This difference between the 

two hybridizations is mainly due to the time component. 

Different from the optical flow which describes the motion 

of the apparent brightness, the texture flow describes the 

motion of the spatial texture itself, which leads to a 

temporal descriptor taking into account the most subtle 

changes of the texture over time, regardless of changes in 

illumination or color. Thus, this property allows a more 

precise distinction between classes of similar apparent 

behavior. 

 

As an overall average accuracy, the proposed method 

achieves a score of 95.83% on the totality of videos used 

for the test, outperforming the baseline methods. This 

proves the robustness of our approach as well as its stability 

with respect to inter and intra-class differences. In addition, 

the use of only 10 frames when extracting temporal features 

has little effect on accuracy, but significantly reduces the 

size of the descriptor, making the approach suitable for real-

time applications. 

 
Table 2. Comparison with baseline methods and their 

hybridization of eight classes from DynTex database. 

DT classes HOOF LBP LBP+HOOF LBP+HOTF 

Sea 57.14 42.86 71.43 100 

Grass 71.43 57.14 100 100 

Trees 57.14 85.71 85.71 85.71 

Flags 57.14 100 100 100 

Calm water 85.71 71.43 71.43 85.71 

Fountains 85.71 71.43 100 100 

Escalator 100 50 100 100 

Traffic 75 100 100 100 

Average 70.83 72.92 89.58 95.83 

 

V. CONCLUSION 

 

In this work, we addressed the problem of recognition and 

classification of dynamic texture based on the spatial 

texture components motion. We first introduced a new 

technique for estimating the motion flow based on the 

texture constancy assumption. This assumption consists in 

assuming that the spatial texture of each pixel of the frame 

is constant in time. The texture was computed using the 

LBP operator, then its flow was estimated using the Lucas-

Kanade method. The resulting flow was called texture flow. 

From the velocity vectors of this flow, we extracted the 

magnitude and orientation, which we combined with texture 

spatial features to form a shallow hybrid spatiotemporal 

descriptor. For each spatiotemporal window, we cumulated 

the magnitudes of the texture flow in two histograms: the 

LBP histogram for the spatial mode, and the Histogram of 

Oriented Texture Flow (HOTF) for the temporal mode. 

Each resulting vector was fed to an SVM classifier 

individually.  

 

We then tested our method on the DynTex benchmark 

database using eight classes. The obtained accuracies 

reached high scores for the majority of the classes, with an 

overall score of 95.83%. We also compared our method to 

other baseline methods such as LBP, HOOF and their 

hybridization, by applying them on the same classes and 

using the same parameters. It seems clear that our method 

allows a better classification due to its ability to overcome 

intra-class variations, which makes it stable towards both 

inter and intra-class differences. Moreover, the reduced size 

of the spatiotemporal descriptor makes our approach 

suitable for real-time applications. 
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