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Abstract - In most of the clustering algorithms, the number of clusters has to be supplied in as an input. In CURE clustering 

algorithm also, the same problem exists. In this paper, we try to find the optimal cluster number in the CURE clustering 

algorithm by calculating an optimality measure corresponding to each cluster number produced by CURE clustering algorithm 

after it enters a range ,based on the intra cluster measure and the inter cluster measure of the clusters. The clustering along with 

the optimality check continues as long the optimality measure is increasing and the cluster number doesn‟t fall below the 

minimum boundary of our range. 
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I.  INTRODUCTION  

Computational geometry is a branch of computer science that 

studies algorithms for solving geometric problems. In 

modern engineering and mathematics, it has applications in 

diverse fields as computer graphics, robotics, VLSI design 

and molecular modelling etc.[1]. The representation of 

spatial data such as points, lines, rectangle, regions, surfaces 

and volumes etc. is becoming important in the applications 

of computational geometry [2]. Clustering is a fundamental 

problem in computational geometry and finds numerous 

applications in the fields of data mining, image processing 

and pattern classification and recognition [3,4,5,6,7]. The 

task of assigning a set of objects into groups so that the 

objects are more similar to other objects in the group than 

those objects in other groups is known as cluster analysis or 

clustering. Clustering is useful for discovering groups and 

identifying interesting distributions in the underlying data. 

Theoretical or practical approaches have been investigated 

for solving variant problems on clustering. Also a number of 

interesting results have been obtained. CURE algorithm is 

also among these variants and have received considerable 

attentions. To handle large databases, CURE employs a 

combination of random sampling and partitioning in which 

the random sample drawn from the data set is partitioned and 

each partition is partially clustered [8]. We refer to the 

groups mentioned above as clusters. In most of the clustering 

algorithms, the number of clusters are supplied beforehand as 

input. The clustering, in case of heirarchical clustering, 

continues until the number of clusters is same as the supplied 

number of clusters. The output is the supplied k number of 

clusters. If there is no efficient mechanism to find this best 

desired number of clusters,the number has to be supplied as a 

guessed number. In CURE clustering algorithm also, there is 

no provision for deciding the optimal number of clusters. 

Here we try to find a method for finding the optimal number 

of clusters with respect to  CURE  algorithm using the 

representative points of the clusters.  

This paper is presented in five headings besides the 

Introduction. The second heading presents a brief 

explanation on CURE clustering algorithm. Finding an 

optimal number of clusters has always been a problem in 

most of the clustering algorithms. In CURE also, there is a 

need to find the optimal number of clusters to be supplied to 

the clustering algorithm as an input. In the next heading, for 

determining whether the considered number of clusters in the 

CURE algorithm is optimal, we check the compactness of 

the clusters and the separateness between these clusters 

formed by the CURE algorithm using the representative 

points. For a high quality clustering result, the clusters 

should be more compact in itself i.e. the intra cluster distance 

should be less and the clusters between themselves should be 

well separated i.e. the inter cluster distance should be more. 

The next heading is on the approach methods to find the 

optimal number of clusters from a range that is to be 

supplied. The last two headings are on the implementation of 

algorithm by running on a set of points grouped into three 

clusters and the conclusion. 
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II. A BREIF ON CURE CLUSTERING ALGORITHM 

Clustering algorithm is an unsupervised machine learning 

process that creates clusters such that data points inside a 

cluster are close to each other, and also far apart from data 

points in other clusters. There are four main categories of 

clustering algorithms: partitioning, density-based, grid-based 

and hierarchical algorithms. K-means and PAM are the 

examples of partitioning algorithm which iteratively refines a 

set of k clusters and do not scale well for larger data sets 

[9,10]. DBSCAN and DENCLUE under the Density-based 

algorithms, are able to efficiently produce clusters of 

arbitrary shape and are also able to handle outliers [11,12]. In 

these algorithms, if the density of a region is above a 

specified threshold, those points are assigned to a cluster; 

otherwise considered to be noise. Grid-based algorithms 

reduce the clustering space into a grid of cells, enabling 

efficient clustering of very large datasets [13]. Hierarchical 

algorithms can be either bottom-up or top-down approach. 

