

 © 2020, IJCSE All Rights Reserved 21

 International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol. 8, Issue.12, December 2020 E-ISSN: 2347-2693

Proposal of a Generative type Travel Chatbot using Seq2Seq model

Subhadeep Jana

1*
, Souradeep Ghosh

2

1
Department of Computer Science & Engineering, Government College of Engineering and Ceramic Technology, Kolkata,

India
2
Department of Electrical Engineering, Heritage Institute of Technology, Kolkata, India

*Corresponding Author: jsubhadeep1999@gmail.com, Tel.: +91-8240262186

DOI: https://doi.org/10.26438/ijcse/v8i12.2126 | Available online at: www.ijcseonline.org

Received: 19/Dec/2020, Accepted: 21/Dec/2020, Published: 31/Dec/2020

Abstract— Artificial Intelligence and Machine Learning can be cited as one of the greatest technological advancements in

this century. They are revolutionizing the fields of computing, finance, healthcare, agriculture, space, tourism. Powerful

models have achieved excellent performance on a myriad of complex learning tasks. One such product of AI is a chatbot.

A chatbot is an intelligent software which can simulate a conversation with a user like a real human being. Chatbots have

found their use in customer service, recommender systems, smart appliances, etc. Chatbots can be broadly divided into 2

types: Retrieval and Generative. Retrieval type chatbots are trained to provide the best fit answer from a database of

predefined responses, whereas, generative type chatbots can generate the final answer from a training corpus. This paper

proposes the design and implementation of a generative type travel chatbot using seq2seq model, which can generate

answers to the user queries based on Kolkata tourism.

Keywords— Chatbot, Machine Learning, Neural Network, Deep Learning, NLP

I. INTRODUCTION

A chatbot is an intelligent software that can simulate the

conversation with a user in natural language. It can

convincingly emulate the way a real human being would

converse with another human being. Chatbots have the

ability to learn from their experiences. They will integrate

all the experience learning into its skill set and help the

user to find its required result with effiency. In the past

decade, the use of chatbots has grown manifold. They are

being used in handling customer queries, technical

consultancy, recommending products in the e-commerce

domain, virtual counseling of students, etc.

Chatbots are broadly classified into retrieval and

generative type. Retrieval type chatbots have a knowledge

base of predefined responses from which it chooses the

best answer for the user query. A machine learning model

is used to recognize the intent and entities of the user

query, and respond with a suitable answer. They are

generally closed domain chatbots. A generative type

chatbot does not use any predefined repository. Instead, it

generates a text response based on the training corpus

using natural language generation. They are generally open

domain chatbots.

We have designed a generative type travel chatbot which

majorly focuses on the Kolkata tourism domain. It has

been designed on the seq2seq model, also called the

encoder-decoder model, using LSTM (Long Short Term

Memory) for text generation from training corpus. We

have detailed the architecture, methodology and working

of our chatbot in the paper.

II. RELATED WORK

The concept of chatbot was first introduced by Joseph

Weizenbaum in 1966 at MIT. He created the first chatbot

in the history of computer science which was named

ELIZA [1]. It used pattern matching and substitution

methodology to give fixed responses to the users. The

creation of ELIZA pioneered the way to further

advancements in the field of chatbots. After ELIZA, there

were many other successful bots made.

PARRY [2] was constructed by American psychiatrist

Kenneth Colby in 1972. The program imitated a patient

with schizophrenia and worked via a complicated system

of assumptions, attributions and emotional responses

triggered by changing weights assigned to verbal inputs.

Racter [2] was another interesting chatbot program written

in 1983 by William Chamberlain and Thomas Etter. It was

labeled as a story-telling chatbot. Racter was the first

computer program to write a book. Jabberwacky [3] was

created by developer Rollo Carpenter in 1988. It worked

on contextual pattern matching and aimed to simulate a

natural human conversation in an entertaining way.

A.L.I.C.E (Artificial Linguistic Internet Computer Entity)

[4] was created by Richard Wallace in 1995. The chatbot

worked with the XML schema known as Artificial

Intelligence Markup Language (AIML). It has won the

prestigious Loebner Prize three times.

