
   © 2015, IJCSE All Rights Reserved                                                                                                                                          18 

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering                Open Access 
Research Paper                            Volume-3, Issue-3                                             E-ISSN: 2347-2693 

Applying GQM Approach towards Evaluation of Defect Management 

in Free/Open Source Software Projects 
 

Dr. Anu Gupta  

Department of Computer Science and Applications, Panjab University,Chandigarh, India  

anugupta@pu.ac.in 

www.ijcseonline.org 

Received: Mar/02/2015            Revised:  Mar /12/2015                             Accepted: Mar /22/2015                       Published: Mar /31/2015 

Abstract— Free/Open Source Software (F/OSS) has emerged as a novel model of software development and distribution during 

the last decade. An F/OSS project generally evolves by receiving submissions from its volunteers in form of source code, bug 

identification, feature request, support request, translation request, documentation etc. The present paper uses F/OSS defect data 

extracted from a research collaboratory. Then it applies Goal/Question/Metric approach to determine the effectiveness of Defect 

Reporting and efficiency of Defect Resolution. The research findings of present work provide empirical evidences about Defect 

Management which F/OSS Projects may use to improve software quality.  

Keywords—Free Software; Open Source; Defect Management; GQM; 

 

I. INTRODUCTION 

During the last decade, the expansion of Internet and related 

technologies has given impetus to Free/Open Source 

Software (F/OSS) model. It has transformed the way 

software projects are developed and distributed. Raymond 

has described distinction between the cathedral and the 

bazaar where cathedral is chosen to represent conventional 

software engineering approach with tightly coordinated, 

centralized teams following a rigorous development process 

[1]. In contrast, the bazaar metaphor reflects a development 

approach where projects are generally developed by 

geographically scattered volunteers, communicating using 

online tools and platforms. F/OSS Development involves a 

process where the entire source code is accessible for 

conducting peer review and defect identification [2]. This 

openness of source code has few key advantages for F/OSS 

users. Foremost advantage is the ability to test the system 

knowing exactly what goes on inside the software. Another 

advantage is the ability to fix defects without waiting for the 

community to catch up. Thus an F/OSS Project generally 

evolves at a fast pace by receiving submissions from various 

sources to address various aspects of the project like bug 

identification, feature request, support request, translation 

request, patch submission etc. Continuous and incremental 

product improvement through defect finding and fixing is a 

development hallmark of the F/OSS paradigm and is 

characterized by Eric Raymond as “Release early, Release 

often” [1]. 

Hence in most of the F/OSS Projects, substantial amount of 

defect related data gets accumulated in the Defect 

Management Systems over the period. This valuable 

historical defect data can be used to analyze the past 

experience as well as determine the responsiveness of F/OSS 

contributors towards users’ feedback. Before adopting a 

particular F/OSS Product, the prospective users especially 

organizational ones need to evaluate the extensibility and 

maintainability. An analysis of historical defect data can 

greatly help them to evaluate how efficiently and effectively 

the requests for fixing bugs, enhancing features, translation 

requests, support requests etc. are being managed.  

 

Moreover the availability of huge amount of information 

with diversity in size, development tools, methods etc. offers 

the possibility of detailed comparison among F/OSS Projects 

from which knowledge and experience can be gained by 

researchers as well as practitioners. In the current study, 

popular Goal/Question/Metric (GQM) approach is applied to 

analyze the valuable defect data of F/OSS Projects from 

various perspectives, specifically focusing on evaluating the 

efficiency and effectiveness in resolving defects and 

determining responsiveness towards users. 

 

The rest of the paper is organized as follows; Section II 

reviews the work done in related areas. Section III presents 

research methodology where project selection, data 

collection and GQM approach are briefly described. It further 

highlights the quantitative results. Section IV discusses the 

results obtained. Finally, Section V concludes and provides 

directions for future work. 

 

II. RELATED WORK 

F/OSS project workspaces such as SourceForge provide 

access to project related information and offer specialized 

tools for mining this huge data [3]. Several studies have also 

been conducted which make use of historical data of F/OSS 
Corresponding Author: Anu Gupta, anugupta@pu.ac.in 

                Department, of Computer Science and Applications, Panjab 

               University,Chandigarh, India  



   International Journal of Computer Sciences and Engineering                 Vol.-3(3), PP(18-23) Mar 2015, E-ISSN: 2347-2693 

   © 2015, IJCSE All Rights Reserved                                                                                                                                          19 

projects. A study of Apache web server and Mozilla web 

browser quantified various aspects of developer participation, 

core team size etc. by using e-mail archives of source code 

change history and defect reports [4]. Another study analyzed 

the temporal changes among several F/OSS projects and 

discussed the distribution of defects among various 

categories on the basis of statistics provided by SourceForge 

[5]. 