CURE and Chameleon are examples of hierarchical 

algorithms [14,15]. 

CURE stands for Clustering Using Representatives. It is a 

hierarchical clustering algorithm. In CURE algorithm, unlike 

the traditional methods where a single central measure is 

used as a base for clustering the objects (like the centroid of 

the cluster), a constant number of well scattered points in a 

cluster are first chosen. This constant number of scattered 

points is then shrunk towards the centroid of the cluster by a 

fraction α. After shrinking, these points are used as the 

representatives of the cluster. Since we are considering a set 

of well scattered points as the representatives of the cluster, 

the shape and extent of the cluster is effectively captured by 

these points. The clusters with the closest pair of 

representative points are merged in each step of CURE‟s 

hierarchical clustering algorithm.  For a pair of point p and q, 

dist (p, q) denotes the distance between the points. This 

distance could be L1 (“Manhattan”) or L2 (“Euclidean”) 

metrics. In CURE, the number of clusters k into which the 

data set is to be clustered is also required to be specified. For 

best result, the optimum number of clusters, k, should be 

supplied. 

A. Representative Points 

Since we are using the representative points of a cluster in 

our method, we are presenting here a detail description of the 

representative points as they are described in the original 

CURE paper. As already mentioned above, representative 

points of a cluster are a set of well scattered points in the 

cluster shrink by a fraction towards the centroid of the cluster. 

For selecting the „c‟ well scattered points, an iterative 

procedure is followed. Firstly, the point farthest from the 

centroid of the cluster is added to the well scattered points set. 

The next point to be added to the set is the point in the 

cluster which is farthest from the points in the set. This 

process continues until the desired number of scattered 

points have been selected which is given by „c‟. 

1) Number of Representative Points:  The number of 

representative points „c‟ having a value greater than 10, 

always finds the right clusters in CURE. If the value of „c‟ is 

less than 10, the representative points fail to capture the real 

geometry of the cluster and tend to split big clusters. 

2) The Shrink Factor α:  CURE algorithm always finds the 

right clusters when the shrink factor α is in the range 0.2 -0.7. 

A value outside this range doesn‟t result in a good clustering. 

In CURE clustering algorithm, the number of clusters in the 

data set which are to be clustered have to be provided in 

advance. Based on the provided number of clusters, the 

algorithm carries on the clustering. Finding an optimal 

number of clusters has always been a problem in most of the 

clustering algorithms. In CURE also, there is a need to find 

the optimal number of clusters to be supplied to the 

clustering algorithm as an input. 

III. FINDING AN OPTIMAL K-VALUE 

In centroid based data mining algorithms like K-means, the 

quality of the clustering result is checked by checking the 

compactness within the clusters and the separateness of the 

clusters based on the centroid of the cluster[]. In CURE, 

since representative points are used in the clustering, we will 

used the representative points to check the quality of the 

cluster for a given number of clusters in order to obtain the 

optimal value of the number of clusters that we are using in 

the clustering. For determining whether the considered 

number of clusters in the CURE algorithm is optimal, we 

check the compactness of the clusters and the separateness 

between these clusters formed by the CURE algorithm using 

the representative points. For determining whether a cluster 

Ki is compact, we use the intra cluster distance and for 

determining the separateness of the clusters, we use the inter 

cluster distance. The above mentioned intra cluster and inter 

cluster distances will be discussed in the subsections of this 

section. The intra cluster distance and the inter cluster 

distance will then be used to find an optimality parameter 

which will determine the quality of the clustering using that 

particular number of cluster. For a high quality clustering 

result, the clusters should be more compact in itself i.e. the 

intra cluster distance should be less and the clusters between 

themselves should be well separated i.e. the inter cluster 

distance should be more. 

A. Intra Cluster Distance Calculation 

The intra cluster distance is to be calculated for each cluster 

formed by CURE clustering algorithm.  For each point, 

distance from each representative point is taken into account 
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and the minimum of these values is taken into consideration. 

