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Abstract—Mining frequent closed itemsets from data streams is an important topic. In this paper，we propose an algorithm for 

mining frequent closed itemsets from data streams based on a time fading module.  By dynamically constructing a pattern tree, 

the algorithm calculates densities of the itemsets in the pattern tree using a fading factor. The algorithm deletes real infrequent 

itemsets from the pattern tree so as to reduce the memory cost. A density threshold function is designed in order to identify the 

real infrequent itemsets which should be deleted. Using such density threshold function, deleting the infrequent itemsets will not 

affect the result of frequent itemset detecting. The algorithm modifies the pattern tree and detects the frequent closed itemsets in 

a fixed time interval so as to reduce the computation time. We also analyze the error caused by deleting the infrequent itemsets.  

The experimental results indicate that our algorithm can get higher accuracy results, needs less memory and computation time 

than other algorithm  
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I.  INTRODUCTION  

Today, tremendous amounts of data and potentially infinite 

volumes of data streams are generated in many applications 

such as network intrusion detection, financial transaction 

flows, telephone call records, sensor streams, and 

meteorological data. Unlike the finite, statically stored data 

sets, a data stream is massive, continuous, temporally 

ordered, dynamically changing, and potentially infinite. A 

typical example of stream data is the trading of public 

securities in the United States. The approximately 50,000 

securities generate 100,000 quotes and trades per second. 

For the stream data applications, the volume of data is 

usually too large to be stored or scanned more than once. 

Furthermore, because the data objects can be only 

sequentially accessed in the data streams, random data 

access techniques are not practical.  

.Due to the characteristics of data streams described above, 

the mining algorithm must be able to process such data 

online in real time and use limited memory space. Therefore, 

the mining algorithms on traditional static data sets are not  

applicable for stream data.    

Mining frequent closed itemsets (FCI) is a fundamental 

problem in stream data mining.  Recently, an abundant body 

of research on mining frequent itemsets in one data stream 

emerged [1-9,17]. In many applications, recent data in the 

stream is more meaningful. One way to handle such problem 

is using sliding window models which ignore the out of date 

data and only consider the recent data. Recently several data 

mining algorithms over sliding windows [1][2] are proposed.  

Sliding window has two typical models: milestone window 

and fading window. Li [3] proposed an algorithm named 

NewMoment on a transaction-sensitive sliding window to 

obtain the FCI in data streams. They also proposed an 

efficient method to represent the itemsets by bit sequences   

so as to reduce the time and space. Nan Jiang[4] presented 

an incremental method for mining FCI in data streams which 

can output the current FCI according to the threshold defined 

by the user. Chi [5] introduced a compressed data structure 

CET to dynamically choose the itemsets in the sliding 

window. The selected itemsets contain both FCI and other 

itemsets which can be distinguished though a demarcation 

line. The change of data streams can be found through the 

change of the demarcation line. Fujiang Ao [6] proposed 

FPCFI-DS. And in the first window it used a mixed 

stratagem FP-tree with single dictionary order to mining the 

FCI. When window sliding, the FP-tree and the FCI should 

be updated. Wang [7] proposed an algorithm substituting for 

top-k FCI mining algorithm. The length of the FCI is not less 

than min_l, k is the expect count of the mined FCI, and min_l 

is the minimum length among every itemset. An algorithm 

TFP with undefined minimum support is used to mine this 

kind of itemsets. MOMENT is proposed by Chi[8] which is 

a representative algorithm for mining FCI in data streams. 

There are two main problems existing in Moment. The first 

one is it adopt sliding window mechanism which is hardly to 

be used to concern the global change in time. Moment 

algorithm uses a precise model so when maintaining and 

updating the information frequently, the efficiency is 
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reduced. Also, the exchange of new and old transactions in 

the windows is achieved by two independent operations, 

addition and deletion. It may cause data bump. A-

Moment[9] is an improved algorithm of Moment for mining 

recent FCI. When a transaction occurs in the data stream, A-

Moment deals it in 4 phases: current window evaluating 

phase, counting updating phase, CET maintaining phase and 

FCI selecting phase. It uses the time damped window 

technique to deal with the reached data, and during the 

mining process it also use approximate count method and 

distributed updating strategy to get higher mining efficiency. 

