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Abstract— Artificial Intelligence and Machine Learning can be cited as one of the greatest technological advancements in 

this century. They are revolutionizing the fields of computing, finance, healthcare, agriculture, space, tourism. Powerful 

models have achieved excellent performance on a myriad of complex learning tasks. One such product of AI is a chatbot. 

A chatbot is an intelligent software which can simulate a conversation with a user like a real human being. Chatbots have 

found their use in customer service, recommender systems, smart appliances, etc. Chatbots can be broadly divided into 2 

types: Retrieval and Generative. Retrieval type chatbots are trained to provide the best fit answer from a database of 

predefined responses, whereas, generative type chatbots can generate the final answer from a training corpus. This paper 

proposes the design and implementation of a generative type travel chatbot using seq2seq model, which can generate 

answers to the user queries based on Kolkata tourism.  
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I.  INTRODUCTION  

 

A chatbot is an intelligent software that can simulate the 

conversation with a user in natural language. It can 

convincingly emulate the way a real human being would 

converse with another human being. Chatbots have the 

ability to learn from their experiences. They will integrate 

all the experience learning into its skill set and help the 

user to find its required result with effiency. In the past 

decade, the use of chatbots has grown manifold. They are 

being used in handling customer queries, technical 

consultancy, recommending products in the e-commerce 

domain, virtual counseling of students, etc.  

 

Chatbots are broadly classified into retrieval and 

generative type. Retrieval type chatbots have a knowledge 

base of predefined responses from which it chooses the 

best answer for the user query. A machine learning model 

is used to recognize the intent and entities of the user 

query, and respond with a suitable answer. They are 

generally closed domain chatbots. A generative type 

chatbot does not use any predefined repository. Instead, it 

generates a text response based on the training corpus 

using natural language generation. They are generally open 

domain chatbots.  

 

We have designed a generative type travel chatbot which 

majorly focuses on the Kolkata tourism domain. It has 

been designed on the seq2seq model, also called the 

encoder-decoder model, using LSTM (Long Short Term 

Memory) for text generation from training corpus. We 

have detailed the architecture, methodology and working 

of our chatbot in the paper.  

 

II. RELATED WORK  

 

The concept of chatbot was first introduced by Joseph 

Weizenbaum in 1966 at MIT. He created the first chatbot 

in the history of computer science which was named 

ELIZA [1]. It used pattern matching and substitution 

methodology to give fixed responses to the users. The 

creation of ELIZA pioneered the way to further 

advancements in the field of chatbots. After ELIZA, there 

were many other successful bots made. 

 

PARRY [2] was constructed by American psychiatrist 

Kenneth Colby in 1972. The program imitated a patient 

with schizophrenia and worked via a complicated system 

of assumptions, attributions and emotional responses 

triggered by changing weights assigned to verbal inputs. 

Racter [2] was another interesting chatbot program written 

in 1983 by William Chamberlain and Thomas Etter. It was 

labeled as a story-telling chatbot. Racter was the first 

computer program to write a book. Jabberwacky [3] was 

created by developer Rollo Carpenter in 1988. It worked 

on contextual pattern matching and aimed to simulate a 

natural human conversation in an entertaining way. 

 

A.L.I.C.E (Artificial Linguistic Internet Computer Entity) 

[4] was created by Richard Wallace in 1995. The chatbot 

worked with the XML schema known as Artificial 

Intelligence Markup Language (AIML). It has won the 

prestigious Loebner Prize three times. 
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Mitsuku is a chatbot created from AIML technology by 

Steve Worswick in 2005. It is a five times Loebner Prize 

winner and is often deemed as the most intelligent chatbot 

ever.  It inherits the traits of A.L.I.C.E chatbot.    

 

In 2017, Minghui Qiu et al presented a paper entitled 

“AliMe: A Sequence-to-Sequence Rerank-based Chatbot 

Engine” [5], which presented how a chatbot can be used in 

the e-commerce domain. The bot is employed in the 

Alibaba online site and services millions of customer 

queries a day, mostly in Chinese and English. AliMe 

integrates a hybrid approach based on Information 

Retrieval and seq2seq generation model.  

 

 “goTripper Chatbot for Tourism” by Monalisha 

Bandyopadhyay et al [6] details the architecture of a 

compact travel chatbot using Apache OpenNLP. The 

proposed system consists of three basic modules: NLU 

(Natural Language Understanding) module, state machine 

module and NLG (Natural Language Generation) module. 