 International Journal of Computer Sciences and Engineering Vol.8(12), Dec 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 22

Mitsuku is a chatbot created from AIML technology by

Steve Worswick in 2005. It is a five times Loebner Prize

winner and is often deemed as the most intelligent chatbot

ever. It inherits the traits of A.L.I.C.E chatbot.

In 2017, Minghui Qiu et al presented a paper entitled

“AliMe: A Sequence-to-Sequence Rerank-based Chatbot

Engine” [5], which presented how a chatbot can be used in

the e-commerce domain. The bot is employed in the

Alibaba online site and services millions of customer

queries a day, mostly in Chinese and English. AliMe

integrates a hybrid approach based on Information

Retrieval and seq2seq generation model.

 “goTripper Chatbot for Tourism” by Monalisha

Bandyopadhyay et al [6] details the architecture of a

compact travel chatbot using Apache OpenNLP. The

proposed system consists of three basic modules: NLU

(Natural Language Understanding) module, state machine

module and NLG (Natural Language Generation) module.

Bai Li et al presented a paper “Real-world Conversational

AI for Hotel Bookings” [7] in 2017, which details an AI

system to search for and book hotels through text

messaging.

Myra, an AI powered chatbot from MakeMyTrip, is a very

popular travel chatbot. It gets suggestions and alerts of

rail/flight bookings, baggage details, and even suggestions

for car bookings.

The Booking Assistant chatbot uses AI technology to help

answer customers’ questions. It is programmed to answer

frequently asked questions on payment, date changes,

transportation, pet policies and Internet availability in

hotels.

AskDISHA is an AI powered chatbot launched by Indian

Railways for its travellers. Users can enquire about

booking e-tickets, timetable of trains, reservation status,

cancellation and refund.

III. METHODOLOGY

Natural Language Generation can be achieved by a variety

of algorithms and models [8]. Some of them are Markov

chain [9], Vanilla RNN, LSTM [10], Transformer [11]. In

our proposed chatbot, we have designed a seq2seq model,

also known as an encoder-decoder model, using LSTM.

Seq2seq models were introduced first in the paper

“Learning Phrase Representations using RNN Encoder-

Decoder for Statistical Machine Translation” by

Kyungyun Cho et al in 2014 [12]. We have used Python

programming for the development. The basic architecture

of our chatbot is depicted in Fig 1.

Fig 1 - Basic architecture of our chatbot

The major steps carried out are listed in an order:

1. DATASET COLLECTION

Data is the most important ingredient for any neural

network. The more data it gets to work on, the better it

performs. For our travel chatbot, we curated 1084 pairs of

human response – bot response questionnaire on Kolkata

tourism, primarily on locations and food. The dataset is

spread across 2 text files. A part of the dataset is given in

Fig 2.

Fig 2 - Dataset

2. PREPROCESSING

We use regular expressions to remove punctuations, except

comma, from the sentences. The reason we keep comma is

that it helps separate the multiple proper nouns which may

appear in bot response, especially for a travel chatbot.

Hence we treat comma as a unique token. Then the

sentences are converted to lower case to reduce ambiguity.

We again use regular expressions to separate comma from

their attached words. Finally, a tokenizer is used on the

input and output corpus to create the input and output

vocabulary set, containing all unique tokens. The dataset

after preprocessing looks like in Fig 3.

Fig 3 – Dataset after preprocessing

 International Journal of Computer Sciences and Engineering Vol.8(12), Dec 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 23

We add a ‘START’ token at the beginning and ‘STOP’

token at the end of the bot responses so that our model

knows where to start and end text generation.

