

 © 2018, IJCSE All Rights Reserved 313

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-6, Issue-2 E-ISSN: 2347-2693

Determination of Optimal Number of Clusters in Cure Using

Representative Points

Khumukcham Robindro
1*

, Bisheshwar Khumukcham
2
, Ksh. Nilakanta Singh

3

1*Department of Computer Science, Manipur University, Canchipur, Imphal, Manipur, India
2Department of Computer Science, Manipur University, Canchipur, Imphal, Manipur, India
3Department of Computer Science, Manipur University, Canchipur, Imphal, Manipur, India

Corresponding Author: rbkh@manipuruniv.ac.in

Available online at: www.ijcseonline.org

Received: 21/Jan/2018, Revised: 29/Jan/2018, Accepted: 12/Feb/2018, Published: 28/Feb/2018

Abstract - In most of the clustering algorithms, the number of clusters has to be supplied in as an input. In CURE clustering

algorithm also, the same problem exists. In this paper, we try to find the optimal cluster number in the CURE clustering

algorithm by calculating an optimality measure corresponding to each cluster number produced by CURE clustering algorithm

after it enters a range ,based on the intra cluster measure and the inter cluster measure of the clusters. The clustering along with

the optimality check continues as long the optimality measure is increasing and the cluster number doesn‟t fall below the

minimum boundary of our range.

Keywords— Algorithm, Clustering, CURE, Measure

I. INTRODUCTION

Computational geometry is a branch of computer science that

studies algorithms for solving geometric problems. In

modern engineering and mathematics, it has applications in

diverse fields as computer graphics, robotics, VLSI design

and molecular modelling etc.[1]. The representation of

spatial data such as points, lines, rectangle, regions, surfaces

and volumes etc. is becoming important in the applications

of computational geometry [2]. Clustering is a fundamental

problem in computational geometry and finds numerous

applications in the fields of data mining, image processing

and pattern classification and recognition [3,4,5,6,7]. The

task of assigning a set of objects into groups so that the

objects are more similar to other objects in the group than

those objects in other groups is known as cluster analysis or

clustering. Clustering is useful for discovering groups and

identifying interesting distributions in the underlying data.

Theoretical or practical approaches have been investigated

for solving variant problems on clustering. Also a number of

interesting results have been obtained. CURE algorithm is

also among these variants and have received considerable

attentions. To handle large databases, CURE employs a

combination of random sampling and partitioning in which

the random sample drawn from the data set is partitioned and

each partition is partially clustered [8]. We refer to the

groups mentioned above as clusters. In most of the clustering

algorithms, the number of clusters are supplied beforehand as

input. The clustering, in case of heirarchical clustering,

continues until the number of clusters is same as the supplied

number of clusters. The output is the supplied k number of

clusters. If there is no efficient mechanism to find this best

desired number of clusters,the number has to be supplied as a

guessed number. In CURE clustering algorithm also, there is

no provision for deciding the optimal number of clusters.

Here we try to find a method for finding the optimal number

of clusters with respect to CURE algorithm using the

representative points of the clusters.

This paper is presented in five headings besides the

Introduction. The second heading presents a brief

explanation on CURE clustering algorithm. Finding an

optimal number of clusters has always been a problem in

most of the clustering algorithms. In CURE also, there is a

need to find the optimal number of clusters to be supplied to

the clustering algorithm as an input. In the next heading, for

determining whether the considered number of clusters in the

CURE algorithm is optimal, we check the compactness of

the clusters and the separateness between these clusters

formed by the CURE algorithm using the representative

points. For a high quality clustering result, the clusters

should be more compact in itself i.e. the intra cluster distance

should be less and the clusters between themselves should be

well separated i.e. the inter cluster distance should be more.

The next heading is on the approach methods to find the

optimal number of clusters from a range that is to be

supplied. The last two headings are on the implementation of

algorithm by running on a set of points grouped into three

clusters and the conclusion.