 

Bai Li et al presented a paper “Real-world Conversational 

AI for Hotel Bookings” [7] in 2017, which details an AI 

system to search for and book hotels through text 

messaging.  

 

Myra, an AI powered chatbot from MakeMyTrip, is a very 

popular travel chatbot. It gets suggestions and alerts of 

rail/flight bookings, baggage details, and even suggestions 

for car bookings. 

 

The Booking Assistant chatbot uses AI technology to help 

answer customers’ questions. It is programmed to answer 

frequently asked questions on payment, date changes, 

transportation, pet policies and Internet availability in 

hotels. 

 

AskDISHA is an AI powered chatbot launched by Indian 

Railways for its travellers. Users can enquire about 

booking e-tickets, timetable of trains, reservation status, 

cancellation and refund. 

 

III. METHODOLOGY 

 

Natural Language Generation can be achieved by a variety 

of algorithms and models [8]. Some of them are Markov 

chain [9], Vanilla RNN, LSTM [10], Transformer [11]. In 

our proposed chatbot, we have designed a seq2seq model, 

also known as an encoder-decoder model, using LSTM. 

Seq2seq models were introduced first in the paper 

“Learning Phrase Representations using RNN Encoder-

Decoder for Statistical Machine Translation” by 

Kyungyun Cho et al in 2014 [12]. We have used Python 

programming for the development. The basic architecture 

of our chatbot is depicted in Fig 1. 

 
Fig 1 - Basic architecture of our chatbot 

 

The major steps carried out are listed in an order: 

1.  DATASET COLLECTION 

Data is the most important ingredient for any neural 

network. The more data it gets to work on, the better it 

performs. For our travel chatbot, we curated 1084 pairs of 

human response – bot response questionnaire on Kolkata 

tourism, primarily on locations and food. The dataset is 

spread across 2 text files. A part of the dataset is given in 

Fig 2. 

 

 
Fig 2 - Dataset 

 

2. PREPROCESSING 

We use regular expressions to remove punctuations, except 

comma, from the sentences. The reason we keep comma is 

that it helps separate the multiple proper nouns which may 

appear in bot response, especially for a travel chatbot. 

Hence we treat comma as a unique token. Then the 

sentences are converted to lower case to reduce ambiguity. 

We again use regular expressions to separate comma from 

their attached words. Finally, a tokenizer is used on the 

input and output corpus to create the input and output 

vocabulary set, containing all unique tokens. The dataset 

after preprocessing looks like in Fig 3. 

 

 
Fig 3 – Dataset after preprocessing 
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We add a ‘START’ token at the beginning and ‘STOP’ 

token at the end of the bot responses so that our model 

knows where to start and end text generation. 

 

3. VECTORIZATION 

Vectorization is a process of converting words into 

numbers. We declare 4 Python dictionaries – Input 

Features, Reverse Input Features, Output Features and 

Reverse Output Features. The feature dictionaries will help 

us to vectorize the text and the reverse feature dictionaries 

will help us to build text from a vectorized format. There 

are various ways of vectorizing a text; we use one-hot 

vectorization in the process. One-hot vectorization, as the 

name suggests, makes use of only 0 and 1. Three 3-

Dimensional arrays are created to store the vectorized 

forms of input and output corpus. To give an insight into 

the vectorization, let us consider the input sentences to be 

[“Hi, how are you?”, “What is your name?”] and output 

sentences to be [“Am fine”, “My name is Kolly”]. Input 

tokens are [‘,’ , ‘are’ , ‘hi’ , ‘how’ , ‘is’ , ‘name’ , ‘you’ , 

‘your’ , ‘what’] and output tokens are [‘am’ , ‘fine’ , 

‘kolly’ , ‘my’ , ‘name’ , ‘is’]. They are arranged 

alphabetically. Our dictionaries would look like in Fig 4: 

 

 
Fig 4 – Vectorization dictionaries example 

 

After vectorization of the input corpus, the 3-D array will 

look like in Fig 5: 

 
Fig 5 – Vectorized 3D array of sample input corpus 

 

The dimensions of the array are: No of sentences in the 

corpus x Maximum number of tokens in a sentence x Total 

number of unique tokens. As you can see, we do not need 

to perform padding as it is already padded. Padding [13] is 

basically the process of structuring all the vector sequences 

to the same length for better fitting. This is generally done 

by adding extra zeros to the sequences if needed. In Fig 5, 

the 2
nd

 dimension of the vectorized array is the maximum 

number of tokens in a sentence. We take the maximum so 

that every other sentence can be padded to the maximum 

length.  The reason we use 3 arrays is a method called 

teacher forcing which is used by the Seq2Seq model while 

training, explained in detail in model training section. 

