

 © 2019, IJCSE All Rights Reserved 21

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-10, Oct 2019 E-ISSN: 2347-2693

Denoising Dirty Document using Autoencoder

Mohammad Imran

1*
, T. Sita Mahalakshmi

2
, M.D. Venkata Prasad

3
, V. Kumar Kopparty

4

1
Computer Science and Engineering, Neil Gogte Institute of Technology (NGIT), Affiliated to Osmania University, Survey

No-35, Peerzadiguda Road, Kachawanisingaram, Uppal, Hyderabad, India
2
Department of Computer Science and Engineering, GITAM Institute of Technology, Andhra Pradesh, India

3
Research Scholar (Regd No: 1260316406), Dept. of Computer Science and Engineering, GITAM Deemed to be University,

Visakhapatnam, Andhra Pradesh, India
4
Research Scholar (Regd No: 41900148), Dept. of Computer Science and Engineering, LPU (Lovely Professional University),

Jalandhar - Delhi G.T. Road, Phagwara, Punjab, India

*Corresponding Author: drimran.ngit@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7i10.2126 | Available online at: www.ijcseonline.org

Accepted: 10/Oct/2019, Published: 31/Oct/2019

Abstract -An autoencoder is an unsupervised machine learning algorithm [12] that applies back propagation, setting the target

values to be equal to the inputs. Deep autoencoders are used to reduce the size of our inputs into a minor representation. If

anyone needs the original data, they can reconstruct it from the compressed data.The input seen by the autoencoder is not the

raw input but a stochastically corrupted version. A denoising autoencoder is thus trained to reconstruct the original document

from the noisy version.In the implementation of Deep autoencoders we have trained the algorithm with noisy and cleaned

document images; we generated a model which helps us in removing noise or unnecessary interruption from the documents.

Document denoising can be achieved with the deep learning model which automatically learns the discriminative features

necessary for classification of input images.

Keywords—document denoising,deep autoencoder,supervised learning, deep learning ,classification,cleaned and noisy images

I. INTRODUCTION

Autoencoder can be broken in to three parts encoder,

decoder, latent space, encoder of the network compresses or

down samples the input into a fewer number of bits. When

the decoder is able to reconstruct the input exactly as it was

fed to the encoder, you can say that the encoder is able to

produce the best encodings for the input with which the

decoder is able to reconstruct well!

MOTIVATION
Many of the recent deep learning models rely on extracting

complex features from data. The goal is to transform the input

from its raw format, to another representation calculated by

the neural network.

This representation contains features that describe hidden

unique characteristics about the input.

There are variety of autoencoders, such as the convolutional

autoencoder [13], denoising autoencoder, variational

autoencoder and sparse autoencoder.The goal of image

restoration techniques [1] is to restore the original image

from a noisy observation of it and generates the output by

removing any noise or unnecessary interruption.

Fig: 1 Feature variation

Dimensionality reduction can be achieved using deep

autoencoders,the reconstructed image is the same as our

input but with reduced dimensions. It helps in providing the

similar image with a reduced pixel value.

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 22

Fig: 2 Dimensionality Reduction

Document Denoising is the most prominent and effective

technique. The common ideas of these approaches is to

transfer image signals to an alternative domain where they

can be more easily separated from the noise [2, 3]. In this

paper, we use Autoencoder [4] to achieve image denoising.

Fig: 3 Denoising Image

Watermark removal. It is also used for removing watermarks

from images or to remove any object while filming a video

or a movie.

Fig: 4 Watermark Removals

Architecture of Autoencoders [9]

With the prosper development of neural networks, image

denoising by neural networks [5] has been a hot topic, an

autoencoder consist of three layers:

1. Encoder 2.Code 3.Decoder

Fig: 5 Architecture of Autoencoders

ENCODER: This part of the network compresses the input

into a latent space representation. The encoder

layer encodes the input image as a compressed representation

in a reduced dimension. The compressed image is the

distorted version of the original image.

CODE: This part of the network represents the compressed

input which is fed to the decoder.