 

A study analyzed the debugging process of nine popular 

F/OSS Projects and highlighted four types of bug fixing 

processes that can be distinguished by considering temporal 

continuity and efficiency dimensions [6]. A number of 

statistical analyses have been recorded about the F/OSS 

Project Debian to analyze the effectiveness of the F/OSS 

development process used by projects such as Debian [7].  

Another study has investigated the coordination practices 

adopted within four F/OSS development teams focusing 

particularly on bug fixing process and confirmed the validity 

of Raymond’s Bazaar metaphor for bug fixing process [8]. 

Various methods have also been developed that allow 

automated analyses to evaluate and interpret CVS and 

change log data [9] [10].  

 

Some quantitative analyses has been carried out to examine 

the code quality about GNOME and various other projects 

[11] [12]. The Open Source Maturity Model (OSMM) helps 

in evaluating the maturity level of F/OSS Projects based 

upon support, documentation, training, product integration  

etc. [13] [14]. Atos Origin has also developed the method for 

Qualification and Selection of Open Source Software 

(QSOS) [15]. 

 

The Open Business Readiness Rating (OpenBRR), initiated 

by Intel Corporation, the Centre for Open Source 

Investigation at Carnegie Mellon University and SpikeSource 

also supports evaluation of F/OSS in a standardized way 

[16].  The Open Source Software Quality Observation (SQO-

OSS) is also providing for the evaluation and quantification 

of F/OSS project quality [17]. This system is based on the 

automated analysis of the available data sources of the 

project (such as CVS, mailing lists and Defect management 

databases) to find out a quality metric for F/OSS Projects. 

Even though there are number of studies about F/OSS, little 

work has been done to utilize the data stored in Defect 

Management System of F/OSS Projects. It is also found that 

only some very successful projects have caught the attention 

of researchers generally. There is a considerable requirement 

of efforts to that can facilitate prospective users to choose the 

most appropriate F/OSS Product. 

 

III. RESEARCH METHODOLOGY 

A.  Project Selection and Data Collection 

In the current study, F/OSS Projects are selected from 

SourceForge, a centralized place for F/OSS developers to 

host their projects [3]. It is the world's largest F/OSS Projects 

repository with more than 430,000 F/OSS projects and over 

3.7 million registered users. A single source is chosen to 

select projects in order to control for differences in available 

tools and project visibility. In spite of large number of 

projects hosted, only a small proportion of these projects are 

actually active. Also many of the F/OSS Projects either do 

not use or do not allow public access to Defect Management 

System. Hence those projects are considered for which defect 

related data is publicly accessible and is being maintained 

completely at SourceForge. Another criterion used for 

selection of projects is the project development stage (1-6 

where 1 is the planning and 6 is a mature stage). A cut-off of 

5 is chosen which indicates that the selected projects are at 

similar stage of development and are not in the early stage of 

development lifecycle. A total of 20 projects are selected. 

Selection of limited number of projects has helped to carry 

out in-depth study. For all the selected F/OSS projects, 

detailed defect data is downloaded from SourceForge 

Research Data Archive (SRDA) [18]. The defect data is 

downloaded on the basis of unique Project ID assigned to 

each project at SourceForge and is stored in the local 

repository (mySQL) comprising more than 60,000 defect 

records. A conceptual framewoek for Defect Data extraction 

and analysis has been proposed [19].  

 

B.  Goal/Question/Metric (GQM) Approach  

Goal/Question/Metric (GQM) method was originally 

developed by V. Basili and D. Weiss and further expanded 

by D. Rombach [20]. The GQM is set up in three steps. First, 

the reasons to measure quality are identified, i.e., the Goals 

are determined at conceptual level. The second step 

enumerates Questions at operational level that will help to 

assess whether a quality goal has been achieved or not. 

Finally, the third step tends to transform the Questions into 

Metrics in a quantitative way. The current study applies 

GQM approach towards evaluation of Defect Management of 

F/OSS projects in the following manner (Table 1): 

 

Goal Question Metric 

G1. To 

determine 

effectivenes

s of Defect 

Reporting 

Q1. What is 

the rate of 

defect 

arrival? 