 

4. MODEL CREATION 

Seq2Seq model is generally used for text generation from a 

training corpus [14], text summarization, question 

answering systems, image captioning, conversational 

modeling [15, 16], and machine translation applications. It 

is also called encoder-decoder model because it contains 

two RNN (Recurrent Neural Network) structures, one for 

encoding and another for decoding [17, 18]. It takes as 

input a sequence of words and generates an output 

sequence of words. Although the vanilla version of RNN is 

rarely used, nowadays more advanced versions like LSTM 

(Long Short Term Memory) & GRU (Gated Recurrent 

Unit) are utilized. The reason for this is vanilla RNN 

suffers from the problem of vanishing gradient, where it 

cannot remember long term dependencies. This can be 

overcome by using a LSTM cell. A basic LSTM cell 

architecture is given in Fig 6: 

 

 
Fig 6 – Basic LSTM cell architecture 

 

There are 2 states of an LSTM cell, cell state and hidden 

state. The cell state is the memory of the LSTM cell, and 

hidden state is the output of the cell. In Fig 6, we can see 

each LSTM cell has 3 inputs: Ct-1, ht-1 and Xt. Ct-1 stands for 

the cell state input from a memory cell in timestep t-1, ht-1 

stands for the hidden state input from a memory cell in 

timestep t-1 and Xt is an input in timestep t. A LSTM cell 

comprises of 3 gates: input gate (adds new data to the cell), 

output gate (outputs cell data) and forget gate (erases cell 

data). In the input gate, we decide to add new content from 

the present input to our present cell state. In the output 

gate, we decide what to output from our cell state. In the 

forget gate, we take decisions about what must be removed 

from the ht-1 state and keep only the relevant content.  

 

We used this LSTM cell to construct our RNN encoder and 

decoder. We took dimensionality of 512 for our LSTM 

layer. It defines the dimensions of the output space. The 

model predicts a word given in the user input and then 
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each of the successive words is predicted using the 

probability of that word to occur. The two network are 

trained together to increase the conditional probability of 

the output sequence given an input sequence. The encoder 

outputs a final state vector which becomes the initial input 

for the decoder. We used Tensorflow and Keras to build 

our Seq2Seq model. Tensorflow is an open source end-to-

end machine learning platform and Keras is an open source 

Python library that provides an interface for modeling 

artificial neural networks.   

 The architecture of the model is given in Fig 7: 

 

 
Fig 7 – Seq2Seq model architecture 

 

5. TRAINING 

As stated previously, we use three 3-Dimensional matrices 

of one-hot vectors to train our model. We named them 

Encoder input, Decoder input, Decoder output. We use two 

matrices for the decoder to implement a method called 

teacher forcing [19, 20]. It is a common technique used in 

training Seq2Seq models, or RNN’s in general. Teacher 

forcing is a technique where the output word is passed as 

the next input to the decoder. As a sequence comprises of 

words in a particular order, the prediction of a single word 

depends on the previously predicted words. So one wrong 

prediction can break the entire sequence and a wrong 

answer will be shown by the bot. Teacher forcing remedies 

this. We take help of an input token from the previous 

timestep to help the model train for the current output 

token. 

 

We fit the data into our created model using Adam 

optimizer and Categorical Cross-Entropy loss function. We 

use Encoder input, Decoder input as feature values and 

Decoder output as target values. We use 20% of our 

training data for cross-validation.  

 

6. TESTING 
The testing of our Seq2Seq model entails receiving a user 

query, processing it and giving out an answer. The model 

we created for training implements teacher forcing, where 

the output sequence is known. But it will not work for an 

unknown query. Hence we define a testing setup 

containing a Seq2Seq model in individual pieces. We build 

an encoder model with encoder inputs and output states. 

We build a decoder model with decoder inputs, the final 

states from the encoder and decoder output states. Lastly, 

we create a function that accepts the user query and 

generates a response using the model. The function creates 

the vectorized matrix of the input text and feeds the matrix 

into the testing encoder model. We retrieve the output 

states and then we pass them into the decoder, which 

becomes our initial decoder hidden states. Our word 

prediction starts and as each word is predicted, we update 

the hidden state of the decoder so that we can use 

previously predicted words to help predict the successive 

ones. The words predicted are initially in a vectorized 

format which we decode using the Reverse Output 

Features dictionary. We stop once we hit the <STOP> 

token as it indicates the end of a sentence.    