The disadvantage of A-Moment is in the prune operation of 

CET maintaining phase, all the itemsets that don’t meet the 

support will be deleted, regardless the transaction is new or 

old. This may affect the mining accuracy. The selection of 

closed itemsets in processed when user required, itemsets 

might be too frequent or incomplete. And Liu improved A-

Moment in 2009 to enhance the performance of the 

algorithm. 

To emphasize the importance of the recent data, there is 

another model for frequency measures in data stream which 

is called time fading model [10-12].  In this model, data 

items in the entire stream are taken into account to compute 

the frequency of each data item, but more recent data items 

contribute more to the frequency than the older ones. There 

are two advantages of the time fading model over the sliding 

window model. One is that in the time fading model, 

frequency takes into account the old data items in the 

history, while the sliding window model only observes 

within a limited time window and entirely ignores all the 

data items outside the window. This is undesirable in many 

real applications. The second is that in the time fading 

model, when more data arrive continuously, the frequency 

changes smoothly without a sudden jump which may occur 

in the sliding window model[13-16].  

In this paper, we proposed an algorithm for mining frequent 

closed itemsets from data streams based on a time fading 

module. Our experimental results indicate that our algorithm 

can get higher accuracy results, needs less memory and 

computation time than other algorithm. The main 

contributions of this paper are as follows: (1) We present an 

algorithm for dynamically constructing a pattern tree, and 

calculates densities of the itemsets in the tree using a fading 

factor. (2) A density threshold function is designed in order 

to identify and delete the real infrequent itemsets so as to 

reduce the memory cost. We have proved that using such 

density threshold function, deleting the infrequent itemsets 

will not affect the result of frequent itemset detecting. (3) 

We define a time gap for the algorithm to modify the pattern 

tree and detect the frequent closed itemsets so as to reduce 

the computation time. We also analyze the error caused by 

deleting the infrequent itemsets. 

 

II. CONCEPTS AND DEFINITIONS  

In this section, we describe a time fading model using an 

fading factor λ .  To emphasize the importance of recent 

data, we use a fading factor (0,1)λ ∈  in calculating the data 

itemsets’ support counts. In each time step, the support count 

of a data itemset will be reduced by the fading factor λ . 

 

A. Density and fading factor 

Definition 1: The density and fading factor of an item 

The density of an itemset I at time t is defined as 
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, a(t) is the transaction 

occurs  at time  t, and λ  (0 1)λ< <  is a constant called 

fading factor.  

Lemma 1:  The density of each itemset I satisfies 

               1
( , )

1 λ
<

−
D I t .                   (2) 

Proof: If an itemset occurs in every time from time 1 to t, it 

will get the highest density  

2 1 1 1
1 ...

1 1

λ
λ λ λ

λ λ
− −
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− −

t
t .   Q.E.D. 

Due to the effect of fading factor, the density of an itemset is 

constantly changing. However, we found that it is 

unnecessary to update the density values of all itemsets at 

every time step. Instead, it is possible to update the density 

of an itemset only when an identical itemset is received from 

the data stream. For each itemset, the time when it was last 

received should be recorded. Suppose an itemset I is 

received at time tn, and the last time when I was received 

before is ts (tn>ts), then the density of I can be updated 

according to the following lemma.  

Lemma 2:  Suppose one transaction received at time at  

contains item p and the last time p appeared is ct , then the 

density of p can be updated by the formula as follows: 

( , ) ( , )* 1a ct t

c a
D I t D I t λ −= +

.             (3) 

Proof: if >
s

t t  and before time t, the last moment received 

data set I  is ts, obviously that ( , ) ( , )λ −= st t

s
D x t D x t . The 

density of the item is continuously changed. However, it is 

not necessary to update the density of all data records in each 

time step. On the contrary, only when a new data received 

from the data stream, the data density should be updated. For 

each data item, the moment it receives the latest data need to 

be recorded. By this way, the density of the data item can be 

updated when the same item is arriving.According to 

Lemma 2, the algorithm does not update the density values 

of all the itemsets at every time step. Instead, it updates the 

density of the itemset only when an identical itemset is 

received from the stream. Therefore, tc, which is the last time 
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when the density of an itemset which was updated should be 

recorded. 

