
 © 2015, IJCSE All Rights Reserved 20

 International Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer Sciencessss and Engineeringand Engineeringand Engineeringand Engineering Open Access
Research Paper Volume-3, Issue-9 E-ISSN: 2347-2693

Performance evaluation of Unresponsive flow Management on

Server for better load rebalancing in Internet

Vijith C
1*

 and M. Azath
2

1*,2
Department of Computer Science and Engineering, Met’s School of engineering, Kerala, India

www.ijcseonline.org

Received: Aug/22/2015 Revised: Aug/30/2015 Accepted: Sep/24/2015 Published: Sep/30/2015

Abstract— Active Queue Management has specific role in computer networks. In this paper, we investigate the chances of

Active Queue Management at serve side. The proposed system reduces packet loss ratio at server side to provide better load

balancing at internal buffer levels. The system distinguishes responsive flows from unresponsive flows in a congested Hyper

Text Transfer Protocol traffic, dynamically manages them and provides better transfer speed and maximum throughput in

network.

Keywords— AQM, CHOKeR, Server, Proxy server, Load balancing

I. INTRODUCTION

The Internet is a decentralized global system of
interconnected computer networks that use the standard
Internet protocol suite (TCP/IP) to link devices
worldwide and carries extensive large amount of information
in fraction of seconds among them. When the level of
network traffic nears, reaches or exceeds the design
maximum, the network is said to be congested. Load
rebalancing is a concept come in to play in the network,
which is experienced with traffic congestions. Load
balancing aims to optimize resource use, maximize
throughput, minimize response time, and avoid overload
of any one of the resources [1].

Unresponsive flows are main constituent of congestions
occurred in the network buffers. Unresponsive flows are
the information that are not responded yet and may be
generated from same or different machines. Those flows
make the buffer full and it will lead to overflow situation.
This is a crucial scenario where the important flows get
refused to join in queue due to overridden non responsive
flows. It leads to congestion in network and makes scarcity
in resource [21].

Active queue management (AQM) is the intelligent drop of
network packets inside a buffer associated with a network
interface controller (NIC), when that buffer becomes full or
gets close to becoming full, often with the larger goal of
reducing network congestion [2][7]. This task is performed
by the network scheduler, which for this purpose uses
various algorithms such as random early detection (RED),
Explicit Congestion Notification (ECN), or controlled delay
(CoDel) [3][5][6]. An Active Queue Management system is
used to control the length of a queue so that it does not
run full, adding its maximum (usually bloated) delay
under load. Such management also enables TCP to do its
job of sharing links properly, without which it cannot
function as intended [8].

There are two kinds of flow management mechanisms that
try to achieve the resource fair sharing: scheduling scheme
and queue management scheme. Scheduling schemes have
generally too much complexity and low scalability to large
number of flows. If we plan to provide fair utilization on
server, queue management scheme could be a better choice.
Queue management scheme not only has less complexity,
but also approximates fairness better [7].

CHOKe, Choose and Keep for Responsive flows, Choose

and Kill for Unresponsive flows, an Active Queue

Management method, is stateless, controls misbehaving

flows with a minimum overhead. It is simple to

implement, based on queue length and differentially

penalizes unresponsive flows using the information of each

flow [9][10]. CHOKeW uses "matched drops" created by

CHOKe to control the bandwidth allocation, but excludes

the RED module for bandwidth differentiation and TCP

protection which is important for implementing Quality of

Services (QoS)[17]. CHOKeR is advancement to

CHOKeW algorithm which overrides the problems of

bandwidth differentiation in multiple priority levels and poor

performance on bursty traffic in large congested network

which are experienced by CHOKeW. CHOKeR does not

maintain per flow state information and it uses MISD (Multi

step Increase and Single step Decrease) model for

congestion avoidance [18].

II. PROPOSED SYSTEM

The system is proposed to deal with unresponsive

flows, so that the network performance could be

enhanced by efficient congestion control and load

rebalancing. Congestion control is arisen by different types

of flows through a network in any type of nodes. Among the

flows, the main contribution for congestion is shown by

non-responsive flows generated by end to end systems. So

to remove the fluctuations generated in the network buffer

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(20-27) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 21

by the unresponsive flows and as well as normal flows, the

proposed system shows an efficient method which uses

queue dimensions and other performance metrics for

tuning the communication. Proposed system classifies the

packets into responsive and unresponsive flows. The

dimensions for the classifications are fall in flow

information. The dominant unresponsive flows are dropped

pre-emptively and the valid responsive flows are limited to

enter into buffer without making over flow and underflow

conditions. The membership of packets in the active queue is

estimated using an AQM methodology called CHOKeR

[18]. On the results of applying the queue management

algorithms the packets are distinguished and the network is

classified.