 International Journal of Computer Sciences and Engineering Vol.6(2), Feb 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 314

II. A BREIF ON CURE CLUSTERING ALGORITHM

Clustering algorithm is an unsupervised machine learning

process that creates clusters such that data points inside a

cluster are close to each other, and also far apart from data

points in other clusters. There are four main categories of

clustering algorithms: partitioning, density-based, grid-based

and hierarchical algorithms. K-means and PAM are the

examples of partitioning algorithm which iteratively refines a

set of k clusters and do not scale well for larger data sets

[9,10]. DBSCAN and DENCLUE under the Density-based

algorithms, are able to efficiently produce clusters of

arbitrary shape and are also able to handle outliers [11,12]. In

these algorithms, if the density of a region is above a

specified threshold, those points are assigned to a cluster;

otherwise considered to be noise. Grid-based algorithms

reduce the clustering space into a grid of cells, enabling

efficient clustering of very large datasets [13]. Hierarchical

algorithms can be either bottom-up or top-down approach.

CURE and Chameleon are examples of hierarchical

algorithms [14,15].

CURE stands for Clustering Using Representatives. It is a

hierarchical clustering algorithm. In CURE algorithm, unlike

the traditional methods where a single central measure is

used as a base for clustering the objects (like the centroid of

the cluster), a constant number of well scattered points in a

cluster are first chosen. This constant number of scattered

points is then shrunk towards the centroid of the cluster by a

fraction α. After shrinking, these points are used as the

representatives of the cluster. Since we are considering a set

of well scattered points as the representatives of the cluster,

the shape and extent of the cluster is effectively captured by

these points. The clusters with the closest pair of

representative points are merged in each step of CURE‟s

hierarchical clustering algorithm. For a pair of point p and q,

dist (p, q) denotes the distance between the points. This

distance could be L1 (“Manhattan”) or L2 (“Euclidean”)

metrics. In CURE, the number of clusters k into which the

data set is to be clustered is also required to be specified. For

best result, the optimum number of clusters, k, should be

supplied.

A. Representative Points

Since we are using the representative points of a cluster in

our method, we are presenting here a detail description of the

representative points as they are described in the original

CURE paper. As already mentioned above, representative

points of a cluster are a set of well scattered points in the

cluster shrink by a fraction towards the centroid of the cluster.

For selecting the „c‟ well scattered points, an iterative

procedure is followed. Firstly, the point farthest from the

centroid of the cluster is added to the well scattered points set.

The next point to be added to the set is the point in the

cluster which is farthest from the points in the set. This

process continues until the desired number of scattered

points have been selected which is given by „c‟.

1) Number of Representative Points: The number of

representative points „c‟ having a value greater than 10,

always finds the right clusters in CURE. If the value of „c‟ is

less than 10, the representative points fail to capture the real

geometry of the cluster and tend to split big clusters.

2) The Shrink Factor α: CURE algorithm always finds the

right clusters when the shrink factor α is in the range 0.2 -0.7.

A value outside this range doesn‟t result in a good clustering.

In CURE clustering algorithm, the number of clusters in the

data set which are to be clustered have to be provided in

advance. Based on the provided number of clusters, the

algorithm carries on the clustering. Finding an optimal

number of clusters has always been a problem in most of the

clustering algorithms. In CURE also, there is a need to find

the optimal number of clusters to be supplied to the

clustering algorithm as an input.

III. FINDING AN OPTIMAL K-VALUE

In centroid based data mining algorithms like K-means, the

quality of the clustering result is checked by checking the

compactness within the clusters and the separateness of the

clusters based on the centroid of the cluster[]. In CURE,

since representative points are used in the clustering, we will

used the representative points to check the quality of the

cluster for a given number of clusters in order to obtain the

optimal value of the number of clusters that we are using in

the clustering. For determining whether the considered

number of clusters in the CURE algorithm is optimal, we

check the compactness of the clusters and the separateness

between these clusters formed by the CURE algorithm using

the representative points. For determining whether a cluster

Ki is compact, we use the intra cluster distance and for

determining the separateness of the clusters, we use the inter

cluster distance. The above mentioned intra cluster and inter

cluster distances will be discussed in the subsections of this

section. The intra cluster distance and the inter cluster

distance will then be used to find an optimality parameter

which will determine the quality of the clustering using that

particular number of cluster. For a high quality clustering

result, the clusters should be more compact in itself i.e. the

intra cluster distance should be less and the clusters between

themselves should be well separated i.e. the inter cluster

distance should be more.