Then the sum of all these minimum distances is calculated. 

The average of this calculated sum is taken as the intra 

cluster distance.  

For cluster Ki, we calculate the intra cluster distance using 

the equation given below 

Itai = ∑      minj=1 to c (dist(x,rpij)))                    - Equation 1 

where x denotes a point in a cluster, c denotes the number of 

representative points in a cluster and rpij denotes the j
th
 

representative point of the i
th

 cluster. 

After calculating the intra cluster distance for all the clusters, 

a summation operation is carried out on the values and it is 

divided by the number of points in our dataset. This resulting 

value is taken as the intra distance of the clusters. It is given 

by 

Intra = 
 

 
∑        Itai )                                         - Equation 2 

where Itai is from equation 1, k  is the number of clusters we 

are considering, and N is the number of points in the dataset. 

A cluster is compact if the intra cluster measure of the cluster 

is small. As a whole, a small value of the intra cluster 

distance that we have calculated shows greater compactness 

of the clusters. A large value, on the other hand, shows lesser 

compactness. 

B. Inter Cluster Distance Calculation 

The inter cluster distance will be calculated based on the 

representative points of each cluster. This distance is to be 

calculated for each pair of clusters formed by CURE. The 

minimum distance between the representative points of 

cluster pair will be considered as the inter cluster distance 

between the cluster pair. 

Now, 

Intrij = Min      (dist (rpil , rpjl))               - Equation 3 

where     rpj    Kj    ,   rpi    Ki ,   rpj    Ki    ,   rpl    Kj., c is the 

number of representative points, i and j represents cluster I 

and cluster j. 

Using the above calculated minimum distances, we calculate 

the inter cluster distance of the whole clusters as 

Inter=  )(
1

ijIntr
M                                          - Equation 4

 

where M=kC2 (the number of cluster pairs), Intrij is the 

distance between cluster i and cluster j calculated in equation 

3. 

These inter cluster measure Inter gives the separateness of 

the clusters. A larger inter cluster distance means the clusters 

are more distant from each other. A smaller value indicates 

the clusters are closer to each other on the whole. For a 

quality clustering, we want this measure to be higher. 

C. Formulation of an optimality parameter 

As stated above, for a good clustering result, the selected 

number of clusters that we are using should result in small 

value of the intra cluster distance and a large value of inter 

cluster distance. Keeping these two points in mind, we now 

calculate our optimality parameter as 

Optimality measure = 
     

     
                                   - Equation 5 

where Inter and Intra are the values calculated in equation 4 

and equation 2 respectively. 

A larger Optimality measure will be produced by a larger 

inter cluster distance and a smaller intra cluster distance. The 

number of clusters that we are using is considered to be the 

optimum number of clusters if it produces the largest value 

of the Optimality measure 

IV. APPROACH METHOD 

We will be trying to find the optimal number of clusters from 

a range that is to be supplied. This range will be the range in 

which the optimal number of clusters is likely to fall. If we 

are taking the range as kmax to kmin, then the checking for 

optimality of the number of clusters form by CURE 

algorithm will start when the number of clusters reaches the 

value kmax. From this kmax onwards, we will check the quality 

of the clusters formed. The clustering by CURE will 

continue as long as the optimality measure is on an 

increasing trend or the minimum possible number of clusters, 

kmin  is reached. The modifications made to CURE clustering 

algorithm is shown in the figures that are to follow. One 

procedure shows the original clustering algorithm of CURE 

with the required modifications in it and the other procedure 

is our optimality measure algorithm for checking the quality 

of the clusters formed. 