3. VECTORIZATION

Vectorization is a process of converting words into

numbers. We declare 4 Python dictionaries – Input

Features, Reverse Input Features, Output Features and

Reverse Output Features. The feature dictionaries will help

us to vectorize the text and the reverse feature dictionaries

will help us to build text from a vectorized format. There

are various ways of vectorizing a text; we use one-hot

vectorization in the process. One-hot vectorization, as the

name suggests, makes use of only 0 and 1. Three 3-

Dimensional arrays are created to store the vectorized

forms of input and output corpus. To give an insight into

the vectorization, let us consider the input sentences to be

[“Hi, how are you?”, “What is your name?”] and output

sentences to be [“Am fine”, “My name is Kolly”]. Input

tokens are [‘,’ , ‘are’ , ‘hi’ , ‘how’ , ‘is’ , ‘name’ , ‘you’ ,

‘your’ , ‘what’] and output tokens are [‘am’ , ‘fine’ ,

‘kolly’ , ‘my’ , ‘name’ , ‘is’]. They are arranged

alphabetically. Our dictionaries would look like in Fig 4:

Fig 4 – Vectorization dictionaries example

After vectorization of the input corpus, the 3-D array will

look like in Fig 5:

Fig 5 – Vectorized 3D array of sample input corpus

The dimensions of the array are: No of sentences in the

corpus x Maximum number of tokens in a sentence x Total

number of unique tokens. As you can see, we do not need

to perform padding as it is already padded. Padding [13] is

basically the process of structuring all the vector sequences

to the same length for better fitting. This is generally done

by adding extra zeros to the sequences if needed. In Fig 5,

the 2
nd

 dimension of the vectorized array is the maximum

number of tokens in a sentence. We take the maximum so

that every other sentence can be padded to the maximum

length. The reason we use 3 arrays is a method called

teacher forcing which is used by the Seq2Seq model while

training, explained in detail in model training section.

4. MODEL CREATION

Seq2Seq model is generally used for text generation from a

training corpus [14], text summarization, question

answering systems, image captioning, conversational

modeling [15, 16], and machine translation applications. It

is also called encoder-decoder model because it contains

two RNN (Recurrent Neural Network) structures, one for

encoding and another for decoding [17, 18]. It takes as

input a sequence of words and generates an output

sequence of words. Although the vanilla version of RNN is

rarely used, nowadays more advanced versions like LSTM

(Long Short Term Memory) & GRU (Gated Recurrent

Unit) are utilized. The reason for this is vanilla RNN

suffers from the problem of vanishing gradient, where it

cannot remember long term dependencies. This can be

overcome by using a LSTM cell. A basic LSTM cell

architecture is given in Fig 6:

Fig 6 – Basic LSTM cell architecture

There are 2 states of an LSTM cell, cell state and hidden

state. The cell state is the memory of the LSTM cell, and

hidden state is the output of the cell. In Fig 6, we can see

each LSTM cell has 3 inputs: Ct-1, ht-1 and Xt. Ct-1 stands for

the cell state input from a memory cell in timestep t-1, ht-1

stands for the hidden state input from a memory cell in

timestep t-1 and Xt is an input in timestep t. A LSTM cell

comprises of 3 gates: input gate (adds new data to the cell),

output gate (outputs cell data) and forget gate (erases cell

data). In the input gate, we decide to add new content from

the present input to our present cell state. In the output

gate, we decide what to output from our cell state. In the

forget gate, we take decisions about what must be removed

from the ht-1 state and keep only the relevant content.

We used this LSTM cell to construct our RNN encoder and

decoder. We took dimensionality of 512 for our LSTM

layer. It defines the dimensions of the output space. The

model predicts a word given in the user input and then

 International Journal of Computer Sciences and Engineering Vol.8(12), Dec 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 24

each of the successive words is predicted using the

probability of that word to occur. The two network are

trained together to increase the conditional probability of

the output sequence given an input sequence. The encoder

outputs a final state vector which becomes the initial input

for the decoder. We used Tensorflow and Keras to build

our Seq2Seq model. Tensorflow is an open source end-to-

end machine learning platform and Keras is an open source

Python library that provides an interface for modeling

artificial neural networks.

