

 © 2017, IJCSE All Rights Reserved 213

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-5 E-ISSN: 2347-2693

Comparative Study and Performance Analysis of Cache Coherence Protocols

S. Kumar

1*
, K. Gupta

2

1
Dept. of Computer Science and Engineering, Rajkiya Engineering College, Kannauj, India

2
Dept. of Computer Science, GLS University, Ahmedabad, India

*Corresponding Author: swadheshkumar@gmail.com

Online Available at: www.ijcseonline.org

Received: 24/Apr/2017, Revised: 30/Apr/2017, Accepted: 22/May/2017, Published: 30/May/2017

Abstract— Cache memory is a small less access time semiconductor memory that sits between the processor and memory in

the memory hierarchy to bridge the speed mismatch between processor and main memory. Multiprocessor System contains

multiple processors working simultaneously and share memory. Multiprocessors are most widely used in computational

devices due to their reliability and throughput. In multiprocessor system maintaining data consistency is an important

parameter to be maintained because different processors communicate and share data. In multiprocessors caching plays a vital

role because cache Coherence is a problem that should be handled very carefully. In this paper we have studied various Cache

Coherence Protocols and simulate their behavior on various platforms on the basis of miss rate.

Keywords— MSI, MESI, DRAGON

I. INTRODUCTION

Multiprocessor Systems have better performance as

compared to single processor systems because these are

tightly coupled systems which can process multiple jobs

simultaneously without interfering jobs running on other

parallel processors. Processors in Multiprocessor Systems

can communicate each other due to shared address space. In

Multiprocessor Systems each processor has a separate cache,

so there is identical cache entry exists in other processors of

Multiprocessor Systems due to shared address space[1]. Fig.

1 shows the Shared memory multiprocessor System.

Figure.1 Shared memory multiprocessor system

In Multiprocessor Systems sharing of data does not create

any problem during memory read operation but there may be

a problem during write operation because when a processor

of Multiprocessor Systems writes a value to a location that is

being shared, the changed value must be updated to all other

caches of different processors using it otherwise caches of

different processors hold different data for the same location

which is called cache coherence problem [2].

Suppose three processors P1, P2, P3 of a Multiprocessor

System are sharing a memory space [3]. Here if Processor P1

wants to read a value at a location X from shared memory

then it caches its value in to P1. If Processor P2 also wants to

read a value at location X from shared memory then it caches

its value in to P2 as shown in Figure 2.

Figure.2 Processor P1and P2 reading from shared memory

Now if the processor P1 wants to write a value at location X

in shared memory. This is shown in Fig.3. Now if processor

P3 performs read operation on location X. In p1 at location

X, value stored is 10 and in p2 at location X, the data stored

is 5, therefore data inconsistency arises when we perform

write operation to a shared address location, Now it may

create a problem because here the situation also depends on

writing strategy if it is write through then content or value at

location X in shared memory will be 10 and if it is write back

strategy then value in shared memory will be 5. This is

shown in Fig.4.

 International Journal of Computer Sciences and Engineering Vol.5(5), May 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 214

Figure.3 Processor P1 writes at location X

Figure.4 Data inconsistency in multiprocessor systems

II. CACHE COHERENCE PROTOCOLS

There are two methods to solve cache coherence problem

one is Software Solution and other is Hardware Solution. In

Software Solution, the detection of cache coherence problem

is transferred from run time to compile time, and the overall

design complexity is also transferred from hardware to

software. One of the Software Approach is Compiler Based

Cache Coherence Method, which perform an analysis on the

code and discover various data which may become unsafe for

caching. The main disadvantage of Software Solutions is

inefficient cache utilization.

Hardware solutions for cache coherence problems provide

dynamic recognition at run time of inconsistency conditions.

In Hardware Solutions the problem is treated when

inconsistency arises. Hardware Solutions leads effective

cache utilization and improved performances over a software

Based Solution. Hardware Solutions can be categories in to

two types: Snoopy Protocol and Directory Protocol

A. Snoopy Protocols

The responsibility for maintaining cache coherence is

distributed among all of the cache controllers. In Snoopy

Protocols a cache must recognize when its Data or line is

shared with caches of other Processors[4]. If any update or

write action is performed on shared cache then it must be

informed to other caches also by using a broadcast

mechanism using Bus. There are mainly two basic types of

snoopy protocols

1) Write Invalidate:

In write this protocol, there can be multiple read actions but

only one write action at a time. Here, if cache need to

perform a write action to a line it first generate a notice

which invalidates that line in the other caches, making the

line exclusive to the writing cache. If the line is exclusive

then the owner processor can locally writes until some other

processor needed the same line [5].