The System is implemented at server side as a proxy server.

The server runs a server application which manipulates http

requests and provides http responses. The server is created in

open source platform and proxy server handles both

responsive and unresponsive flows. In computer networks, a

proxy server is a server (a computer system or an

application) that acts as an intermediary for requests from

clients seeking resources from other servers.

III. MODULAR DESCRIPTION

The system contains three modules for implementation.

They are classified as Unresponsive flow management,

Active Queue Management and Traffic characterization

based on their operations.

Unresponsive flow management

It deals with recognition and management of flows. This

module characterizes the entire flow into responsive and

unresponsive flows. The flow information is extracted and

they are compared based on the present structure. If the

incoming flow has same information as in stored flow

which is already in the buffer, then the incoming flow

is treated as unresponsive and system decides it is

carrying duplicate information. So the unresponsive flows

are pre-emptively discarded. And the converse, the

responsive flows which are well-behaving and carrying

unique information is passed to next module for the proper

insertion of the flow in the buffer.

Active queue management

It is the second module of the system which deals

with internal buffers. It uses CHOKeR methodology for

queue management [18]. On the arrival of a responsive

flow, the average buffer length is calculated exponentially

and it is compared with thresholds. According to the rules

defined by the algorithm based on thresholds, the packet

may or may not be allowed to enter in the FIFO buffer.

Fig. 1 Unresponsive flow management

Fig. 2 Active queue management

Traffic characterization

Traffic characterization is nothing but the final stage of the

system which takes buffer as input and provides service as

output. It does mainly two things, packet processing from

the buffer in FIFO order and same time logging the

historical data. The packet from head is drawn and it is

forwarded to proper destination which can be obtained from

the flow information encapsulated with buffer. This section

realizes actual port forwarding scheme of the proxy server.

Fig. 3 Traffic characterization

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(20-27) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 22

IV. WORKING

The client generates request for particular web service

from his machine. When the server receives the request on

its ports the system will be invoked automatically. The

system checks the incoming flows and filters the

packets into responsive and unresponsive flow classes.

The flow classification is mainly done by comparing the

flow ids compromising source address, destination address

and ports. Then the unresponsive flows are pre-emptively

discarded and the server traffic information base is updated

about the procedures. The responsive flows are forwarded

to AQM module which uses CHOKeR algorithm for

adaptive queue management. The CHOKeR works on the

responsive flows and it drops or insert packets into the

queue based on its criteria and methods [18]. After the

queuing and discarding of packets, the control is passed

to server applications at higher levels which processes

service requested by the client that is received from the

queue in order.

Since the system is a proxy server, the main objective of

algorithm to retrieve packets form heterogeneous clients

and forward them based on their destination address. The

general algorithm is represented in Fig. 5.

The probability to find eligibility of a packet in buffer is

found out using CHOKeR method. The algorithm uses

mainly three probabilities , and . The first

two probabilities are used for providing MISD (Multi step

Increase, Single step Decrease) scheme in server’s queue

management and the latter is used for drawing multiple

random packets from the same buffer [18]. The

mathematical model is given below.

Fig. 4 Process flow

Fig. 5 General algorithm

Case 1: When Lk is between the Lth and Lmin

Case 2: When Lk is between the Lmax and Llim

 Where ‘a’ is the number of steps,

Where Lth, Lmin, Lmax and Llim are the thresholds adjusted in

buffer length.

Fig. 7 gives the central algorithm for proxy server. The

proxy server starts with a given host address and port

address. Any client which ever wants to communicate with

this proxy can use this host address and port to send data.

Also the port forwarding thread starts together with proxy.

To help forwarding the proxy server is configured with a

list of registered servers. For each http requests arrives at

assigned port in proxy server, the algorithm fetches the

request from port, decodes them and generate respective

raw packet from it. Then it applies CHOKeR algorithm on

the packet and after proper queue management the packet is

either dropped or inserted in FIFO order. If packet is

dropped, then the algorithm sends ECN (Explicit

Congestion Notification) to the corresponding client [5].

Otherwise the inserted packet is processed in order to

respective server by the forwarding thread.