 The architecture of the model is given in Fig 7:

Fig 7 – Seq2Seq model architecture

5. TRAINING

As stated previously, we use three 3-Dimensional matrices

of one-hot vectors to train our model. We named them

Encoder input, Decoder input, Decoder output. We use two

matrices for the decoder to implement a method called

teacher forcing [19, 20]. It is a common technique used in

training Seq2Seq models, or RNN’s in general. Teacher

forcing is a technique where the output word is passed as

the next input to the decoder. As a sequence comprises of

words in a particular order, the prediction of a single word

depends on the previously predicted words. So one wrong

prediction can break the entire sequence and a wrong

answer will be shown by the bot. Teacher forcing remedies

this. We take help of an input token from the previous

timestep to help the model train for the current output

token.

We fit the data into our created model using Adam

optimizer and Categorical Cross-Entropy loss function. We

use Encoder input, Decoder input as feature values and

Decoder output as target values. We use 20% of our

training data for cross-validation.

6. TESTING
The testing of our Seq2Seq model entails receiving a user

query, processing it and giving out an answer. The model

we created for training implements teacher forcing, where

the output sequence is known. But it will not work for an

unknown query. Hence we define a testing setup

containing a Seq2Seq model in individual pieces. We build

an encoder model with encoder inputs and output states.

We build a decoder model with decoder inputs, the final

states from the encoder and decoder output states. Lastly,

we create a function that accepts the user query and

generates a response using the model. The function creates

the vectorized matrix of the input text and feeds the matrix

into the testing encoder model. We retrieve the output

states and then we pass them into the decoder, which

becomes our initial decoder hidden states. Our word

prediction starts and as each word is predicted, we update

the hidden state of the decoder so that we can use

previously predicted words to help predict the successive

ones. The words predicted are initially in a vectorized

format which we decode using the Reverse Output

Features dictionary. We stop once we hit the <STOP>

token as it indicates the end of a sentence.

IV. RESULTS AND DISCUSSION

Given below is a sample conversation with our Kolly

travel chatbot in Fig 8.

Fig 8 – Sample conversation with our chatbot

 International Journal of Computer Sciences and Engineering Vol.8(12), Dec 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 25

As we can see the chatbot is able to understand the intent

of most of the human queries and answer them

accordingly. The Seq2Seq model efficiently builds up the

response by predicting the correct tokens. When asked

“where can i go in kolkata?” it replies with all the tourist

destinations we have mentioned in our dataset. When

asked “enlighten me about howrah bridge” it replies with

the info on Howrah Bridge. The question “can you suggest

me places for chinese food?” could not be answered

correctly, contrary to the question “chinese?” which was

answered correctly. It may be due to lack of dataset or

training, as both questions mean the same. It replies

correctly to exclamations and exit cues. Hence we can see

the chatbot could recommend places to travel to, give info

about the places, and also suggest restaurants for a

particular cuisine, limited to our dataset. It makes use of

the training data, learns efficiently and generates

responses.

We tried to fit the model using six optimizers, a loss versus

epochs graph of which is given below in Fig 9:

Fig 9 – Loss vs. Epochs graph for optimizers

From the graph we can notice that the SGD (Stochastic

Gradient Descent) and Adadelta optimizer could not

converge within 50 epochs. The other four optimizers

converged to their global minima’s, performing fairly

similar to each other. Using Adam optimizer and

Categorical Cross-Entropy loss function, we got an

accuracy of around 53% on training. The hyper-parameters

had the following values: default learning rate of 0.001 for

the optimizer, batch size equal to 10, epochs equal to 50.

We performed some tuning and fixed on these values as

they worked the best. For 1084 training examples, the

accuracy we got was decent.

It could not answer some questions correctly which is due

to lack of training dataset. The training data needs to be

robust and well defined, especially for a travel chatbot. A

generative chatbot is as good as its training corpus. If we

increase the amount and variety of data, the accuracy

would surely improve. Also we ran the training for 50

epochs, which maybe increased for better fitting.

V. FUTURE SCOPE

Travel chatbots, apart from their intelligent conversation

feature, have many other features too. With that being said,

our travel chatbot has multiple areas of development and

future work. Our chatbot currently has a limited knowledge

base of a few locations, cuisines and restaurants of Kolkata.