2) Write Update or Write Broadcast:

In this protocol, there can be multiple readers as well as

multiple writers. If a processor updates a shared line then

updated line is distributed to all other processors and caches

containing that line can update it.

There are various types of Cache Coherence Protocols as:

B. MSI Protocol:

MSI Protocol is a three state write back invalidation

technique. It marks the cache line in Shared (S), Invalid (I)

and Modified (M) state. When cache line is not present then

it is marked as Invalid. When cache line is clean and shared

by more than one processor then it is marked as Shared.

When the cache line is dirty and a processor has exclusive

ownership of cache line then it is marked as Modified

state[6]. BusRdx responsible for making others to invalidate

I state. If it is present in M state in another cache, it will

flush. A BusRdx, even if it causes a cache hit in S state, is

promoted to M (upgrade) state.

Figure.5 State Diagram of MSI Protocol

From the state transition diagram of MSI, we observe that

there is transition to state S from state M when a BusRd is

observed for that block. The content of the block is flushed to

the bus before going to S state. It would look more

appropriate to move to I state thus giving up the block

entirely in certain cases. This choice of moving to S or I

reflects the designer's assertion that the original processor is

more likely to continue reading the block than the new

processor to write to the block.

 International Journal of Computer Sciences and Engineering Vol.5(5), May 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 215

C. MESI Protocol:

The disadvantage of MSI is that each read-write sequence

incurs two bus transactions. MESI protocol solves this by

introducing a new Exclusive state to differentiate between a

cache line stored in multiple caches and a line stored in a

single cache. MESI coherence protocol marks each cache

line in of the Modified, Exclusive, Shared, or Invalid state.

 Invalid: When cache line is not present then it is

marked as Invalid

 Exclusive: The cache line is clean and is owned by

this processor only

 Modified: When the cache line is dirty and a

processor has exclusive ownership of cache line

then it is marked as Modified state

 Shared: When cache line is clean and shared by

more than one processor then it is marked as

Shared.

In MESI Protocol a line that is fetched, receives E

(Exclusive), or S (Shared) state depending on whether it

exists in other processors in the system. A cache line gets the

M(Modified) state when a processor writes to it; if the line is

not in Exclusive or Modified state prior to writing it, the

cache sends a Bus Upgrade (BusUpgr) signal or as the Intel

manuals term it, “Read-For-Ownership (RFO) request” that

ensures that the line exists in the cache and is in the I state in

all other processors on the bus (if any). A table is shown

below to summarize the MESI protocol.

Figure.6 State Diagram of MESI Protocol

TABLE I. STATE TRANSITION TABLE FOR MESI PROTOCOL

State of Cache

Line:

Modified Exclusive Shared

Invalid

Valid cache
line

Yes Yes Yes No

Memory copy
is

out of
date

Valid Valid

Is Copies also
exist in other
processors

caches

No No Maybe Maybe

Write to this
line

does not

go to bus

does not

go to bus

goes to
bus and
updates
cache

goes
directly
to bus

D. Dragon Protocol:

Dragon is a cache coherence protocol having four states.

Dragon differentiates between Shared Modified state (Sm)

and Shared Clean (Sc) states. Figure 7 represents the state

transition diagram for Dragon Protocol.

Figure.7 State Diagram of DRAGON Protocol

III. EVALUATION METHODOLOGY

We have used SMP3.0, a trace driven simulator for

performance analysis of some mostly cache replacement

policies [7]. The Trace driven simulator is a cost effective

way of performance evaluation of computer system design,

specially for cache memory design, TLB, and paging system.

In this paper, we have used various Benchmarks for the

performance analysis such as: FFT64, SIMPLE64,

SPEECH64 and WEATHER64. Here, we have done

simulations of various Cache Coherence Protocols on the

Basis of Miss Rate.