Q2. Does it 

show some 

trend over 

the period? 

M1. Defect Arrival 

Pattern (Monthly) 

 

M2. Linear Trend Lines 

G1. To 

determine 

the 

Q3. What is 

the defect 

resolution 

M3. Cumulative Defect 

Arrival Pattern and 

Defect Closure pattern 



   International Journal of Computer Sciences and Engineering                 Vol.-3(3), PP(18-23) Mar 2015, E-ISSN: 2347-2693 

   © 2015, IJCSE All Rights Reserved                                                                                                                                          20 

efficiency 

of  Defect 

Resolution 

pattern over 

the period? 

Q4. How is 

the backlog 

management 

capability of 

the F/OSS 

community? 

Q5. Do new 

software 

releases have 

some 

relationship 

with the 

backlog 

management 

of F/OSS 

Projects? 

Q6. How 

much time is 

taken to 

resolve the 

defects? 

 

Q7. How 

long does a 

defect 

remain 

pending? 

over time interval 

(Monthly) 

M4. Backlog 

Management Index 

(BMI) values in Control 

Charts 

 

M5. Plotting of Vertical 

Lines for Software 

Releases (Major/Minor) 

in BMI Control Charts 

 

 

 
M6. Average Age of 

Defects Resolved 

DRA(di)=Defect Closing 

Date(di)-Defect Opening 

Date(di) 

 

M7. Average age of the 

pending defects 
DPA(di)=Current Date-Defect 

Opening Date(di) 

TABLE 1 

Goal/Question/Metric for Evaluation of Defect Management 

C. Analysis and Results 

The metrics mentioned in Table 1 are applied to the defect 

reports gathered for various projects. The detailed analysis 

and results obtained are being presented as follows:  

 

• Defect Arrival 

Defect Arrivals refers to all the defects that have been 

identified and reported by F/OSS users at the hosting site. 

Such defects help to determine the efforts of geographically 

distributed community, their interest and feedback towards 

the project. Live Defect arrival data for each of sampled 

Project is consolidated on monthly basis and is plotted in 

form of line graphs to observe the defect arrival pattern. Fig. 

1 shows one such graph for some of the F/OSS Projects. It is 

found that most of projects have very few defects being 

reported initially. This is related to the fact that the projects 

have less number of downloads as well as less users in the 

beginning. With the passage of time, number of downloads 

as well as active users increase. This generally tends to 

increase Defect arrivals. It has also been observed that 

defect arrivals start decreasing after some time. It is due to 

the fact that projects start moving towards stable status. It is 

also seen that the defect arrival pattern is quite inconsistent 

and fluctuating in all the projects. The linear trend lines are 

also plotted corresponding to inconsistent and fluctuating 

defects arrival. To see whether aggregate defect reports are 

changing significantly over the period or not, a standard 

analysis of variance (ANOVA) is carried out on aggregate 

defect reports submitted during various months over all the 

years for all the projects taken together. The results also 

confirm that defect reports change significantly over the 

years. 

• Defect Resolution 

Defect Resolution refers to the process of fixing/closing of 

reported defects. Such resolution may cause changes in the 

source code of the project. Certain defects may be closed 

without any corresponding code change also. Cumulative 

Defects arrived over the period are represented in Defect 

arrival curve. Defect closure curve is related to the 

resolution and closing of defects by F/OSS community, 

represented by Cumulative Defects closed over the period. 

The gaps between these two curves indicate the pending 

defects at that point of time. An ideal defect resolution 

process needs to be Continuous (when cumulative defect 

closed curve is quite smooth without having any peaks or 

steps) and Efficient (when cumulative closed curve stays 

near to the cumulative open curve). Various F/OSS projects 

show variations in the Defect resolution process. In Fig. 2, 

defect closure curve is discontinuous and inefficient 

initially. But later it denotes a project with high quality of 

defect resolution process. Fig. 3 highlights a project with 

lower quality of defect resolution process where gaps i.e. 

pending defects go on increasing.  

• Backlog Management 

Backlog management refers to the capability of F/OSS 

volunteer developers to handle the pending defects [20]. It is 

measured using Backlog Management Index (BMI) which is 

calculated as ratio of number of defects closed to number of 

defects arrived during the period. 