B. Time interval gap for itemset density inspection   

In the data stream, density of an itemset changes over 

time. A frequent itemset may degenerate to a non-frequent 

one if it does not occurs for a long time. On the other hand, 

an infrequent itemset can be upgraded to a frequent one 

after it appears in some new transactions. Therefore, after a 

period of time, density of each itemset should be inspected.  

A key decision is the length of the time interval for itemset 

inspection. It is interesting to note that the value of the time 

interval gap cannot be too large or too small. If gap is too 

large, dynamical changes of data streams will not be 

adequately recognized. If gap is too small, it will result in 

frequent computation and increase the time complexity. 

When such computation load is too heavy, the processing 

speed may not match the speed of the input data stream. We 

propose the following strategy to determine the suitable 

time interval gap.  

Let the error bound of the density value beε . Suppose one 

itemset is frequent and its density is 
1 λ−

S
 and after time mt  

it will be less than
1

ε
λ

−
−

S . Then we have
1 1

λ ε
λ λ

≤ −
− −

mt
S S . 

Therefore tm must satisfies:
(1 )

logλ

ε λ− −
≥

m

S
t

S
. We choose 

gap to be small enough so that any change of a itemset from 

frequent to infrequent can be detected. Thus, we set: 

gap= (1 )
logλ

ε λ− −S

S
. 

C. Density threshold function  

A serious challenge for the frequent itemset detecting is the 

large number of candidates, especially for high-dimensional 

data. In our implementation, we allocate memory to store 

the potential frequent itemsets, and delete the real 

infrequent itemsets. When the density of an item is less than 

Dl =
1

S
ε

λ
−

−
with time changes, this item is considered 

infrequent. Thre are two types of such infrequent itemsets: 

one is the itemsets which really occur in the stream, the 

other is the itemsets which occurred frequently in the past, 

but as time goes on, the density is reduced by the fading 

factor.  We should delete the former to reduce the memory 

cost, and keep the later to ensure the accuracy of the results. 

In order to distinguish the two types of infrequent itemsets, 

we define the density threshold function as follows. 

 

Definition 2: Density threshold function 

Suppose the last update time of an itemset I is tg, then at time 

tc (tc > tg), the density threshold function is: 
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We use 
min

( , )
g c

D t t  to detect real infrequent itensets.   For an 

itemset I, if ( , )
g c

D t t <
min

( , )
g c

D t t , I can be considered as an 

infrequent itemset and it can be deleted from the memory. 

Since 
min

( , )
g c

D t t  can adaptively change its value according 

to ct  , it is able to distinguish the newer and older itemsets, 

and can be used to identify two different types of infrequent 

itemsets. When an itemset has not occured for a long time, 

its density threshold will increase and its density will 

possibly be less than the threshold. But when an itemset 

occurs recently, its density threshold will become smaller, 

therefore it will not be deleted as an infrequent itemset. 

It should be noted that once an infrequent itemset is 

deleted, its density is in effect reset to zero since it is not be 

stored in the memory. A deleted itemset may be added back 

to the memory if it occurs later, but its previous density is 

discarded and will restarts from zero. Such a dynamic 

mechanism maintains a moderate size of memory used, 

saves computing time.   
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D.  Complete density function  

Although deleting infrequent itemsets is critical for the 

efficient performance of our algorithm, an important issue 

for the correctness of this method is whether the deletions 

affect the results. In particular, since an infrequent itemset 

may occur later and become a frequent one, we need to 

know if it is possible that the deletion prevents this itemset 

from being correctly detected as a frequent one. We have to 

prove that the density threshold function we defined and the 

deletion rules can ensure that a frequent itemset will never 

be falsely deleted due to the removal of infrequent ones. To 

investigate this problem, we first define the concept of 

complete density function.  

Consider an itemset I, whose density at time t is D(g, t). 

Suppose that it has been deleted several times before t (the 

density is reset to zero each time) because its density is less 

than the density threshold function at various times. 

Suppose these density values are not cleared and all historic 

data are kept, we call this density of I the complete density. 

 

Definition 3 Complete density function of an itemset 

Suppose from the beginning to the current time ct , an 

itemset I occurs at times mttt ,...,, 21 , then the complete 

density function ( , )
a c

D I t of I at time tc is defined as the 

summation of all the densities of occurrences of I (include  

the deleted densities) , just as ( , )
a c

D I t =
1

c i

m
t t

i

λ −

=

∑ . 