IV. SIMULATION SETUP

Simulator configuration for Cache Replacement Policies

Number of Processors = 4

Cache Coherence Protocol = MSI, MESI, DRAGON

Bus Arbitration = LRU

Word Wide (bits) = 16

Blocks in Main Memory = 524288

 International Journal of Computer Sciences and Engineering Vol.5(5), May 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 216

Block size = 64 bytes

Main Memory size = 32 M Bytes

Blocks in Cache = 256

Cache size = 16 KB

Mapping = Fully Associative

Writing Strategy = Write Back

Replacement Policies =LRU

TABLE II. EXPERIMENTAL RESULT

BENCHMARK

Coherence Protocol

MSI MESI DRAGON

FFT64 8.824 8.91 0.272

SIMPLE64 22.035 22.035 0.548

SPEECH64 7.367 7.371 0.922

WEATHER64 13.653 13.822 1.103

Figure.8 State Diagram of DRAGON Protocol

Table II shows the simulation results of various Cache

Coherence Protocols in the form of Miss Rate on different

Benchmarks. Here, all the Cache Coherence Protocols have

different Miss Rate we have found that DRAGON Cache

Coherence Protocols has better performance than other

Cache Coherence Protocols across almost all the

Benchmarks. DRAGON Cache Coherence Protocols is an

update based Cache Coherence Protocol, while MSI and

MESI are invalidation based protocols. These two Cache

Coherence Protocols are different. The differences between

invalidation based protocol and update based protocol are

laid on the update condition and write operation. The updates

conditions in update based update based protocol are

improved to a single word write rather than transfer of full

cache block. While in invalidation based Cache Coherence

Protocols, on a write operation the cache state of that

memory block in all other processor caches is set to invalid,

so those processors will have to obtain the block through a

miss (a coherence miss)

V. CONCLUSION

The simulation results show that the use of a good cache

coherence protocol improves the overall performance of

multiprocessor system. More miss rate is resulted due to use

of large number of processors for a parallel application. By

simulating on SMP Cache Simulator we can see the

influence of the cache coherence protocol on miss rate. Here,

all the Cache Coherence Protocols have different Miss Rate.

We have found that DRAGON Cache Coherence Protocol

has better performance than other Cache Coherence

Protocols across almost all the Benchmarks. The results and

conclusions obtained with these experiments are of general

application.

REFERENCES

[1] K.D. Kohle, U.M. Gokhale, D. Pendhari, “Design of cache

controller for multicore systems using parallelization method”,

IEEE Proceedings, Vol.86, Issue.5, pp.837-52, 2014.

[2] B. Dubois, “Effects of cache coherency in multiprocessors”,

IEEE Transactions on computers, Vol.31, Issue.11, pp.1083-

1099, 1982.

[3] D.J. Lilja, “Cache coherence in large scale shared memory

multiprocessors”, ACM Computing surveys, Vol.25, No.3, pp.

303-338, 1993.

[4] M. Thapar, B. Delagi, “Standford distributed-directory protocol”.

Computer, Vol.23, Issue.6, pp.78-80, 1990.

[5] R.E. Ahmed, M.K Dhodhi, "Directory-based cache coherence

protocol for power-aware chip-multiprocessors", Canadian

Conference Electrical and Computer Engineering (CCECE),

Canada, pp.001036, 001039, 2011.

[6] S. Almakdi, A.W. Alazeb, M. Alshahari, “Cache coherence

mechanisms”, International journal of engineering and innovative

technology, Vol. 4, Issue.7, pp.7-13, 2015.

Authors Profile

Mr. Swadhesh Kumar pursed Bachelor of
Technology from NDUAT University of Faizabad,
India in 2014 and Master of Technology from
MMM University of Technology Gorakhpur, India
in year 2016. He is currently working as Assistant
Professor in Department of Computer Science and
Engineering, Rajkiya Engineering College
Kannauj, India since August 2016. He has
published many technical papers in reputed international journals and
conferences including SPRINGER, IEEE and it’s also available online.
His main research work focuses on Memory Management, Cloud
Security, Big Data Analytics.

Mrs. Kreetika Gupta pursed Bachelor of
Technology from IET, Alwar, Rajasthan in 2012
and Master of Technology from MMM University
of Technology Gorakhpur India in year 2016. She
is currently working as Visiting Lecturer in
Department of Computer Science of GLS
University, Ahmedabad Gujarat. She has
published many technical papers in reputed
international journals and conferences and it's also available online. Her
main research work focuses on Wireless Sensor Network, Memory
Management, Network Security, Big Data Analytics.