Fig. 6 Buffer thresholds

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(20-27) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 23

Fig. 7 Central algorithm

The pseudo code for CHOKeR AQM algorithm is

represented in Fig. 8. The parameters Lth, Lmin, Lmax, Llim,

pmin and pmax are initialized at starting of proxy server. They

are manually tuned based on the network congestion level at

starting. On each packet arrival the buffer occupancy Lk is

compared with the thresholds Lth, Lmin, Lmax and Llim. As

CHOKeR does, if Lk is less than Lth the probability for

packet drawing (p0) is kept 0 which means no dropping is

needed due to the buffer is congestion free. If Lk exceeds

Lth, the algorithm assumes there may be chance for

congestion. So for values of Lk between Lth and Lmin, the

value of p0 reduce to Single step Decrease, till value to

zero. It means, the congestion is brought to be reduced. But

when Lk exceeds Lmin, there should be active queue

management to provide better load balancing. When Lk

exceeds Lmax, there is a large chance for buffer

unavailability which triggers the case of congestion, thus

algorithm tries to reduce occupancy below Lmax using

Multistep Increase method. I.e., it changes drawing factor to

multiple of steps in buffer length variation from Lmin to

Lmax. When Lk is reduced in the range of Lmin and Lmax, the

value of p0 is kept intact, which provides a stable nature to

congestion level, but applies active queue management

later. If Lk is beyond Llim, means buffer overflow, thus the

packet is directly discarded [18].

‘m’ is the number of packets need to be chosen randomly

for comparison and drawing. On each draw of packets from

buffer, the packet’s flow information (source address,

source port, destination address, destination port, data

payload) is compared with arriving packet’s flow

information. If they are same, then drawn packet is

discarded. Levenshtein distance is used to compare data

payload each other where its complexity is Θ(min(m,n)) [4].

For bursty flows, the buffer will contain large consecutive

same packets, which also take in account in this section of

comparison and dropping. Finally, arrived packet is allowed

to enter in buffer at last position if the algorithm returns

success which means the packet is inserted with a

probability p0.

Fig. 8 CHOKeR algorithm

Fig. 9 Simulation topology

V. RESULTS AND DISCUSSION

The system is deployed in python environment and run

from Linux based machine. The HTTP server is created

using Java and hosted in Local Area Network. The client

files are designed using HTML and JavaScript for some of

the tests. Three test cases are carried out in this setup and

their results are analysed.

Test case I

The system is tested with five different computers in local

area network. The each client sends random HTTP requests

in an interval of 100 milliseconds. The system is analysed

for a duration of 5 minutes. The total responsive flows as

well as unresponsive flows are logged and finally tabulated.

The scenarios are tested with two fixed probabilities Pmin =

0.1 and Pmax = 0.2. Table. 1 shows the results obtained by

setting parameters Q size = 50, Lth = 10, Lmin = 12, Lmax=

17, Llim = 50 and Fig. 10 shows its corresponding graph.

Similarly Table. 2 shows the results obtained by setting

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(20-27) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 24

parameters Q size = 100, Lth = 20, Lmin = 24, Lmax= 34, Llim =

100 and Fig. 11 shows its corresponding graph. And finally

Table. 3 shows the results obtained by setting parameters

Q size = 200, Lth = 40, Lmin = 48, Lmax= 68, Llim = 200 and

Fig. 12 shows its corresponding graph.

Ratio and average ratio are found using following formulae.

It can be found that average ratio is proportionally increases

with change in quantity of parameters. From analysing the

results we can found that the change in queue size and

corresponding parameters also effect the ratio between

responsive flow and unresponsive flow. It can be said that

the increase in quantity of parameters is inversely

proportional to amount of unresponsive flows detected. And

it is mainly due to the overflow condition of queue. The

results also show that the client sends minimum amount of

unresponsive flows for polling the connection.

Table. 1 Test case I – queue size: 50

Table. 2 Test case I – queue size: 100

Table. 3 Test case I – queue size: 200

Fig. 10 Test case I – queue size: 50

Fig. 11 Test case I – queue size: 100

Fig. 12 Test case I – queue size: 200

 Detection rate is found out using above given

formula, and it gives the success rate of detecting

unresponsive flows from a transaction. Detection rate for

different queue size is given in Table. 4 and corresponding

graph is drawn in Fig. 13. From analysing the graph, it is

clear that the system successfully recognizes unresponsive

flows from input mixed flows, but the detection rate is

diminishing on increase in the queue size and respective

parameters.