From definition 3, it can be found that complete density 

function ( , )
a c

D I t  is more accurate than ( , )
c

D I t to reflect 

the density of  itemset I.  

Theorem 1:  Suppose the last time an itemset  I is deleted is 

m
t  and  the last time I occurs is 

g
t (

g
t >

m
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time
c

t , the density of I satisfies : ( , )
c
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i=1,…,m.  Thus, if all these previous densities of itemset I 

are  not deleted, the complete density function satisfies 
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Therefore, by property (1) in Lemma 3, it can be found that            

min
( , ) (1, )

a c c l
D I t D t D< < .                      Q.E.D. 

Theorem 1 shows that deleting an itemset by density 

threshold function
min

( , )
g c

D t t will not cause frequent itemset 

to be falsely deleted. . It shows that, if I is deleted at time t, 

since 
min( , ) ( , )

g c
D I t D t t< , then even if all the previous 

deletions have not occurred, it is still infrequent since 

( , )
a c l

D I t D< .   

From definition 1, it is easy to find that the complete density 

function of an itemset satisfies ( , ) ( , )
a c c

D I t D I t> . We use 

( , )
c

D I t  as the density of itemset I instead of  its real density 

( , )
a c

D I t , does it affect the result of frequentness of I?  The 

following theorems estimate the error of the results   using 

( , )
c

D I t , and show that it will not affect the result of 

frequent itemset detecting.  

Theorem 2: Suppose ( , )
c

D I t , the density of itemset I at 

time 
c

t  , satisfies ( , )
c l

D I t D< , then 

( , ) ( )
a c l t c

D I t D t< + ∆ .       Here lim ( )
c

t c
t

t
→∞

∆ =0. 

Proof: Suppose itemset I has been previously deleted for the 

periods of ),1(),....,,1(),,0( 1211 mm ttttt ++ −
, then its 

complete density function ( , )
a c

D I t  at time ct is 
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                                                                                    Q.E.D.  

Theorem 3:      If ( , )
c l

D I t D> , then ( , )
a c l

D I t D> . 

Proof: According to definition 3 it is obviously 

that ( , ) ( , )
a c c

D I t D I t≥ , therefore ( , )
a c l

D I t D> .      Q.E.D. 

Theorem 3 shows that using ),( ctID  as a density measure 

for itemset I can ensure that all the itemsets detected are 

frequent ones. 

 

III. PATTERN TREE AND ITS CONSTRUCTION 

ALGORITHM 

 

A. Data structure  

In the algorithm a pattern tree, a head table and a frequent 

closed itemsets table are used.  

1. Pattern tree.  In the pattern tree, each node represents an 

item with the form as follows:  

 

 

Here, node_item is the item the node  represents, node_dens 

is the current density of the item,  ct  is the last time the node 

was modified and node_link is the pointer to its paerant in 

the tree. In the pattern tree, each path from the root to a leaf 

node represents an itemset, and each of its sub-path also 

represents an itemset. Children of a node represent different 

node_item     node_dens           ct          node_link 
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items. Nodes on each path from root to leaf are arranged in a 

descend order of their node_dens. The real density of the 

node in current time t is node_dens * ct tλ −
. 

2. Head table.  In the pattern tree, identical items form a 

chain. The heads of those chains form a head table. Each 

entry of the head table is as follows:  

 

 

 

Here, item is the item of the entry, dens is the current density 

of the item,  ct  is the last time the entry was modified and 

link is the pointer to the first node of the chain in the pattern 

tree. The real density of the item in current time t is dens 

* ct tλ −
. 

3. Frequent Closed Itemsets Table (FCIT).  In our algorithm, 

a frequent closed itemsets table is used to store the frequent 

closed itemsets detected.  

 

 

 

Here, itemset is the itemset of the entry, dens is the current 

density of the itemset, ct  is the last time the entry was 

modified. The entries are arranged in a descend order of their 

dens values. The entries with the same dens value are 

arranged in the lexical order.  