A. Intra Cluster Distance Calculation

The intra cluster distance is to be calculated for each cluster

formed by CURE clustering algorithm. For each point,

distance from each representative point is taken into account

 International Journal of Computer Sciences and Engineering Vol.6(2), Feb 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 315

and the minimum of these values is taken into consideration.

Then the sum of all these minimum distances is calculated.

The average of this calculated sum is taken as the intra

cluster distance.

For cluster Ki, we calculate the intra cluster distance using

the equation given below

Itai = ∑ minj=1 to c (dist(x,rpij))) - Equation 1

where x denotes a point in a cluster, c denotes the number of

representative points in a cluster and rpij denotes the j
th

representative point of the i
th

 cluster.

After calculating the intra cluster distance for all the clusters,

a summation operation is carried out on the values and it is

divided by the number of points in our dataset. This resulting

value is taken as the intra distance of the clusters. It is given

by

Intra =

∑ Itai) - Equation 2

where Itai is from equation 1, k is the number of clusters we

are considering, and N is the number of points in the dataset.

A cluster is compact if the intra cluster measure of the cluster

is small. As a whole, a small value of the intra cluster

distance that we have calculated shows greater compactness

of the clusters. A large value, on the other hand, shows lesser

compactness.

B. Inter Cluster Distance Calculation

The inter cluster distance will be calculated based on the

representative points of each cluster. This distance is to be

calculated for each pair of clusters formed by CURE. The

minimum distance between the representative points of

cluster pair will be considered as the inter cluster distance

between the cluster pair.

Now,

Intrij = Min (dist (rpil , rpjl)) - Equation 3

where rpj Kj , rpi Ki , rpj Ki , rpl Kj., c is the

number of representative points, i and j represents cluster I

and cluster j.

Using the above calculated minimum distances, we calculate

the inter cluster distance of the whole clusters as

Inter=)(
1

ijIntr
M - Equation 4

where M=kC2 (the number of cluster pairs), Intrij is the

distance between cluster i and cluster j calculated in equation

3.

These inter cluster measure Inter gives the separateness of

the clusters. A larger inter cluster distance means the clusters

are more distant from each other. A smaller value indicates

the clusters are closer to each other on the whole. For a

quality clustering, we want this measure to be higher.

C. Formulation of an optimality parameter

As stated above, for a good clustering result, the selected

number of clusters that we are using should result in small

value of the intra cluster distance and a large value of inter

cluster distance. Keeping these two points in mind, we now

calculate our optimality parameter as

Optimality measure =

 - Equation 5

where Inter and Intra are the values calculated in equation 4

and equation 2 respectively.

A larger Optimality measure will be produced by a larger

inter cluster distance and a smaller intra cluster distance. The

number of clusters that we are using is considered to be the

optimum number of clusters if it produces the largest value

of the Optimality measure

IV. APPROACH METHOD

We will be trying to find the optimal number of clusters from

a range that is to be supplied. This range will be the range in

which the optimal number of clusters is likely to fall. If we

are taking the range as kmax to kmin, then the checking for

optimality of the number of clusters form by CURE

algorithm will start when the number of clusters reaches the

value kmax. From this kmax onwards, we will check the quality

of the clusters formed. The clustering by CURE will

continue as long as the optimality measure is on an

increasing trend or the minimum possible number of clusters,

kmin is reached. The modifications made to CURE clustering

algorithm is shown in the figures that are to follow. One

procedure shows the original clustering algorithm of CURE

with the required modifications in it and the other procedure

is our optimality measure algorithm for checking the quality

of the clusters formed.