100 
      

      
 ×=

periodtheduringarriveddefectsofNumber

periodtheduringcloseddefectsofNumber
BMI   

The backlog is reduced if defects are being closed at the 

same or higher rate at which the defects are arriving (If BMI 

is larger than 100). If BMI is less than 100, the backlog gets 

increased. The technique of control charting can help to 

calculate the overall backlog management capability of the 

software process [21]. In fact BMI chart is a pseudo-control 

chart because BMI data are auto correlated and assumption 

of independence for control charts is violated. As the BMI 

values are in wide range, c control chart is more suitable 

[21]. In this case, three kinds of control lines are calculated 

as follows: 

• Central Line (CL) equal to Mean BMI 



   International Journal of Computer Sciences and Engineering       

   © 2015, IJCSE All Rights Reserved                                                                                                  

• Lower Control Limit   ( −= CLLCL

• Upper Control Limit  ( += CLUCL

If a process is mature and under statistical process control, 

all values should lie within the LCL and UCL. The process 

is said to be out of statistical process control if any value 

falls out of the control limits. Fig. 4 shows poor backlog 

management throughout the period for one of the sampled 

projects. It is observed that BMI curves for most of the 

F/OSS projects are very fluctuating. To find out the reasons 

for such behavior, a detailed analysis of release data with 

BMI curves was also carried out. It is explored that the 

F/OSS Projects are releasing their minor/major versions 

very frequently confirming the premise “

Release Often” [1]. In the Fig. 4, efforts are also made to 

trace back the shapes of BMI curves with release history of 

the projects. It is found that more than 90% of spikes in BMI 

curves are matching with the version releases. This 

phenomenon refers that generally F/OSS developer 

community do not resolve the defects regularly, instead put 

additional efforts to resolve defects just before each release.

 

• Defect Resolution Age 

Defect Resolution Age (DRA) refers to the number of days 

elapsed between a defect arrival date and defect resolution 

date. The average defect resolution age should be short as 

well as quite consistent for efficient defect resolution. 

Fig 1: Defect Arrival Trend 

Fig 2: Defect Resolution

rnational Journal of Computer Sciences and Engineering                 Vol.-3(3), PP(18-23) Mar 201

, IJCSE All Rights Reserved                                                                                                                            

)CL3 ×−  

)CL3 ×+  

If a process is mature and under statistical process control, 

all values should lie within the LCL and UCL. The process 

is said to be out of statistical process control if any value 

falls out of the control limits. Fig. 4 shows poor backlog 

ughout the period for one of the sampled 

projects. It is observed that BMI curves for most of the 

F/OSS projects are very fluctuating. To find out the reasons 

for such behavior, a detailed analysis of release data with 

s explored that the 

F/OSS Projects are releasing their minor/major versions 

very frequently confirming the premise “Release Early, 

” [1]. In the Fig. 4, efforts are also made to 

trace back the shapes of BMI curves with release history of 

rojects. It is found that more than 90% of spikes in BMI 

curves are matching with the version releases. This 

phenomenon refers that generally F/OSS developer 

community do not resolve the defects regularly, instead put 

just before each release. 

Defect Resolution Age (DRA) refers to the number of days 

elapsed between a defect arrival date and defect resolution 

date. The average defect resolution age should be short as 

well as quite consistent for efficient defect resolution. 

Fig 2: Defect Resolution 

Fig 3: Defect Resolution

The monthly average of defect resolution age (MADRA) is 

computed using the following formula:

����� �
∑ ����
�	
 ��

�

For the F/OSS Projects under study, none of the projects has 

shown decreasing trend, very few projects are having near to 

constant trend lines and most of the projects are showing 

upward trends in average defect resolution age over the 

period (Fig. 5).  To analyze the overall defect resolution age 

for all the selected projects together during the investigation 

period, average resolution age for each of the 20 projects for 

various years is taken into consideration and standard 

analysis of variance (ANOVA) is

that there is significant change in defect resolution age over 

the period.  

