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Abstract -An autoencoder is an unsupervised machine learning algorithm [12] that applies back propagation, setting the target 

values to be equal to the inputs. Deep autoencoders are used to reduce the size of our inputs into a minor representation. If 

anyone needs the original data, they can reconstruct it from the compressed data.The input seen by the autoencoder is not the 

raw input but a stochastically corrupted version. A denoising autoencoder is thus trained to reconstruct the original document 

from the noisy version.In the implementation of Deep autoencoders we have trained the algorithm with noisy and cleaned 

document images; we generated a model which helps us in removing noise or unnecessary interruption from the documents. 

Document denoising can be achieved with the deep learning model which automatically learns the discriminative features 

necessary for classification of input images. 
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I. INTRODUCTION 

 

Autoencoder can be broken in to three parts encoder, 

decoder, latent space, encoder of the network compresses or 

down samples the input into a fewer number of bits. When 

the decoder is able to reconstruct the input exactly as it was 

fed to the encoder, you can say that the encoder is able to 

produce the best encodings for the input with which the 

decoder is able to reconstruct well! 

 

MOTIVATION 
Many of the recent deep learning models rely on extracting 

complex features from data. The goal is to transform the input 

from its raw format, to another representation calculated by 

the neural network.  

 

This representation contains features that describe hidden 

unique characteristics about the input. 

 

There are variety of autoencoders, such as the convolutional 

autoencoder [13], denoising autoencoder, variational 

autoencoder and sparse autoencoder.The goal of image 

restoration techniques [1] is to restore the original image 

from a noisy observation of it and generates the output by 

removing any noise or unnecessary interruption. 

 

Fig: 1 Feature variation 

 

Dimensionality reduction can be achieved using deep 

autoencoders,the reconstructed image is the same as our 

input but with reduced dimensions. It helps in providing the 

similar image with a reduced pixel value. 
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Fig: 2 Dimensionality Reduction 

 

Document Denoising is the most prominent and effective 

technique. The common ideas of these approaches is to 

transfer image signals to an alternative domain where they 

can be more easily separated from the noise [2, 3]. In this 

paper, we use Autoencoder [4] to achieve image denoising. 

 

Fig: 3 Denoising Image 

 

Watermark removal. It is also used for removing watermarks 

from images or to remove any object while filming a video 

or a movie. 

 

Fig: 4 Watermark Removals 

Architecture of Autoencoders [9] 

With the prosper development of neural networks, image 

denoising by neural networks [5] has been a hot topic, an 

autoencoder consist of three layers: 

1. Encoder             2.Code    3.Decoder 

 

 
Fig: 5 Architecture of Autoencoders 

 

ENCODER: This part of the network compresses the input 

into a latent space representation. The encoder 

layer encodes the input image as a compressed representation 

in a reduced dimension. The compressed image is the 

distorted version of the original image. 

 

CODE: This part of the network represents the compressed 

input which is fed to the decoder. 

 

DECODER: This layer decodes the encoded image back to 

the original dimension. The decoded image is a lossy 

reconstruction of the original image and it is reconstructed 

from the latent space representation. 

 

II. RELATED WORK 

 

The layer between the encoder and decoder, i.e., the code is 

also known as Bottleneck. This is a well-designed approach 

to decide which aspects of observed data are relevant 

information and what aspects can be discarded. It does this 

by balancing two criteria. Compactness of representation, 

measured as the compressibility. It retains 

some behaviourally relevant variables from the input.  

 

 
Fig: 6 Layer between the encoder and decoder 
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Y𝑖 = 𝒈(𝒇(𝒙𝑖)) ≈ 𝒙𝑖 
 

The image shows how a denoising autoencoder may be used 

to generate correct input from corrupted input. Handwritten 

digit images are commonly used in optical character 

recognition and machine learning research [6][7] 

 

 

 
Fig: 7 Algorithm of Denoising autoencoder   

 

As I've mentioned before, autoencoders like the ones we 

have built so far aren't too useful in practive. However, they 

can be used to denoise images quite successfully just by 

training the network on noisy images. We can create the 

noisy images ourselves by adding Gaussian noise to the 

training images [8], then clipping the values to be between 0 

and 1. We'll use noisy images as input and the original, clean 

images as targets. Here's an example of the noisy images I 

generated and the denoised images. 

 

 
Fig: 8 Simple autoencoder 

 

III.RESULTS AND DISCUSSION 

 

We use keras API [11] which uses tensorflow as backend we 

loaded the following libraries using keras.layers we load 

Input[9], Dense, Conv2D, Maxpooling2D[15], and 

UpSampling2D from keras.models we import Model[10] 

 

We load the following dataset which are having noisy and 

cleaned images we divide the dataset in to two parts 

train_fpath and train_cleaned_fpath with these we generate a 

model using autoencoder. 