B. Framework of the Algorithm  

Algorithm: FCI_Mining(D) 

Input:     D:       the data Stream; 

Output: FCIT:  the frequent closed itemset table; 

Begin: 

1. Create an empty tree as the initial pattern tree： 

 ;
a

T t= Φ = 1； 

2. while not of the end of the stream D do 

3.     Receive a new transaction  t from the  stream;    

4.     AddTrans( ,T t ); 

5.     if mod 0
a

t gap =  then 

6.         Perform pruning operation on the infrequent 

nodes; 

7.        Mining FCIT (T )   

8.     end if; 

9.    
a a

t t= +1 ;  

10.  end while ; 

End 

In this algorithm, lines 3-4 receive a transaction from the 

stream and insert it to the pattern tree. Lines 5-6 perform 

running operation on the infrequent nodes. Lines 7 searches 

on the pattern tree to identify all the frequent closed itemsets 

and inserts them into frequent closed itemsets table. The 

procedure AddTrans( ,T t ) in line 4 inserts the  new 

transaction t to the pattern tree. Details of AddTrans ( ,T t ) 

are described as follows. 

Algorithm: AddTrans ( ,T t ) 

Input: T : pattern tree; 

            t :  New transaction received from the stream; 

Output: T： the updated pattern tree; 

Begin: 

1. Sort the items in the new transaction t  according to 

their last times received form the stream; 

2.  Let  ( | ),t b B b=  is the first item of t ; 

3.  if  root of T has a child x  that node_item( x ) = b  

then 

4.      node_dens( x ) = node_dens( x ) * a c
t tλ −

 + 1 

5.      node_
c

t  ( x ) = 
a

t ; 

6.   else create a new node x  as a child of  root  T  ; 

7.      node_item( x ) = b ; 

8.      node_dens( x ) = l; 

9.      node_
c

t  ( x ) = 
a

t ;; 

10.   end if 

11.  if B  is not empty then 

12.   AddTrans( ,x B ); 

13.  end if 

End 

In algorithm AddTrans ( ,T t ), lines 3-5 process the first item 

b in the new transaction t.  If there is a child x of the root 

identical to b, the algorithm updates its values of node_dens 

and node_
c

t accordingly. If there is no such child of the root 

identical to b, lines 6-10 create a new node x for b as a child 

of the root, and record the values of node_dens and 

node_
c

t of the node. If there is an itemset B after the first 

item b in the new transaction t, line 12 recursively calls 

AddTrans( ,x B ) to process the set of the rest items in t. 

Whenever  a new transaction is inserted into the pattern tree, 

the algorithm recalculates density of the nodes involved and 

prune the ones with destiny less than the threshold. 

 

IV. FREQUENT CLOSED ITEMSETS MINING 

 

A. Property of the pattern tree 

For the the pattern tree constructed by talgorithm AddTrans, 

we have the following lemma.  

Lemma 4: In the pattern tree T generated by FCI_Mining 

algorithm, nodes in the path from the root to the leaf are 

arranged in the descending order of their node_dens values.  

Proof: We prove the lemma by mathematical inductive 

method on time t. When t=1, since there is only one 

transaction on the only path in the tree, and densities of all 

the items are 1, the conclusion is obviously correct.   

Assume when 
a

t =t, the conclusion is correct, namely all the 

nodes in each path from the root to the leaf are arranged in 

the descending order of their node_dens values. Since only 

the densities of the nodes on the path related to the new 

added transaction are updated, we need only to prove the 

item           dens               ct                  link 

itemset              dens                  ct    
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nodes on this path are arranged in the descending order of 

their node_dens values.   

Let the new transaction be
1 2

( , ,..., )
k

I I I  , the path densities 

of the nodes 
0 1 2
, , ,...,

k
I I I I of two types of paths should be 

updated.  One type is the path of 
0 1 2
, , ,...,

k
I I I I , the other 

type consists of the paths sharing common prefix with 

0 1 2
, , ,...,

k
I I I I .     

(1) The first type: On this type of path, nodes can be 

partitioned into two parts: one part consists of the nodes 

which already exist in the tree before the new transaction 

arrives; the other part consists of the new nodes inserted 

when processing the new transaction. Suppose nodes in the 

first part are 
0 1 2
, , ,..., (0 )

j
I I I I j k≤ ≤   , and those in the 

second part are
1 2
, ,...,

j j k
I I I+ + . Since the path from 

1
I  to 

j
I exist before the new transaction arriving, their densities 

are in the descending order by the induction hypothesis. Let 

the density of 
j

I be dens(
i

I )， and the last time of its 

occurrence be ( )
c i

t I . Then we have：dens(
i

I )>dens(
1+i

I ) 

Since the items in a path are arranged according to their last 

times they are received from the stream, we also have : 

1
( ) ( )

c i c i
t I t I +>  

Therefore, their updated densities satisfy:  

dens(
i

I )*
( )

1λ − +a c it t I
 > dens(

1+i
I ) * 1( )

1λ +− +a c it t I
.  