It can be expanded to more locations, tourist spots, heritage

sites, shopping destinations, restaurants and eateries,

navigation, hotel information - everything a user would

expect out of a travel chatbot acting as a virtual guide. More

human response bot response pair can be added to the

database to make the chatbot a complete one, giving it the

power to handle a variety of queries. Elaborate exception

handling can be integrated to manage the out of context

questions that the user may ask. The only punctuation we

used was a comma to reduce ambiguity. Further work can

be done to support all punctuations.

For user query input, we can integrate voice input besides

text input. We will use a speech input module to process

and parse the voice input before sending it to the testing

model, and a text to speech generator for obtaining the

audio of the text generated response. For navigation, we can

integrate the Google Maps API into our chatbot, which can

help us to gather data like geo-location, latitudes, and

longitudes of the user from the Maps database. It can help

in navigating the user to a specific area of Kolkata or

suggest routes to reach a specific site. We can integrate the

MediaWiki’s API into our chatbot through which it can

access Wikipedia information on a topic and relay that to

the user. A hotel booking API can be added to facilitate the

process of searching and booking hotels, availability of

rooms, hotel services, and automated payment process.

VI. CONCLUSION

In conclusion, we propose a generative type travel chatbot

system which utilizes a Seq2Seq model to generate valid

responses from a training corpus and answer user queries.

We could replicate a human conversation well using a

Seq2Seq model with LSTM, as presented in the paper. This

study can be a base for creating more advanced

conversational travel chatbots, working on a much more

elaborate and robust dataset. Our chatbot is limited only to

Kolkata, but we can design a chatbot for any travel location.

The chatbot can help new tourists to explore, and act as a

virtual guide. The chatbot will be easy to operate, user-

friendly, and will help a user to get a concise clear answer

to his travel related query. Generative type chatbots are an

epitome of what an intelligent system looks like. It learns

from its experiences and knowledge; and tourism is one

such domain where the use of generative type chatbots will

grow in the coming years.

REFERENCES

[1] J. Weizenbaum, “ELIZA - A Computer Program for the study of

Natural Language Communication between Man and Machine”,

Communications of the ACM, Vol.9, Issue.12, pp.36-45, 1966.

 International Journal of Computer Sciences and Engineering Vol.8(12), Dec 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 26

[2] T. Zemcik, “A Brief History of Chatbots”, In the Proceedings of

International Conference on Artificial Intelligence, Control and

Automation Engineering (AICAE 2019), China, pp.14-18,

2019.
[3] A. Mittal, A. Agarwal, A. Chouksey, R. Sriwas, S. Agrawal, “A

Comparative Study of Chatbots and Humans”, International

Journal of Advanced Research in Computer and Communication

Engineering, Vol.5, Issue.3, pp.1055-1057, 2016.

[4] B. AbuShawar, E. Atwell, “ALICE Chatbot: Trials and

Outputs”, Computacion y Sistemas, Vol.19, Issue.4, pp.625-

632, 2015.

[5] M. Qiu, F. Li, S. Wang, X. Gao, Y. Chen, W. Zhao, H. Chen, J.

Huang, W. Chu, “AliMe Chat: A Sequence to Sequence and

Rerank based Chatbot Engine”, In the Proceedings of the 55th

Annual Meeting of the Association of Computational

Linguistics, Canada, pp.498-503, 2017.

[6] M. Bandyopadhyay, M. Sahoo, M.L. Rangani, J.K. Mirji,

“goTripper Chatbot for Tourism”, International Journal of

Computer Sciences and Engineering, Vol.7, Special Issue.14,

pp.36-40, 2019.

[7] B. Li, N. Jiang, J. Sham, H. Shi, H. Fazal, “Real-world

Conversational AI for Hotel Bookings”, In the Proceedings of

2
nd

 International Conference on Artificial Intelligence for

Industries (AI4I 2019), USA, pp.58-62, 2019.