A. Modified CURE clustering algorithm

 International Journal of Computer Sciences and Engineering Vol.6(2), Feb 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 316

Procedure cluster (S,k)

begin

1. bool test=false

2. T:= build_kd_tree(S)

3. Q:= build_heap(S)

4. while (((size(Q)> kmin) and ((!test and

size(Q)>kmax)or(test and size(Q) kmax))) {

5. u:= extract_mean(Q)

6. v:=u.closest

7. delete(Q,v)

8. oldu=u

9. oldv=v

10. w:=merge(u,v)

11. delete_rep(T,u);

delete_rep(T,v);insert_rep(T,w)

12. w.closest:=x /* x is an arbitrary cluster in Q */

13. for each x Q do {

14. if dist(w,x)< dist(w,w.closest)

15. w.closest:=x

16. if x.closest is either u or v {

17. if dist(x,x.closest)< dist(x,w)

18.

 x.closest:=closest_cluster(T,x,dist(x,w))

19. else

20. x.closest:=w

21. relocate(Q,x)

22. }

23. else if dist(x,x.closest)> dist(x,w) {

24. x.closest:=w

25. relocate(Q,x)

26. }

27. }

28. insert(Q,w)

29. If size(Q) kmax

30. test= optimality_test(Q)

31. }

32. delete(Q,v);insert(Q,oldu);insert(Q,oldv)

33. delete_rep(T,w);

insert_rep(T,oldu);insert_rep(T,oldv)

end

B. Procedure for optimality test

Procedure optimality_test(Q)

begin

1. static oldOM=0;

2. ita:=0, intra:=intr:=inter:=0

3. k:=size(Q)

4. M:=

5. for each cluster x

6. flagx:=0

7. for each cluster x {

8. flagx :=1

9. for each point p in cluster x

10. ita:=ita + min(dist(p,rp): rp x.rep)

11. for each cluster (y:y x and flagy=0){

12. intr:=intr + min(dist(rpx,rpy): rpx x.rep and

rpy y.rep)

13. }

14. intra:=

15. inter:=

16. newOM:=

17. if newOM > oldOM {

18. oldOM:=newOM

19. return true

20. }

21. else

22. return false

 end

C. Clustering Algorithm

In the modified CURE clustering algorithm (fig. 1) which is

only a small modification of the original CURE algorithm

(the original algorithm has been reproduced here with added

modifications), we have made changes in the condition that

the clustering algorithm followed as it goes on merging the

clusters until the desired number of clusters is not reached.

Instead of just checking whether a particular number of

clusters have been reached or not, we are also using the

optimality measure indirectly. The clustering will continue

only if the number of clusters is still greater than the

minimum number of clusters in the range that we considered

before and some added conditions. The added condition

consist of two parts, one corresponds to those where the

number of clusters is still above the maximum number of

clusters in our considered range and the other corresponds to

those where the number of clusters is equal to or less than

kmax . In the algorithm, we make use of a Boolean variable

test. At the beginning of the algorithm, its value is set to false.

This Boolean variable also plays an important part, or we can

say the most important part in our modification to the

condition of the clustering algorithm. The content of test will

remain false until the optimality_test procedure is invoked.

We will explain this procedure later. The „test‟ stores the

value returned by the optimality_test procedure. In the

clustering algorithm, the procedure is not invoked until the

number of clusters is inside the specified range of clusters

 International Journal of Computer Sciences and Engineering Vol.6(2), Feb 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 317

and so its value will be always false. This corresponds to the

first part mentioned above. So, the clustering algorithm of

CURE will continue clustering unaffected by the changes

made by us as long as the number of clusters is above kmax.

„(size(Q)> kmin) and ((!test and size(Q)>kmax)’ will take

care of this. Once the number of clusters enters the range,

then the optimality_test procedure will be invoked and as a

result the content of „test‟ may change accordingly. And

further clustering will take place only if the value of „test‟ is

true and the number of clusters is less than or equal to kmax.