Namely, nodes in the path
0 1 2
, , ,...,

j
I I I I  are arranged in the 

descending order of their node_dens values. 

Since nodes
1 2
, ,...,

j j k
I I I+ +  in the second part are newly 

inserted into the tree, their densities are all equal to 1. 

Noticing that dens(
j

I )*
( )a c jt t I

λ
−

+1 > dens(
j

I +1
)=1,  nodes 

in the path 
1

, ,...,
j j k

I I I+  are also arranged in the descending 

order of their node_dens values. 

(2) The second type:  This type of paths  have common 

prefix with
1 2

...
k

I I I . Let the path be 
0 1 2 1

... ' ... '+j j k
I I I I I I , 

where
1 2 ...

j
I I I  is the common subpath. Similar to the proof 

in the first type, we can prove that nodes in the 

subpath
0 1 2 ...

j
I I I I  are arranged in the descending order of 

their modified node_dens values.  Since densities of nodes 

1
' ... '+j k

I I are not modified, their densities are in the 

descending order by the induction hypothesis. Therefore, we 

know that nodes in the path
0 1 2 1

... ' ... '+j j k
I I I I I I  are arranged 

in the descending order of their node_dens values.    Q.E.D. 

B. The algorithm for mining FCI  

According to the above definitions and lemmas, the 

algorithm for mining the frequent closed itemsets is as 

follows: 

Algorithm MiningFCI(T) 

Input:    T:  A pattern tree rooted at T; 

              FCIT : Frequent closed itemset table; 

Output: the updated FCIT 

begin 

1   i=0  

2   while not end of the stream do; 

3       i=i+1; 

4       if I mod gap=0 then TreeMining( ', ,ΦT I ); 

5  end while 

End 

In every gap times, line 4 in the algorithm calls procedure 

TreeMining( , ,T Iα ) to  mine the frequent closed itemsets.  

Procedure of TreeMining( , ,αT I ) is described as follows. 

Algorithm TreeMining( , ,αT I ) 

Input: T: root of the pattern tree; 

α  is the subpattern; 

FCIT : Frequent closed itemset table; 

Output: the updated FCIT; 

Begin: 

1  if T contains a single path p  then 

2      for each node in β  route p  which appears in 
i

I  do 

3        generate FI β αU ； 

4        its density is equal to the smallest density 

among β ； 

5         InsertFCIT( β αU )； 

6   else 

7      for each 
i

α  which contains in 
i

I  and appears in the 

head table do 

8         generate itemset 
i

β α α= U ； 

9         the density is equal to the density of
i

α ； 

10       construct the conditional pattern tree of β  which 

only contains the nodes in
i

I ; 

11        Suppose the root of this tree is 
1

T ; 

12        if 
1

T ≠ Φ  then 

13            TreeMining(
1
, ,T Iβ ); 

14        end if 

15      end for 

16 end if 

End 

Lines 4-5 implement procedure InsertFCIT to insert the new 

arriving transaction into the frequent closed itemset table. 

Algorithm InsertFCIT is described as follows. 

Algrithm InsertFCIT(α) 

Input:  FCIT:  frequent closed itemset table; 

α :  the candidate frequent itemsets to be inserted; 

Output: the updated FCIT;  

Begin: 

1     if α is already in FCIT then update its ,
c

dens t ; 

2     else if there is no superset β of α in FCIT satisfying 

( ) ( )dens densβ α= then 

3 add α into FCIT; 

4 for every subset γ of α in FCIT do 
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5              if dens (γ) ≤  dens(α )then  

6          delete γ from the table； 

7  end if 

8 end for 

9        end if 

10  end if 

11  Recalculate the densities of the entries in FCIT,  

delete the infrequent ones;    

End 

It is necessary to prune the nodes with low density to reduce 

the memory cost. Due to the effect of the fading factor, the 

density of an itemset will decrease if it does not occur for a 

long time period, and such frequent itemset could become an 

infrequent one. In every gap times, the algorithm 

recalculates the densities of itemsets in the table and deletes 

the ones whose density is less than the  density threshold.   