• Defect Pending Age 

Defect Pending Age (DPA) refers to the number of days 

elapsed since a defect arrived and still remained pending at 

the end of the month. For all the selected F/OSS Projects, 

monthly average of defect pending age (MADPA) is 

computed using the following formula:

�����

�
∑ ����
�	
 ���

�
 

It is found that most of the projects are showing 

trend of monthly average defect pending age. Further 

detailed analysis of defects pending age is carried out by 

classifying the pending defects according to their pending 

age (Less than 10 days, 11 to 30 days, 31 to 90 days, 91 to 

365 days and More than 365 days). Fig. 6 shows curves for 

the overall monthly average pending age of all the pending 

defects as well as monthly average pending age for defects 

2015, E-ISSN: 2347-2693 

                                        21 

Fig 3: Defect Resolution 

monthly average of defect resolution age (MADRA) is 

computed using the following formula: 

���
 

Where di refers to a 

defect closed 

 

For the F/OSS Projects under study, none of the projects has 

shown decreasing trend, very few projects are having near to 

constant trend lines and most of the projects are showing 

upward trends in average defect resolution age over the 

analyze the overall defect resolution age 

for all the selected projects together during the investigation 

period, average resolution age for each of the 20 projects for 

various years is taken into consideration and standard 

analysis of variance (ANOVA) is applied which also shows 

that there is significant change in defect resolution age over 

Defect Pending Age (DPA) refers to the number of days 

elapsed since a defect arrived and still remained pending at 

month. For all the selected F/OSS Projects, 

monthly average of defect pending age (MADPA) is 

computed using the following formula: 

Where di refers to a 

pending defect 

It is found that most of the projects are showing increasing 

trend of monthly average defect pending age. Further 

detailed analysis of defects pending age is carried out by 

classifying the pending defects according to their pending 

age (Less than 10 days, 11 to 30 days, 31 to 90 days, 91 to 

ore than 365 days). Fig. 6 shows curves for 

the overall monthly average pending age of all the pending 

defects as well as monthly average pending age for defects 



   International Journal of Computer Sciences and Engineering       

   © 2015, IJCSE All Rights Reserved                                                                                                  

falling in each of the categories. By observing the pattern of 

defect pending age over the period, it is found that the 

average pending age is increasing in almost all the projects. 

But this increase in defect pending age trend is attributed 

mainly by those defects whose average pending age is 90 

days or more. While in lower age categories, trend r

either constant or slightly fluctuating. 

.  

Fig 4: Software Release and Backlog Management of 

Defects 

Fig 5: Defect Resolution Age (Increasing Trend)

Fig 6: Defect Pending Age 

To analyze the overall defect pending age for all the selected 

projects together during the investigation period, average 

pending age for each of the 20 projects for various years is 

taken into consideration and standard analysis of variance 

rnational Journal of Computer Sciences and Engineering                 Vol.-3(3), PP(18-23) Mar 201

, IJCSE All Rights Reserved                                                                                                                            

falling in each of the categories. By observing the pattern of 

iod, it is found that the 

average pending age is increasing in almost all the projects. 

But this increase in defect pending age trend is attributed 

mainly by those defects whose average pending age is 90 

days or more. While in lower age categories, trend remains 

Fig 4: Software Release and Backlog Management of 

Fig 5: Defect Resolution Age (Increasing Trend) 

Fig 6: Defect Pending Age  

To analyze the overall defect pending age for all the selected 

projects together during the investigation period, average 

pending age for each of the 20 projects for various years is 

taken into consideration and standard analysis of variance 

(ANOVA) is applied which confirms that there is significant 

change in defect pending age over the period. 

IV. DISCUSSION

F/OSS Projects tend to gather large amount of defect related 

data because of interaction among volunteers facilitated by 

Hosting site. The present paper applies GQM approach to 

analyze determine how various variables associated with 

defects change over time such as defect 

resolution, pending defects etc. and brings forth 

important insights. 

 Generally an F/OSS Project is developed by a core team 

comprising few developers that is further surrounded by a 

globally distributed community of active as well as passive 

users. The active users communicate their feedback in form 

of bugs, feature requests, patch submissions etc. through 

Defect Management System provided by project hosting 

site. Because of frequent releases in F/OSS projects, defect 

arrival pattern is normally inconsistent. But an overall 

downward trend indicates gradual progress in stabil

quality of the F/OSS Projects. 

 

During the analyses, it has been found that generally defect 

resolution is not performed very consistently. This tends to 

decline defect removal rate and increase the average 

resolution age of defect. This problem nee

timely otherwise important user feedback can not used to 

enhance the software project. It is also observed that defects 

get accumulated gradually and then additional efforts are put 

to resolve them near the forthcoming software releases.

also found that a few defects remain pending for fairly long 

period of time in the Defect Management System. They are 

neither resolved nor their status is updated, if resolved. Such 

ignored defects keep on accumulating and result in 

increasing trend in overall defect pending age.