DECODER: This layer decodes the encoded image back to

the original dimension. The decoded image is a lossy

reconstruction of the original image and it is reconstructed

from the latent space representation.

II. RELATED WORK

The layer between the encoder and decoder, i.e., the code is

also known as Bottleneck. This is a well-designed approach

to decide which aspects of observed data are relevant

information and what aspects can be discarded. It does this

by balancing two criteria. Compactness of representation,

measured as the compressibility. It retains

some behaviourally relevant variables from the input.

Fig: 6 Layer between the encoder and decoder

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 23

Y𝑖 = 𝒈(𝒇(𝒙𝑖)) ≈ 𝒙𝑖

The image shows how a denoising autoencoder may be used

to generate correct input from corrupted input. Handwritten

digit images are commonly used in optical character

recognition and machine learning research [6][7]

Fig: 7 Algorithm of Denoising autoencoder

As I've mentioned before, autoencoders like the ones we

have built so far aren't too useful in practive. However, they

can be used to denoise images quite successfully just by

training the network on noisy images. We can create the

noisy images ourselves by adding Gaussian noise to the

training images [8], then clipping the values to be between 0

and 1. We'll use noisy images as input and the original, clean

images as targets. Here's an example of the noisy images I

generated and the denoised images.

Fig: 8 Simple autoencoder

III.RESULTS AND DISCUSSION

We use keras API [11] which uses tensorflow as backend we

loaded the following libraries using keras.layers we load

Input[9], Dense, Conv2D, Maxpooling2D[15], and

UpSampling2D from keras.models we import Model[10]

We load the following dataset which are having noisy and

cleaned images we divide the dataset in to two parts

train_fpath and train_cleaned_fpath with these we generate a

model using autoencoder.

1. Steps for loading dirty document dataset

train_fpath = "../input/denoising/denoising-dirty-

 documents/train/train/"

train_cleaned_fpath =

 "../input/denoising/denoisin

 g-dirty-documents/train_cleaned/

 train_cleaned/"

test_fpath = "../input/denoising/denoising-dirty-

 documents/test/test/"

print (os.listdir (train_fpath))

2.Data exploration

Dataset consisting of three directories out of which two are

train and one is test directory

print ("No. of files in train folder = ",len(os.listdir

 (train_fpath)))

print ("\n No. of files in train_cleaned folder = ",

 len(os.listdir(train_cleaned_fpath)))

print ("\n No. of files in test folder = ",len(os.listdir

 (test_fpath)))

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 24

3. Load noisy images

def load_images(fpath):

 images = []

 for image in os.listdir(fpath):

 #print(fpath+image)

 if image!='train' and image!='train_cleaned'

 and image!='test':

 img = cv2.imread(fpath+image)

 img = cv2.cvtColor(img, cv2.COLOR_BG

 R2RGB)

 img_array = Image.fromarray(img, "RGB")

 resized_img = img_array.resize((252,252))

 images.append(np.array(resized_img))

 return images

train_images = load_images(train_fpath)

train_images = np.array(train_images)

print("No. of images loaded = ",len(train_images),"\nShape

of the images loaded = ",train_images[0].shape)

4.Load clean images

train_cleaned_images = load_images

 (train_cleaned_fpath)

train_cleaned_images = np.array

 (train_cleaned_images)

print("No. of images loaded = ",

 len(train_cleaned_images),"\n

Shape of the images loaded = ",

 train_cleaned_images[0].shape)

5. Load noisy test images

test_images = load_images(test_fpath)

test_images = np.array(test_images)

print("No. of images loaded = ",len(test_images),"

\nShape of the images loaded = ",test_images[0].

shape)

6. Data normalization [16]

train_images = train_images.astype (np.float32)

train_cleaned_images = train_cleaned_images.astype

(np.float32)

test_images = test_images.astype(np.float32)

train_images = train_images/255

train_cleaned_images = train_cleaned_images/255

test_images = test_images/255

print(train_images[0].shape, train_cleaned_images[0].shape,

test_images[0].shape)

7. Displaying noisy training images after

 normalization

print("Displaying noisy training images

 after normalization")

display_images(train_images)

8. Define Deep autoencoder

You are provided two sets of images, train and test. These

images contain various styles of text, to which synthetic

noise has been added to simulate real-world, messy

artifacts[20]. The training set includes the test without the

noise (train_cleaned).