Table. 4 Test case I – unresponsive flow detection

percentage

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(20-27) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 25

Fig. 13 Test case I – unresponsive flow detection

percentage

Test case II

The system is tested with same five different computers in

same local area network. The each client tries to download a

file of size 2 MB. The system is analyzed till the end of

downloading. The total responsive flows as well as

unresponsive flows are logged and finally tabulated. The

scenarios are tested with two fixed probabilities Pmin = 0.1

and Pmax = 0.2. Table. 5 shows the results obtained by

setting parameters Q size = 50, Lth = 10, Lmin = 12, Lmax=

17, Llim = 50 and Fig. 14 shows its corresponding graph.

Similarly Table. 6 shows the results obtained by setting

parameters Q size = 100, Lth = 20, Lmin = 24, Lmax= 34, Llim =

100 and Fig. 15 shows its corresponding graph. And finally

Table. 7 shows the results obtained by setting parameters

Q size = 200, Lth = 40, Lmin = 48, Lmax= 68, Llim = 200 and

Fig. 16 shows its corresponding graph. Ratio and average

ratio are found using the same formulae given above. The

same results are obtained in this experiment. It can be found

that average ratio is proportionally increases with change in

quantity of parameters and finally it comes close to average

number of responsive flows. From analysing the results we

can found that the change in queue size and corresponding

parameters also effect the ratio between responsive flow

and unresponsive flow. It can be said that the increase in

quantity of parameters is inversely proportional to amount

of unresponsive flows detected. And it is mainly due to the

overflow condition of queue. The results also show that the

variation between the amount of responsive flows and as

well as unresponsive flows with respect to change of

parameters also does not differ well due to the caching

feature of HTTP agent.

Table. 5 Test case II – queue size: 50

Table. 6 Test case II – queue size: 100

Table. 7 Test case II – queue size: 200

Fig. 14 Test case II – queue size: 50

Fig. 15 Test case II – queue size: 100

Fig. 16 Test case II – queue size: 200

Detection rate for different queue size is given in Table. 8

and corresponding graph is drawn in Fig. 17. From

analysing the graph, it can be said that the results are almost

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(20-27) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 26

same as above test case I. i.e., here also the detection rate is

diminishing with increase in queue size.

Table. 8 Test case II – unresponsive flow detection

percentage

Fig. 17 Test case II – unresponsive flow detection

percentage

Test case III

Table. 9 Test case III

Fig. 18 Test case III

The system is tested with five different computers in local

area network. The each client sends random HTTP requests

in an interval of 50 milliseconds. The system is analyzed for

a duration of 5 minutes. The total number of packet

insertions as well as drops are logged and finally tabulated.

The scenarios are tested with two fixed probabilities Pmin =

0.01 and Pmax = 0.02. The variable parameters are taken into

three sets {Q size = 512, Lth = 352, Lmin = 412, Lmax= 452,

Llim = 512}, {Q size = 1024, Lth = 712, Lmin = 812, Lmax= 912,

Llim = 1024} and {Q size = 2048, Lth = 1438, Lmin = 1638,

Lmax= 1838, Llim = 2048}. Table .9 shows the results

obtained and Fig. 18 shows its corresponding graph. The

experiment is carried out to compare the performance of

existing CHOKe algorithm and its descendant CHOKeR

algorithm in server side congestion control. The results

show that, for the same amount of insertions CHOKeR has

larger number of drops than that of CHOKe. That is,

CHOKeR detects and drops more unresponsive flows than

CHOKe does for the same amount of requests. So it can be

found that the system is more congestion tolerable than its

ancestors.

VI. CONCLUSION

The system is a proxy server which uses CHOKeR active

queue management algorithm to manage unresponsive

flows in the internet. The proxy server considers both TCP

as well as UDP flows which can be extracted from the

HTTP flows in the congested network. The use of virtual

queues in the AQM scheme at proxy server makes physical

buffers which are present at routers can be kept intact in the

presence of misbehaving flows and over flood conditions.

Results show that Active Queue Management is effective at

server side. From experimental results, we can found

that the change in queue size and corresponding

parameters also effect the ratio between responsive flow

and unresponsive flow. It can be derived that application of

CHOKeR algorithm at HTTP flows is effective as much as

that of normal TCP/UDP flows.

Current system can be extended in future to handle special

messages like ICMP and also adding hash bins at buffer

side increases speed of flow matching.

References

[1] en.wikipedia.org/wiki/IP_address.