 

The inefficient defect resolution may have serious 

implications on the growth of F/OSS projects in the long 

term. Reproduction of defect also becomes difficult with its 

increasing pending age. Finally, users will also be 

discouraged to provide further feedback if due consideration 

is not given to reported defects. This reduces the benefits 

that a Project can obtain from peer review and volunteer 

contribution, the hallmark of F/OSS.

V. CONCLUSION AND

F/OSS repositories contain huge amount of valuable data 

that can be used to determine the progress of projects as well 

as to facilitate the users in evaluating the products. The 

2015, E-ISSN: 2347-2693 

                                        22 

lied which confirms that there is significant 

change in defect pending age over the period.  

DISCUSSION 

F/OSS Projects tend to gather large amount of defect related 

data because of interaction among volunteers facilitated by 

aper applies GQM approach to 

analyze determine how various variables associated with 

defects change over time such as defect arrival defect 

resolution, pending defects etc. and brings forth many 

Generally an F/OSS Project is developed by a core team 

comprising few developers that is further surrounded by a 

globally distributed community of active as well as passive 

users communicate their feedback in form 

s, patch submissions etc. through 

Defect Management System provided by project hosting 

Because of frequent releases in F/OSS projects, defect 

arrival pattern is normally inconsistent. But an overall 

downward trend indicates gradual progress in stability and 

During the analyses, it has been found that generally defect 

resolution is not performed very consistently. This tends to 

decline defect removal rate and increase the average 

This problem needs to be addressed 

timely otherwise important user feedback can not used to 

It is also observed that defects 

get accumulated gradually and then additional efforts are put 

to resolve them near the forthcoming software releases. It is 

also found that a few defects remain pending for fairly long 

period of time in the Defect Management System. They are 

neither resolved nor their status is updated, if resolved. Such 

ignored defects keep on accumulating and result in 

in overall defect pending age. 

The inefficient defect resolution may have serious 

implications on the growth of F/OSS projects in the long 

term. Reproduction of defect also becomes difficult with its 

increasing pending age. Finally, users will also be 

couraged to provide further feedback if due consideration 

is not given to reported defects. This reduces the benefits 

that a Project can obtain from peer review and volunteer 

contribution, the hallmark of F/OSS. 

AND FUTURE SCOPE 

repositories contain huge amount of valuable data 

that can be used to determine the progress of projects as well 

as to facilitate the users in evaluating the products. The 



   International Journal of Computer Sciences and Engineering                 Vol.-3(3), PP(18-23) Mar 2015, E-ISSN: 2347-2693 

   © 2015, IJCSE All Rights Reserved                                                                                                                                          23 

research findings of present work contribute to an 

understanding of Defect Management practices from 

practitioner perspective as well as provide empirical 

evidences about effectiveness and efficiency in defect 

resolution, which F/OSS Projects may use to improve 

software quality. F/OSS is an evolving paradigm of software 

development. A variety of Defect Management Systems are 

being used among F/OSS Projects. The current study is 

focused on one of them being used at SourceForge; future 

work would be carried out on other Defect Management 

Systems to analyze more F/OSS Projects. Moreover Defect 

Data can also be combined with data from other publicly 

accessible repositories for further research. 

ACKNOWLEDGMENTS 

We are thankful to the University of Notre Dame for 

providing access to Sourceforge Research Data Archive 

(SRDA) for retrieving data on F/OSS projects. 

REFERENCES 

[1] Eric S. Raymond, "The Cathedral and the Bazaar", First 

Monday, Volume -3, No. 3, 1998. 

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/arti

cle/view/578/499  

[2] Joseph Feller, Brian Fitzgerald, Scott A. Hissam and Karim R. 

Lakhani, “Perspectives on Free and Open Source Software”, 

2005, The MIT Press. 

http://mitpress.mit.edu/books/chapters/0262562278.pdf  

[3] “SourceForge”,  http://sourceforge.net/  

[4]  Audris Mockus, Roy Fielding and James D. Herbsleb, “Two 

Case Studies of Open Source Software Development: Apache 

and Mozilla” ACM Transactions on Software Engineering and 

Methodology, Volume- 11, No.-3, Page No. - (309-324),2002. 