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 25

we create an algorithm to clean the images in the test set.

input_img = Input(shape=(252, 252, 3))

x = Conv2D(32, (3, 3), activation='relu',

 padding='same')(input_img) [14]

x = MaxPooling2D((2, 2), padding='same')(x)

x = Conv2D(32, (3, 3), activation='relu',

 padding='same')(x)

encoded = MaxPooling2D((2, 2), padding='same')

(x)

x = Conv2D(32, (3, 3), activation='relu',

padding='same') (encoded)

x = UpSampling2D((2, 2))(x)

x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)

x = UpSampling2D((2, 2))(x)

decoded = Conv2D(3, (3, 3), activation='sigmoid',

padding='same') (x)

autoencoder = Model(input_img, decoded) [17]

autoencoder.compile(optimizer='sgd', [18] ,

loss='binary_crossentropy')

autoencoder.summary()

Now let's train autoencoder for 400 epochs:[19]

autoencoder.fit(train_images,

train_cleaned_images,epochs=400, batch_size=100,

shuffle=True)

Fig : 9 Model loss

IV.CONCLUSION

The main purpose of this paper is to implement autoencoder

for denoising dirty document to generate reconstructed image

from the latent space,After 400 epochs, the autoencoder

seems to reach a stable train/test loss value of about 0.2065.

We can try to visualize the reconstructed inputs and the

encoded representations[21]. We will use Matplotlib to

display clean images predicted by the autoencoder for the

given test images.

Fig:10 clean image after using auto encoder

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 26

REFERENCES

[1]. Xie, J., Xu, L., Chen, E.: Image denoising and in painting with deep

neural networks. In: NIPS. (2012)
[2]. J. Portilla, V. Strela, M.J. Wainwright, and E.P. Simoncelli. Image

denoising using scale mixtures of Gaussians in the wavelet domain.
Image Processing, IEEE Transactions on, 12(11):13381351, 2003.

[3]. F. Luisier, T. Blu, and M. Unser. A new SURE approach to image

denoising: Interscale orthonormal wavelet thresholding. IEEE
Transactions on Image Processing, 16(3):593606, 2007.

[4]. K. Matsumoto et al.,”Learning classifier system with deep autoencoder,”

2016 IEEE Congress on Evolutionary Computation (CEC),
Vancouver, BC, 2016,pp. 4739- 4746.

[5] A. Krizhevsky, I. Sutskever and G. Hinton,”ImageNet classification with

deep convolutional neural networks”, Communications of the ACM,
vol. 60, no. 6, pp. 84-90, 2017.

[6] Semeion Research Center of Sciences of Communication, via Sersale

117, 00128 Rome, Italy Tattile Via Gaetano Donizetti, 1-3-5, 25030

Mairano (Brescia), Italy.

[7] L. Deng, ”The MNIST Database of Handwritten Digit Images for

Machine Learning Research [Best of the Web],” in IEEE Signal
Processing Magazine, vol. 29, no.6, pp.141-142, Nov.2012.

[8] J. Schmidhuber, ”Deep learning in neural networks: An overview”,

Neural Networks, vol. 61, pp. 85-117, 2015.
[9] “All About Autoencoders”, Pythonmachinelearning.pro, 2018.

[10] “Image recovery Theory and application”, Automatica, vol. 24, no. 5,

pp. 726-727, 1988.
[11] “Building Autoencoders in Keras”, Blog.keras.io, 2018.

[12] M. Celebi and K. Aydin, Unsupervised learning algorithms.

[13] A. Krizhevsky, I. Sutskever and G. Hinton, ”ImageNet classification
with deep convolutional neural networks”, Communications of the

ACM, vol. 60, no. 6, pp. 84-90, 2017.

[14] V. Nair and G. E. Hinton. Rectified linear units improve restricted
Boltzmann machines. In ICML, 2010

[15] ”PyTorch”, Pytorch.org, 2018.