 

1. Steps for loading dirty document dataset 

train_fpath = "../input/denoising/denoising-dirty- 

                         documents/train/train/" 

train_cleaned_fpath =  

                            "../input/denoising/denoisin 

                            g-dirty-documents/train_cleaned/ 

                            train_cleaned/" 

test_fpath = "../input/denoising/denoising-dirty- 

                     documents/test/test/" 

 

print (os.listdir (train_fpath)) 

 

2.Data exploration 

Dataset consisting of three directories out of which two are 

train and one is test directory 

 

print ("No. of files in train folder = ",len(os.listdir 

         (train_fpath))) 

print ("\n No. of files in train_cleaned folder = ", 

        len(os.listdir(train_cleaned_fpath))) 

print ("\n No. of files in test folder = ",len(os.listdir 

         (test_fpath))) 
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3. Load noisy images 

def load_images(fpath): 

    images = [ ] 

    for image in os.listdir(fpath): 

        #print(fpath+image) 

        if image!='train' and image!='train_cleaned'  

                                                  and image!='test': 

            img = cv2.imread(fpath+image) 

            img = cv2.cvtColor(img, cv2.COLOR_BG 

                       R2RGB) 

 

            img_array = Image.fromarray(img, "RGB") 

 

            resized_img = img_array.resize((252,252)) 

 

            images.append(np.array(resized_img)) 

    return images 

train_images = load_images(train_fpath) 

train_images = np.array(train_images) 

print("No. of images loaded = ",len(train_images),"\nShape 

of the images loaded = ",train_images[0].shape) 

 

 
 

4.Load clean images 

train_cleaned_images = load_images 

                                      (train_cleaned_fpath) 

train_cleaned_images = np.array 

                                   (train_cleaned_images) 

print("No. of images loaded = ", 

                             len(train_cleaned_images),"\n 

Shape of the images loaded = ", 

                            train_cleaned_images[0].shape) 

 

 
 

5. Load noisy test images 

test_images = load_images(test_fpath) 

test_images = np.array(test_images) 

print("No. of images loaded = ",len(test_images)," 

\nShape of the images loaded = ",test_images[0]. 

shape) 

 

 
 

 

 
 

6. Data normalization [16] 

train_images = train_images.astype (np.float32) 

train_cleaned_images = train_cleaned_images.astype 

(np.float32) 

test_images = test_images.astype(np.float32) 

 

train_images = train_images/255 

train_cleaned_images = train_cleaned_images/255 

test_images = test_images/255 

print(train_images[0].shape, train_cleaned_images[0].shape, 

test_images[0].shape) 

 

 
 

7. Displaying noisy training images after  

       normalization 

print("Displaying noisy training images 

           after normalization") 

display_images(train_images) 

 

 
 

8. Define Deep autoencoder 

You are provided two sets of images, train and test. These 

images contain various styles of text, to which synthetic 

noise has been added to simulate real-world, messy 

artifacts[20]. The training set includes the test without the 

noise (train_cleaned).  



   International Journal of Computer Sciences and Engineering                                      Vol.7(10), Oct 2019, E-ISSN: 2347-2693 

  © 2019, IJCSE All Rights Reserved                                                                                                                                        25 

we create an algorithm to clean the images in the test set. 

 

input_img = Input(shape=(252, 252, 3)) 

 

x = Conv2D(32, (3, 3), activation='relu',  

         padding='same')(input_img) [14] 

x   = MaxPooling2D((2, 2), padding='same')(x) 

x  = Conv2D(32, (3, 3), activation='relu',  

         padding='same')(x) 

encoded = MaxPooling2D((2, 2), padding='same') 

(x) 

x = Conv2D(32, (3, 3), activation='relu',  

padding='same') (encoded) 

x = UpSampling2D((2, 2))(x) 

x = Conv2D(32, (3, 3), activation='relu', padding='same')(x) 

x = UpSampling2D((2, 2))(x) 

decoded = Conv2D(3, (3, 3), activation='sigmoid', 

padding='same') (x) 

 

autoencoder = Model(input_img, decoded) [17] 

autoencoder.compile(optimizer='sgd', [18] , 

loss='binary_crossentropy') 

autoencoder.summary()  

 

 
Now let's train autoencoder  for 400 epochs:[19] 

 
autoencoder.fit(train_images, 

train_cleaned_images,epochs=400, batch_size=100, 

shuffle=True) 

 

 
Fig : 9 Model loss 

 

IV.CONCLUSION 

 

The main purpose of this paper is to implement autoencoder 

for denoising dirty document to generate reconstructed image 

from the latent space,After 400 epochs, the autoencoder 

seems to reach a stable train/test loss value of about 0.2065. 

We can try to visualize the reconstructed inputs and the 

encoded representations[21]. We will use Matplotlib to 

display clean images predicted by the autoencoder for the 

given test images. 

 

Fig:10 clean image after using auto encoder 
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