A. Modified CURE clustering algorithm 
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Procedure cluster (S,k)   

begin 

1.    bool  test=false     

2.   T:= build_kd_tree(S) 

3.   Q:= build_heap(S) 

4.  while (((size(Q)> kmin) and ((!test and 

size(Q)>kmax)or(test and size(Q)  kmax)))  { 

5.         u:= extract_mean(Q) 

6.        v:=u.closest 

7.        delete(Q,v)  

8.        oldu=u 

9.        oldv=v  

10.        w:=merge(u,v) 

11.        delete_rep(T,u); 

delete_rep(T,v);insert_rep(T,w) 

12.        w.closest:=x /* x is an arbitrary cluster in Q */ 

13.       for each x  Q do { 

14.              if dist(w,x)< dist(w,w.closest) 

15.                  w.closest:=x 

16.              if x.closest is either u or v { 

17.                   if dist(x,x.closest)< dist(x,w) 

18.    

 x.closest:=closest_cluster(T,x,dist(x,w)) 

19.                  else 

20.                     x.closest:=w    

21.                  relocate(Q,x) 

22.              } 

23.             else if dist(x,x.closest)> dist(x,w) { 

24.                   x.closest:=w    

25.                   relocate(Q,x) 

26.              } 

27.         } 

28.       insert(Q,w) 

29.       If size(Q)  kmax 

30.           test= optimality_test(Q) 

31.   } 

32.  delete(Q,v);insert(Q,oldu);insert(Q,oldv) 

33. delete_rep(T,w); 

insert_rep(T,oldu);insert_rep(T,oldv) 

end 

B. Procedure for optimality test 

Procedure optimality_test(Q) 

begin 

1.   static oldOM=0; 

2.   ita:=0, intra:=intr:=inter:=0 

3.  k:=size(Q) 

4.  M:=
    

 
 

5.  for each cluster x    

6.       flagx:=0 

7.  for each cluster x   { 

8.        flagx :=1 

9.       for each point p in cluster x 

10.           ita:=ita + min(dist(p,rp): rp   x.rep) 

11.       for each cluster (y:y    x and flagy=0){ 

12.           intr:=intr + min(dist(rpx,rpy): rpx   x.rep and 

rpy  y.rep) 

13.   } 

14.   intra:=
   

 
 

15.   inter:= 
    

 
 

16.  newOM:= 
     

     
 

17. if  newOM > oldOM { 

18.     oldOM:=newOM 

19.     return true 

20. } 

21. else 

22.    return false 

  end 

C. Clustering Algorithm 

In the modified CURE clustering algorithm (fig. 1) which is 

only a small modification of the original CURE algorithm 

( the original algorithm has been reproduced here with added 

modifications), we have made changes in the condition that 

the clustering algorithm followed as it goes on merging the 

clusters until the desired number of clusters is not reached. 

Instead of just checking whether a particular number of 

clusters have been reached or not, we are also using the 

optimality measure indirectly. The clustering will continue 

only if the number of clusters is still greater than the 

minimum number of clusters in the range that we considered 

before and some added conditions. The added condition 

consist of two parts, one corresponds to those where the 

number of clusters is still above the maximum number of 

clusters in our considered range and the other corresponds to 

those where the number of clusters is equal to or less than 

kmax .  In the algorithm, we make use of a Boolean variable 

test. At the beginning of the algorithm, its value is set to false. 

This Boolean variable also plays an important part, or we can 

say the most important part in our modification to the 

condition of the clustering algorithm. The content of test will 

remain false until the optimality_test procedure is invoked. 

We will explain this procedure later. The „test‟ stores the 

value returned by the optimality_test procedure. In the 

clustering algorithm, the procedure is not invoked until the 

number of clusters is inside the specified range of clusters 
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and so its value will be always false. This corresponds to the 

first part mentioned above. So, the clustering algorithm of 

CURE will continue clustering unaffected by the changes 

made by us as long as the number of clusters is above kmax. 

„(size(Q)> kmin) and ((!test and size(Q)>kmax)’  will take 

care of this. Once the number of clusters enters the range, 

then the optimality_test procedure will be invoked and as a 

result the content of „test‟ may change accordingly. And 

further clustering will take place only if the value of „test‟ is 

true and the number of clusters is less than or equal to kmax. 