The kmax mentioned here is the maximum value of the range

of number of clusters that we are considering. If the value of

„test‟ turns out to be false when the number of clusters is

within the specified range, then the clustering will not

continue further. But instead, we need to go back one step

backwards to undo the latest merging of the two nearest

clusters. Since we saved the two clusters before they were

merged in steps 8 and 9, the merged cluster is removed and

the two saved clusters are inserted into Q. This will be the

optimal solution of the clustering as further clustering after

this yields lesser optimality measure. So the clustering

algorithm will stop here.

D. Optimality testing procedure

After the number of clusters enters the range provided, the

optimality_test procedure is invoked after the merging of two

closest clusters to check the optimality measure of the new

sets of clusters formed. As the variable oldOM is set to 0, the

optimality_test procedure will return true when it is invoked

for the first time. When the procedure is invoked, it

calculates the „intra‟ parameter of the clusters which is the

average of the distance of all the points in the dataset from

the nearest representative points of their respective cluster.

The procedure also calculates the „inter‟ parameter which is

the average of the distance of the nearest representative point

pair of a pair of cluster. A flag is used to prevent the

reconsidering of a cluster pair which has been already

considered previously. After both the „intra‟ and „inter‟

parameters are calculated, the optimality measure of the

clusters is then calculated. If the newOM, which is the newly

calculated optimality measure, is greater than oldOM, which

holds the optimality measure of the previous clustering state,

the oldOM value is replaced by the newOM value and the

procedure returns true. This is an indication that the newly

formed clusters have higher quality than the previous

clusters. If this is not the case, the procedure returns false.

This is to indicate that the newly formed clusters have lesser

quality than the previous clusters. When the procedure

returns false, this is when the clustering algorithm stops

clustering further. The cluster set from which the new cluster

set has been formed will be the optimal clustering solution

and the number of clusters will be the optimum cluster

number.

E. Complexity of the optimality testing procedure

In the proposed optimality testing algorithm, for calculating

the „intra‟ parameter, there will be c*N distance calculations

and for calculating „inter‟ parameter, there will be k*c*c

distance calculations.

V. IMPLEMENTATION

As we are pertaining to the modification in CURE clustering

algorithm for the determination of the optimal number of

clusters in clustering process, it is presented here the working

of the optimality measure calculation which are trying to

embed in the clustering process of the CURE clustering

algorithm. As the clustering by CURE enters a predefined

range of cluster numbers, the function determines the

optimality measure of the current number of clusters and the

clustering is allowed to proceed only if the optimality

measure is increasing. The clustering is stopped and the

previous clusters are considered to be the best clusters if the

current clusters deliver a lower optimality measure as

compared to the previous sets of clusters.

Here, the algorithm is implemented by running on a set of

points grouped into three clusters (Note: The points that we

are considering here hasn’t been really clustered by any

clustering algorithm and we have done it manually just to

imitate a set of clusters on which to run our

implementation.). From the points in each cluster, we pick

out six well scattered points each to act the representative

points for each cluster. Then the points of each cluster and

the representative points are inputted into our

implementation. When we run the program for two different

sets of clusters, one set which is supposed to be a good set of

clusters, and another set which is supposed to be a bad set of

clusters (the good set of clusters here contain points which

are more similar to each other and the bad set of clusters

contain points which are all no very similar) the good set of

clusters return a better optimality measure as compare to the

bad set of clusters.

Result of the 1
st
 set of clusters considered (the good set of

clusters)

Snapshots of the input:

 International Journal of Computer Sciences and Engineering Vol.6(2), Feb 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 318

Snapshot of output:

 International Journal of Computer Sciences and Engineering Vol.6(2), Feb 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 319

Result of the second set of clusters considered (the bad set of

clusters)

Snapshots of the input:

Snapshot of output:

Inference from the two results:

Cluster

set

Intra

measure

Inter

Measure

Optimality

Measure

Set 1 0.415508 1.213024 2.919376

Set 2 1.008676 1.213024 1.22590

From the result, it is seen that a better set of clusters has a

greater value optimality measure. Set 1 which is supposed to

have better clusters have an optimality measure of 2.919376

while set 2 has an optimality measure of 1.22590.