[5] Dawid Weiss, “A Large Crawl and Quantitative Analysis Of 

Open Source Projects Hosted On Sourceforge”, Research 

Report ra-001/05(2005), Institute of Computing Science, 

Pozna University of Technology, Poland. 

http://www.cs.put.poznan.pl/dweiss/xml/publications/index.xm

l  

[6] Chiara Francalanci and Francesco Merlo, “Empirical Analysis 

of the Bug Fixing Process in Open Source Projects”, Open 

Source Development, Communities and Quality, Springer 

Boston, Volume- 275, Page No.- (187-196), 2008. 

[7] Martin Michlmayr and Anthony Senyard, “A Statistical 

Analysis of Defects in Debian and Strategies for Improving 

Quality in Free Software Projects”, The Economics of Open 

Source Software Development, Elsevier B.V., Page No.- (131–

148), 2006. 

[8] Kevin Crowston and Barbara Scozzi, “Bug Fixing Practices 

within Free/Libre Open Source Software Development 

Teams”, Journal of Database Management, Volume- 19, No.- 

2,Page No. -(1-30), 2008. 

[9] David A. Wheeler, “Estimating Linux's Size Version 1.04”, 

May  2001. http://www.dwheeler.com/sloc/  

[10] Daniel German and Audris Mockus, “ Automating the 

Measurement of Open Source Projects”, Proceedings of the 

3rd Workshop on Open Source Software Engineering, 

International Conference on Software Engineering, May 

2003, Portland, Oregon, USA. 

[11] Stefan Koch, “Effort Modeling and Programmer Participation 

in Open Source Software Projects '', Information Economics 

and Policy, Volume- 20, No. 4, Page No. – (345-355), 2008. 

[12] Ionic Stamelos, Lefteris Angelis, Apostolos Oikonomou and 

Georgios L. Bleris, “Code Quality Analysis in Open Source 

Software Development”, Information Systems Journal, 

Volume - 12, No.  1,Page No. (43-60),  2002. 

[13]  Navica’s Open Source Maturity Model (OSMM)”, 

http://www.navicasoft.com/pages/osmm.htm 

[14] Frans-Willem Duijnhouwer and Chris Widdows, “Capgemini 

Expert Letter Open Source Maturity Model”, Capgemini, 

2003. 

http://pascal.case.unibz.it/retrieve/1097/GB_Expert_Letter_O

pen_Source_Maturity_Model_1.5.31.pdf 

[15] “Qualification and Selection of Open Source Software 

(QSOS)”, 

http://www.qsos.org/methode.php  

[16] “Open Business Readiness Rating”, 

http://www.openbrr.org/wiki/index.php/Home 

[17] “Software Quality Observatory for Open Source Software 

(SQO-OSS)”, 

http://www.sqo-oss.eu/  

[18] G. Madey, The SourceForge Research Data Archive (SRDA), 

University of Notre Dame, http://zerlot.cse.nd.edu/  

[19] A. Gupta, R.K. Singla,” Qualitative Evaluation of Defect 

Resolution in Free/Open Source Software Projects”, 

International Journal HIT Transactions on ECCN, ISSN: 

0973-6875 Volume - 3, No. 9, Page No.- (27-36), 2009. 

[20] V. Basili, G. Caldiera, and H. D. Rombach. The Goal 

Question Metric Approach, John Wiley & Sons Inc., 1994. 

[21] Stephen H. Kan, “Metrics and Models in Software Quality 

Engineering”, Second Edition, Pearson Education, 2003. 

 

AUTHORS PROFILE 
Dr. Anu Gupta has been working as Associate Professor in Computer 

Science and Applications at Panjab University, Chandigarh since July 1998. 

She has also held the position of Chairperson, Department of Computer 

Science & Applications, Panjab University, Chandigarh (Feb. 2008- Jan. 

2011) .She was awarded University medal for securing first position in 

M.C.A. at Punjabi University, Patiala, Punjab in the year 1997. She has the 

experience of working on several platforms using a variety of development 

tools and application packages. She has completed the Doctor of 

Philosophy Degree from Panjab University in the area of Free/Open Source 

Software. Her research interests include Networking, Multimedia 

Technologies, E-Commerce and Software Engineering. She is a life-

member of ‘Computer Society of India’ and ‘Indian Academy of Science’. 

She has published several research papers in various journals and 

conferences. 

 