[8] S. Santhanam, S. Shaik, “A Survey of Natural Language

Generation Techniques with a focus on Dialogue Systems –

Past, Present and Future Directions”, CoRR,

Vol.abs/1906.00500, 2019.

[9] F.S. Al-Anzi, D.M. AbuZeina, “A Survey of Markov Chain

models in Linguistics Applications”, In the Proceedings of the

5
th
 International Conference on Advanced Information

Technologies and Applications (ICAITA 2016), UAE, pp.53-

62, 2016.

[10] A. Sherstinsky, “Fundamentals of Recurrent Neural Network

(RNN) and Long Short Term Memory (LSTM) Network”, CoRR,

Vol.abs/1808.03314, 2018.

[11] D. Varshney, A. Ekbal, G.P. Nagaraja, M. Tiwari, A.A.M.

Gopinath, P. Bhattacharya, “Natural Language Generation

using Transformer in an Open Domain Setting”, In the

Proceedings of the 25
th
 International Conference on Natural

Language & Information Systems, Germany, pp.82-93, 2020.

[12] K. Cho, B.V. Merrienboer, C. Gulcehre, D. Bahdanau, F.

Bougares, H. Schwenk, Y. Bengio, “Learning Phrase

Representations using RNN Encoder-Decoder for Statistical

Machine Translation”, In the Proceedings of Conference on

Empirical Methods in Natural Language Processing (EMNLP

2014), Qatar, pp.1724-1734, 2014.

[13] M. Dwarampudi, N.V. SubbaReddy, “Effects of padding on

LSTMs and CNNs”, CoRR, Vol.abs/1903.07288, 2019.

[14] P. Mazare, S. Humeau, M. Raison, A. Bordes, “Training

Millions of Personalized Dialogue Agents”, In the Proceedings

of Conference on Empirical Methods in Natural Language

Processing (EMNLP 2018), Belgium, pp.2775-2779, 2018.

[15] P. Jayachandran, K. Nawas, C. Jackson, S. Ramanath, R.

Prabhakaran, “Towards building a Neural Conversation

Chatbot through Seq2Seq model”, International Journal of

Scientific and Technology Research, Vol. 9, Issue.3, pp.1219-

1222, 2020.

[16] G. Gnanaguru, “Programming a Chatbot in Python using

Emotional Cognitive Conversational Agent Architecture

(ECCAA)”, International Journal of Computer Sciences and

Engineering, Vol.7, Issue.3, pp.510-516, 2019.

[17] Z.C. Lipton, J. Berkowitz, C. Elkan, “A critical review of

Recurrent Neural Networks for sequence learning”, CoRR,

Vol.abs/1506.00019, 2015.

[18] I. Sutskever, O. Vinyals, Q.V. Le, “Sequence to Sequence

Learning with Neural Networks”, In the Proceedings of 28
th

International Conference on Neural Information Processing

Systems (NeurIPS 2014), Canada, pp.3104-3112, 2014.

[19] S. Bengio, O. Vinyals, N. Jaitly, N. Shazeer, “A Scheduled

Sampling for Sequence prediction with Recurrent Neural

Networks”, In the Proceedings of 29
th
 International Conference

on Neural Information Processing Systems (NeurIPS 2015),

Canada, pp.1171-1179, 2015.

[20] A. Lamb, A. Goyal, Y. Zhang, S. Zhang, A. Courville, and Y.

Bengio, “Professor Forcing: A New Algorithm for training

Recurrent Networks”, In the Proceedings of 30
th
 International

Conference on Neural Information Processing Systems

(NeurIPS 2016), Spain, pp.4608-4616, 2016.

AUTHORS PROFILE

Mr. Subhadeep Jana is currently

pursuing his Bachelor of Technology

degree in Computer Science and

Engineering from Government

College of Engineering and Ceramic

Technology, Kolkata, India. His

research interests lie in Machine

Learning, Natural Language

Processing.

Mr. Souradeep Ghosh is currently

pursuing his Bachelor of Technology

degree in Electrical Engineering from

Heritage Institute of Technology,

Kolkata, India. His research interests

lie in Machine Learning, Natural

Language Processing.