The kmax mentioned here is the maximum value of the range 

of number of clusters that we are considering. If the value of 

„test‟ turns out to be false when the number of clusters is 

within the specified range, then the clustering will not 

continue further. But instead, we need to go back one step 

backwards to undo the latest merging of the two nearest 

clusters. Since we saved the two clusters before they were 

merged in steps 8 and 9, the merged cluster is removed and 

the two saved clusters are inserted into Q. This will be the 

optimal solution of the clustering as further clustering after 

this yields lesser optimality measure. So the clustering 

algorithm will stop here. 

D. Optimality testing procedure 

After the number of clusters enters the range provided, the 

optimality_test procedure is invoked after the merging of two 

closest clusters to check the optimality measure of the new 

sets of clusters formed. As the variable oldOM is set to 0, the 

optimality_test procedure will return true when it is invoked 

for the first time. When the procedure is invoked, it 

calculates the „intra‟ parameter of the clusters which is the 

average of the distance of all the points in the dataset from 

the nearest representative points of their respective cluster. 

The procedure also calculates the „inter‟ parameter which is 

the average of the distance of the nearest representative point 

pair of a pair of cluster. A flag is used to prevent the 

reconsidering of a cluster pair which has been already 

considered previously. After both the „intra‟ and „inter‟ 

parameters are calculated, the optimality measure of the 

clusters is then calculated. If the newOM, which is the newly 

calculated optimality measure, is greater than oldOM, which 

holds the optimality measure of the previous clustering state, 

the oldOM value is replaced by the newOM value and the 

procedure returns true. This is an indication that the newly 

formed clusters have higher quality than the previous 

clusters. If this is not the case, the procedure returns false. 

This is to indicate that the newly formed clusters have lesser 

quality than the previous clusters. When the procedure 

returns false, this is when the clustering algorithm stops 

clustering further. The cluster set from which the new cluster 

set has been formed will be the optimal clustering solution 

and the number of clusters will be the optimum cluster 

number. 

E. Complexity of the optimality testing procedure 

In the proposed optimality testing algorithm, for calculating 

the „intra‟ parameter, there will be c*N distance calculations 

and for calculating „inter‟ parameter, there will be k*c*c 

distance calculations. 

V. IMPLEMENTATION 

As we are pertaining to the modification in CURE clustering 

algorithm for the determination of the optimal number of 

clusters in clustering process, it is presented here the working 

of the optimality measure calculation which are trying to 

embed in the clustering process of the CURE clustering 

algorithm. As the clustering by CURE enters a predefined 

range of cluster numbers, the function determines the 

optimality measure of the current number of clusters and the 

clustering is allowed to proceed only if the optimality 

measure is increasing. The clustering is stopped and the 

previous clusters are considered to be the best clusters if the 

current clusters deliver a lower optimality measure as 

compared to the previous sets of clusters. 

Here, the algorithm is implemented by running on a set of 

points grouped into three clusters (Note: The points that we 

are considering here hasn’t been really clustered by any 

clustering algorithm and we have done it manually just to 

imitate a set of clusters on which to run our 

implementation.). From the points in each cluster, we pick 

out six well scattered points each to act the representative 

points for each cluster. Then the points of each cluster and 

the representative points are inputted into our 

implementation. When we run the program for two different 

sets of clusters, one set which is supposed to be a good set of 

clusters, and another set which is supposed to be a bad set of 

clusters (the good set of clusters here contain points which 

are more similar to each other and the bad set of clusters 

contain points which are all no very similar) the good set of 

clusters return a better optimality measure as compare to the 

bad set of clusters. 

 

Result of the 1
st
 set of clusters considered (the good set of 

clusters) 

Snapshots of the input: 
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Snapshot of output: 
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Result of the second set of clusters considered (the bad set of 

clusters) 

Snapshots of the input: 

 

 

 

 

Snapshot of output: 

 

Inference from the two results: 

Cluster 

set 

Intra 

measure 

Inter 

Measure 

Optimality 

Measure 

Set 1 0.415508 1.213024 2.919376 

Set 2 1.008676 1.213024 1.22590 

From the result, it is seen that a better set of clusters has a 

greater value optimality measure. Set 1 which is supposed to 

have better clusters have an optimality measure of   2.919376 

while set 2 has an optimality measure of 1.22590. 
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Hence, the optimality measure can be used to find the best 

set of clusters. The best set of clusters is supposed to have 

the best optimality measure.  