 International Journal of Computer Sciences and Engineering Vol.6(2), Feb 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 320

Hence, the optimality measure can be used to find the best

set of clusters. The best set of clusters is supposed to have

the best optimality measure.

VI. CONCLUSION

CURE clustering algorithm which is used for clustering large

databases is a better algorithm than the traditional clustering

algorithm in many respects. CURE is effective in finding

arbitrary shaped clusters, and effectively handles the problem

of outliers. CURE handles large databases efficiently by

employing a combination of random sampling as well as

partitioning. But CURE doesn‟t have a provision for

checking for the optimum number of clusters. A desire

number of cluster is taken as input to the algorithm. In this

work, it is tried to improve CURE by adding a mechanism in

CURE clustering algorithm itself which checks the quality of

the clusters formed by the algorithm and thus determine the

best number of clusters based on their quality.

REFERENCES

[1] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.

Introduction to Algorithms, The MIT Press, Massachusetts, 1990.

[2] Hanan Samet. The Design and Analysis of Spatial Data Structures.

Addison-Wesley Publishing Company Inc., New York, 1990.

[3] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, second

ed., Wiley-Interscience, New York, 2001.

[4] J.Han, M. Kamber, Data Mining, Morgan Kaufmann Publishers,

2000.

[5] M. Grotschel, L. Lovasz, A. Schrijver, Geometric Algorithms and

Combinatorial Optimization, second ed., Algorithm and

Combinatorics, vol. 2, Springer-Verlag, Berlin, Heidelberg, 1994.

[6] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: A review,

ACM Computing Surveys 31 (1999) 264–323.

[7] V.V. Vazirani, Approximation Algorithms, Springer, 2001.

[8] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim (1998) CURE:

An Efficient Clustering Algorithm for Large Databases

[9] Siddheswar Ray and Rose H. Turi Determination of Number of

Clusters in K-Means Clustering and Application in Colour

Image Segmentation.

[10] Ng R., Han J. (1994) Efficient and effective clustering method for

spatial data mining. In Proc. Conf. on Very Large Data Bases, pp

144-155.

[11] Ester M., Kriegel H., Sander J., and Xu X. (1996) A Density-

Based Algorithm for Discovering Clusters in Large Spatial

Databases with Noise. In Proc. 3rd Int. Conf. on Knowledge

Discovery and Data Mining, AAAI Press.

[12] Hinneburg A., Keim D. (1998) An Efficient Approach to

Clustering in Large Multimedia Databases with Noise. Proc

AAAI.

[13] Seikholeslami G., Chatterjee S., and Zhang A. WaveCluster: A

Multi-Resolution Clustering Approach for Very Large Spatial

Databases. Proceedings of the 24th VLDB Conference, 1998

[14] Guha, S., R. Rastogi & K. Shim. CURE: An Efficient Clustering

Algorithm for Large Databases. In Proc. Of ACM SIGMOD Intl.

Conf. on Management of Data, pp. 73-82, 1998.

[15] Karypis, G., E. Han & V. Kumar. Chameleon: A hierarchical

clustering algorithm using dynamic modeling. IEEE Computer,

32(8) pp. 68-75, 1999.

Authors Profile

Khumukcham Robindro is currently working as as Assistant
Professor in the Department of Computer Science, Manipur
University. He joined the Department on 5th November, 2014.
Currently, he is Principal Investigator at e-Varaha Project, in
collaboration with IIT Guwahati and Tezpur University under
ITRA, Media Lab Asia, MeiTy, Govt. of India, in the Department
of Computer Science, Manipur University. His area of interests in
research includes Machine Learning, Intelligent Systems and
Knowledge Discovery.