V. EXPERIMENTAL  RESULTS AND ANALYSIS  

A. Experiment setting 

We evaluate the quality and efficiency of algorithm 
FCI_Mining and compare it with A-Moment [9] in the 
values of delete error, the average time of processing each 
transaction and the number of frequent closed itemsets 
detected. All of our experiments are conducted on a PC with 
2.8 GHz CPU and 1G RAM memory. We have implemented 
FCI_Mining in Visual studio C++ 6. 0.  

B. Test Data  

Test data sets used in the experiments are generated by the 
IBM synthetic data generator in Linux system. Four 
parameters are used in the generator: the maximum length 
transaction, T; the average length of transactions, I; average 
maximum length of patterns, P; the total number of 
transactions in data set D. We set T=20, I=5, P=4 and D=20k. 
In the experiment, value of the fading factor is set as 0.9999  
so that the number of the final retained transactions is  
roughly 10K.  . 

C. The influence of delete error ε on performance of the 

algorithm  

Let S∈ (0,1) be the threshold of density,  and delete error 

.Sε δ= , here δ ∈(0,1). We tested with different values of δ. 

Figures 1, 2 and 3show the influence of .Sε δ=  on the 

number of frequent closed itemsets detected, the memory 
cost, and the computation time respectively.   

 

 

 

 

 

 

Fig.1. Number of the frequent closed itemsets 

 

 

 

 

 

 

 

Fig.2. Memery costs using different values of error .Sε δ=   

 

 

 

 

 

 

 
 

Fig.3. Computation times using different values of 
error .Sε δ=  

 

It can be seen from the figures that  the mining results  is 
optimal when the value of δ is between 0.3 and 0.4. 
Therefore, we set the error 0.35Sε =  in the following 

experiments.   

D. The running time of the algorithm 

We test the average time for processing a single transaction 

by FCI_Mining and compare it with algorithm A-Moment. 

Figure 4 shows the testing results. 

 
Fig.4. Average time for processing one transaction 

 

It can be seen from Figure4 that  algorithm FCI_Mining is 

faster than A-Moment. Therefore, FCI_Mining has stronger 

ability to detect the changes in data stream than A-Moment. 

The reason is that FCI_Mining detects the frequent itemsets 

on every gap times, instead of performing it at every time 

step.  
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We also test the number of frequent closed itemsets detected 

by FCI_Mining and compare it with algorithm A-Moment. 

The experimental result is shown in Figure 5.  

 
Fig. 5.  Number of the frequent closed itemsets 

 

It can be seen from Figure 5 that the number of frequent 

closed itemsets detected by FCI_Mining is close to that of 

A-Moment. When the value of the minimum density is 

between 100 and 500, FCI_Mining detects more closed 

itemsets than A-Moment. The reason is that FCI_Mining 

deletes the infrequent itemsets on every gap times so as to 

retain more closed itemsets. This result suggests that 

FCI_Mining can obtain higher accuracy results and 

efficiency.  

VI. CONCLUSION  
 

We have proposed an algorithm for mining frequent closed 

itemsets from data streams based on a time fading module. 

The algorithm dynamically constructs a pattern tree, and 

calculates densities of the itemsets in the tree using a fading 

factor. The algorithm deletes real infrequent itemsets from 

the pattern tree so as to reduce the memory cost. A density 

threshold function is designed in order to identify the real 

infrequent itemsets which should be deleted. Using such 

density threshold function, deleting the infrequent itemsets 

will not affect the result of frequent itemset detecting. The 

algorithm modifies the pattern tree and detects the frequent 

closed itemsets in a fixed time interval so as to reduce the 

computation time. We also analyze the error caused by 

deleting the infrequent itemsets. Our experimental results 

indicate that our algorithm can get higher accuracy results, 

needs less memory and computation time than other 

algorithm. In our further work, we will study how to further 

reduce the memory cost by using the hash function in storing 

the frequent closed itemsets in the pattern tree. Also it is still 

a problem how to further reduce the computation time. 
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