 

IV. RESULTS AND DISCUSSION 

 

Given below is a sample conversation with our Kolly 

travel chatbot in Fig 8. 

 
Fig 8 – Sample conversation with our chatbot 
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As we can see the chatbot is able to understand the intent 

of most of the human queries and answer them 

accordingly. The Seq2Seq model efficiently builds up the 

response by predicting the correct tokens. When asked 

“where can i go in kolkata?” it replies with all the tourist 

destinations we have mentioned in our dataset. When 

asked “enlighten me about howrah bridge” it replies with 

the info on Howrah Bridge. The question “can you suggest 

me places for chinese food?” could not be answered 

correctly, contrary to the question “chinese?” which was 

answered correctly. It may be due to lack of dataset or 

training, as both questions mean the same. It replies 

correctly to exclamations and exit cues. Hence we can see 

the chatbot could recommend places to travel to, give info 

about the places, and also suggest restaurants for a 

particular cuisine, limited to our dataset. It makes use of 

the training data, learns efficiently and generates 

responses.  

 

We tried to fit the model using six optimizers, a loss versus 

epochs graph of which is given below in Fig 9: 

 

 
Fig 9 – Loss vs. Epochs graph for optimizers 

 

From the graph we can notice that the SGD (Stochastic 

Gradient Descent) and Adadelta optimizer could not 

converge within 50 epochs. The other four optimizers 

converged to their global minima’s, performing fairly 

similar to each other. Using Adam optimizer and 

Categorical Cross-Entropy loss function, we got an 

accuracy of around 53% on training. The hyper-parameters 

had the following values: default learning rate of 0.001 for 

the optimizer, batch size equal to 10, epochs equal to 50. 

We performed some tuning and fixed on these values as 

they worked the best. For 1084 training examples, the 

accuracy we got was decent.    

 

It could not answer some questions correctly which is due 

to lack of training dataset. The training data needs to be 

robust and well defined, especially for a travel chatbot. A 

generative chatbot is as good as its training corpus. If we 

increase the amount and variety of data, the accuracy 

would surely improve. Also we ran the training for 50 

epochs, which maybe increased for better fitting.   

V. FUTURE SCOPE  

 

Travel chatbots, apart from their intelligent conversation 

feature, have many other features too. With that being said, 

our travel chatbot has multiple areas of development and 

future work. Our chatbot currently has a limited knowledge 

base of a few locations, cuisines and restaurants of Kolkata. 

It can be expanded to more locations, tourist spots, heritage 

sites, shopping destinations, restaurants and eateries, 

navigation, hotel information - everything a user would 

expect out of a travel chatbot acting as a virtual guide. More 

human response bot response pair can be added to the 

database to make the chatbot a complete one, giving it the 

power to handle a variety of queries. Elaborate exception 

handling can be integrated to manage the out of context 

questions that the user may ask. The only punctuation we 

used was a comma to reduce ambiguity. Further work can 

be done to support all punctuations.  

 

For user query input, we can integrate voice input besides 

text input. We will use a speech input module to process 

and parse the voice input before sending it to the testing 

model, and a text to speech generator for obtaining the 

audio of the text generated response. For navigation, we can 

integrate the Google Maps API into our chatbot, which can 

help us to gather data like geo-location, latitudes, and 

longitudes of the user from the Maps database. It can help 

in navigating the user to a specific area of Kolkata or 

suggest routes to reach a specific site. We can integrate the 

MediaWiki’s API into our chatbot through which it can 

access Wikipedia information on a topic and relay that to 

the user. A hotel booking API can be added to facilitate the 

process of searching and booking hotels, availability of 

rooms, hotel services, and automated payment process. 

 

VI. CONCLUSION 

 

In conclusion, we propose a generative type travel chatbot 

system which utilizes a Seq2Seq model to generate valid 

responses from a training corpus and answer user queries. 

We could replicate a human conversation well using a 

Seq2Seq model with LSTM, as presented in the paper. This 

study can be a base for creating more advanced 

conversational travel chatbots, working on a much more 

elaborate and robust dataset. Our chatbot is limited only to 

Kolkata, but we can design a chatbot for any travel location. 

The chatbot can help new tourists to explore, and act as a 

virtual guide. The chatbot will be easy to operate, user-

friendly, and will help a user to get a concise clear answer 

to his travel related query. Generative type chatbots are an 

epitome of what an intelligent system looks like. It learns 

from its experiences and knowledge; and tourism is one 

such domain where the use of generative type chatbots will 

grow in the coming years. 
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