[2] B. Kiruthiga and Dr. E. George Dharma Prakash Raj, “Survey

on AQM Congestion Control Algorithms”, IJCSMC, Vol. 2,

Issue. 2, pp.38–44, Feb 2014.

[3] en.wikipedia.org/wiki/Fair_queuing.

[4] en.wikipedia.org/wiki/ Levenshtein distance.html.

[5] en.wikipedia.org/wiki/Explicit_Congestion_Notification.

[6] gettys.wordpress.com/active-queue-management-aqm-faq.

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(20-27) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 27

[7] G.F.Ali Ahammed, Reshma Banu, “Analyzing the

Performance of Active Queue Management Algorithms”,

IJCNC, Vol. 2, pp. 19, Mar 2010.

[8] searchnetworking.techtarget.com/definition/load-balancing.

[9] Rong Pan, Balaji Prabhakar, Konstantinos Psounis, “CHOKe:

A stateless active queue management scheme for

approximating fair bandwidth allocation”, INFOCOM 2000,

vol.2, pp. 942-951, Mar 2000.

[10] Ao Tang, Jiantao Wang and Steven H. Low, “Understanding

CHOKe: Throughput and Spatial Characteristics”,

IEEE/ACM Trans. Networking, vol. 12, No. 4, pp. 694-707,

Aug 2004.

[11] Jiang Ming, WU Chumming, Zhang Min and Bian Hao,

“CSa-XCHOKe: A Congestion Adaptive CHOKe

Algorithm”, Chinese Journal of Electronics, Vol.19, No.4,

Oct 2010.

[12] Ying Jiang, and Jing Liu, “Self adjustable CHOKe: an active

queue management algorithm for congestion control and fair

bandwidth allocation”, IEEE computers and comm., Vol.2,

No.4, pp. 1018-1024, Jul 2013.

[13] K.Chitra and Dr. G.Padamavathi, “Adaptive CHOKe: An

algorithm to increase the fairness in Internet Routers”,

IJANA, vol. 01, Issue. 06, pp. 382-386, Apr 2010.

[14] G. Sasikala and E. George Dharma Prakash Raj, “P-CHOKe:

A Piggybacking-CHOKe AQM Congestion Control Method”,

IJCSMC, Vol. 2, Issue. 8, pp.136–144, Aug 2013.

[15] Addisu Eshete and Yuming Jiang, “Protection from

Unresponsive Flows with Geometric CHOKe”, Centre for

Quantifiable Quality of Service in Communication Systems,

Feb 2012.

[16] K.Chitra and Dr.G.Padmavathi, “FAVQCHOKE: To Allocate

Fair Buffer To A Dynamically Varying Traffic In An Ip

Network”, IJDPS, Vol. 2, Issue. 1, pp.73–82, Jan 2011.

[17] Shushan Wen, Yuguang Fang and Hairong Sun, “CHOKeW:

Bandwidth Differentiation and TCP Protection in Core

Networks”, IEEE Trans. Parallel and Distributed Sys. , Vol.

20, NO. 1, pp. 34-47, Jan 2009.

[18] Lingyun Lu, Haifeng Du and Ren Ping Liu, “CHOKeR: A

Novel AQM Algorithm with Proportional Bandwidth

Allocation and TCP Protection”, IEEE Trans. Industrail

Informatics, Vol. 10, No. 1, pp.637–644, Feb 2014.

[19] Addisu Eshete and Yuming Jiang, “Generalizing the CHOKe

Flow Protection”, Preprint submitted to Computer Networks,

pp.1–28, Feb 2012.

[20] Shalki Chahar, “Social Networking Analysis”, International

Journal of Computer Sciences and Engineering, Vol. 02, No.

5, pp.159–163, May 2014.

[21] Vijith C and Dr. M. Azath, “Survey on CHOKe AQM

Family”, International Journal of Computer Sciences and

Engineering, Vol. 02, No. 11, pp.81–85, Nov 2014.

AUTHORS PROFILE

Vijith C has completed B Tech in CSE from Sahrdaya College of

Engineering and Technology, Thrissur, Kerala, in 2012. Presently

he is pursuing his M Tech in CSE from Met’s School of

engineering, Thrissur, Kerala.

Dr. M. Azath is Head of Department of Computer Science and

engineering, Met’s School Of Engineering, Mala. He has received

Ph.D. in Computer Science and Engineering from Anna University

in 2011. He is a member in Editorial board of various international

and national journals and also a member of the Computer society

of India, Salem. His research interests include Networking,

Wireless networks, Mobile Computing and Network Security.