[16] K. He, X. Zhang, S. Ren and J. Sun, ”Deep Residual Learning for

Image Recognition,” 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778. DOI:

10.1109/CVPR.2016.90
[17] T. D. Gedeon and D. Harris, ”Progressive image compression,”

[Proceedings 1992] IJCNN International Joint Conference on Neural

Networks, Baltimore, MD,1992, pp. 403-407 vol.4.
[18] L. Bottou. Large-scale machine learning with stochastic gradient

descent. COMPSTAT, 2010.

[19] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. ICLR, 2015.

[20] A. V. Lugt, ”Signal detection by complex spatial filtering,” in IEEE

Transactions on Information Theory, vol. 10, no. 2, pp. 139-145, Apr
1964.

[21] E. Kaur and N. Singh, ”Image Denoising Techniques: A Review”,

Rroij.com, 2018.

AUTHORS PROFILE

Dr.Mohammad Imran received his B.Tech

(CSE) in 2006 and M.Tech (CSE) in 2008 from

JNTU, Hyderabad, His Research interests

include Big Data Analytics, Deep learning,

Artificial Intelligence, Class Imbalance

Learning, Ensemble learning, Machine

Learning and Data mining. He completed his

Ph.D (CSE) in March 2019 in the department of Computer

Science and Engineering, Rayalaseema University, Kurnool-

518007, Andhra Pradesh. He has published more than 13

research papers in reputed international journals including

Scopus Indexed (SCI & Web of Science) and conferences

including IEEE and it’s also available online .He is currently

working as an Associate Professor in Department of CSE, Neil

Gogte Institute of Technology (NGIT),Affiliated to Osmania

University, Survey No-35 Peerzadiguda Road,

Kachawanisingaram,Uppal, Hyderabad,Telangana, India.

Dr. Tummala Sita Mahalakshmi is working as

a Professor in the Department of Computer

Science and Engineering, GITAM University.

She has published more than 15 research

papers in reputed international journals

including Thomson Reuters (SCI & Web of

Science) and conferences including IEEE and

it’s also available online. Her main research work focuses on

Cryptography Algorithms, Network Security, Cloud Security

and Privacy, Big Data Analytics, Data Mining. She has 20 years

of teaching experience.

Mr. Maradana Durga Venkata Prasad received

his B.TECH (Computer Science and

Information Technology) in 2008 from JNTU,

Hyderabad and M.Tech. (Software

Engineering) in 2010 from Jawaharlal Nehru

Technological University, Kakinada, He is a

Research Scholar with Regd No:1260316406

in the department of Computer Science and Engineering,

Gandhi Institute Of Technology And Management (GITAM)

Deemed to be University,Visakhapatnam,Andhra Pradesh,

INDIA His Research interests include Clustering in Data Mining

,Big Data Analytics, Artificial Intelligence, Class Imbalance

Learning, Ensemble learning, Machine Learning and Data

mining.He is currently working as an Assistant Professor in

Department of Information Technology, Muffakham Jah

College of Engineering and Technology, Banjara Hills,

Hyderabad-500034,Telangana,INDIA. He is also an industrial

trainee where he teaches programming languages. He is the

author of several research papers in the area of Software

Engineering.

Mr. Vinay Kumar Kopparty received his

B.TECH (Computer Science and Information

Technology) in 2008 from JNTU, Kakinada

and M.Tech. (Computer Science and

Engineering) in 2012 from Jawaharlal Nehru

Technological University, Kakinada. He is a

Research Scholar with (Regd No: 41900148),

Department of Computer Science and Engineering, LPU

(Lovely Professional University), Jalandhar - Delhi G.T. Road,

Phagwara, Punjab (India)- 144411.His Research interests

include Clustering in Data Mining, Big Data Analytics,

Artificial Intelligence, Class Imbalance Learning, Ensemble

learning, Machine Learning and Data mining.He is currently

working as an Assistant Professor in Department of IT, JBREC,

Moinabad, Hyderabad, Telangana.