VI. CONCLUSION 

CURE clustering algorithm which is used for clustering large 

databases is a better algorithm than the traditional clustering 

algorithm in many respects. CURE is effective in finding 

arbitrary shaped clusters, and effectively handles the problem 

of outliers. CURE handles large databases efficiently by 

employing a combination of random sampling as well as 

partitioning. But CURE doesn‟t have a provision for 

checking for the optimum number of clusters. A desire 

number of cluster is taken as input to the algorithm. In this 

work, it is tried to improve CURE by adding a mechanism in 

CURE clustering algorithm itself which checks the quality of 

the clusters formed by the algorithm and thus determine the 

best number of clusters based on their quality. 

REFERENCES 

[1] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. 

Introduction to Algorithms, The MIT Press, Massachusetts, 1990. 

[2] Hanan Samet. The Design and Analysis of Spatial Data Structures. 

Addison-Wesley Publishing Company Inc., New York, 1990. 

[3] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, second 

ed., Wiley-Interscience, New York, 2001. 

[4] J.Han, M. Kamber, Data Mining, Morgan Kaufmann Publishers, 

2000. 

[5] M. Grotschel, L. Lovasz, A. Schrijver, Geometric Algorithms and 

Combinatorial Optimization, second ed., Algorithm and 

Combinatorics, vol. 2, Springer-Verlag, Berlin, Heidelberg, 1994. 

[6] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: A review, 

ACM Computing Surveys 31 (1999) 264–323. 

[7] V.V. Vazirani, Approximation Algorithms, Springer, 2001. 

[8] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim (1998)  CURE: 

An Efficient Clustering    Algorithm for Large Databases 

[9] Siddheswar Ray and Rose H. Turi       Determination of Number of 

Clusters in K-Means        Clustering and Application in Colour 

Image Segmentation. 

[10] Ng R., Han J. (1994) Efficient and effective clustering method for 

spatial data mining. In Proc. Conf. on Very Large Data Bases, pp 

144-155. 

[11] Ester M., Kriegel H., Sander J., and Xu X. (1996) A Density-

Based Algorithm for Discovering Clusters in Large Spatial 

Databases with Noise. In Proc. 3rd Int. Conf. on Knowledge 

Discovery and Data Mining, AAAI Press. 

[12] Hinneburg A., Keim D. (1998) An Efficient Approach to 

Clustering in Large Multimedia Databases with Noise. Proc 

AAAI. 

[13] Seikholeslami G., Chatterjee S., and Zhang A. WaveCluster: A 

Multi-Resolution Clustering Approach for Very Large Spatial 

Databases. Proceedings of the 24th VLDB Conference, 1998 

[14] Guha, S., R. Rastogi & K. Shim. CURE: An Efficient Clustering 

Algorithm for Large Databases. In Proc. Of ACM SIGMOD Intl. 

Conf. on Management of Data, pp. 73-82, 1998. 

[15] Karypis, G., E. Han & V. Kumar. Chameleon: A hierarchical 

clustering algorithm using dynamic modeling. IEEE Computer, 

32(8) pp. 68-75, 1999. 
 

Authors Profile 

Khumukcham Robindro is currently working as as Assistant 
Professor in the Department of Computer Science, Manipur 
University. He joined the Department on 5th November, 2014. 
Currently, he is Principal Investigator at e-Varaha Project, in 
collaboration with IIT Guwahati and Tezpur University under 
ITRA, Media Lab Asia, MeiTy, Govt. of India, in the Department 
of Computer Science, Manipur University. His area of interests in 
research includes Machine Learning, Intelligent Systems and 
Knowledge Discovery. 

 

 

 


