
 © 2016, IJCSE All Rights Reserved 185

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Review Paper Volume-4, Issue-5 E-ISSN: 2347-2693

The Evaluation of Medical Device Interaction Based Prototype

Verification System Using Human Operator Model

R.Priyanka
1*

, R.Sivakumar
2

1
M.Phil Research Scholar, Department of Computer Science, A.V.V.M Sri Pushpam College, Poondi, Thanjavur

2
 Associate Professor, Department of Computer Science, A.V.V.M Sri Pushpam College, Poondi, Thanjavur

www.ijcseonline.org

Received: Apr/23/2016 Revised: May /03/2016 Accepted: May/19/2016 Published: May/30/2016

Abstract— We present a formal check approach for recognizing plan issues related to client interaction, with a center on client
interface of restorative devices. The approach makes a novel use of arrangement charts proposed by Rushby to formally check
essential human variables properties of client interface implementation. In particular, it first deciphers the programming
execution of client interface into an equivalent formal specification, from which a behavioral model is developed utilizing
hypothesis proving; human variables properties are then confirmed against the behavioral model; lastly, an exhaustive set of test
inputs are produced by exploring the behavioral model, which can be utilized to challenge the certifiable interface execution and
to guarantee that the issues recognized in the conduct model do apply to the implementation. We have prototyped the approach
based on the PVS verification system, and connected it to examine the client interface of a certifiable restorative device. The
investigation recognized several collaboration plan issues in the device, which may conceivably lead to serious consequences.

Keywords— Programming Verification; Restorative Devices; Client Interfaces.

I. INTRODUCTION

In numerous countries, makers of restorative gadgets are

required to assure sensible security and adequacy of

programming in their devices; they have to give adequate

evidence to support this before their gadget can be placed

on the market. When considering the security of a

restorative device, human variables issues that include the

human-gadget interface are critical. We allude to the part of

a gadget that the client receives data from and gives data to

as the client interface. Programming in the gadget that

contributes to the conduct of this interface we allude to as

client interface software. Client interface programming

characterizes the way in which a gadget supports client

actions (e.g., the effect of clicking a Start button) and gives

criticism (e.g., rendering mistake messages on the device’s

display) in response to events (Almir Badnjevic) [2].

The improvement of client interface software, or more

generally, the collaboration plan of restorative devices, is

not standardized in the industry. Instead, each gadget

producer crafts its own gadget collaboration design. A

number of reports (such as) have asserted that makers

commonly address human variables issues inside their client

interface programming in an ad hoc manner, rather than

utilizing thorough plan and assessment techniques. Part of

the reason lies in the actuality that human variables pros are

usually involved too late in the programming improvement

process, if at all. These pros commonly base their

investigation upon strategies like heuristic assessment,

which require the availability of a fairly complete client

interface prototype. As a result, it is frequently too late and

too costly to find and right a collaboration plan flaw.

Programming engineers, on the other hand, do not have

compelling means to distinguish human variables related

imperfections in a programming implementation, if such

imperfections are inherited from system-level plan and

characterized in programming requirements and plan

specifications.

The reality described above, as well as the actuality that

numerous manufactures reuse legacy code to develop new

devices, makes it vital to check collaboration plan

imperfections after a client interface is implemented.

However, dosing so can be costly and time-consuming. It is

more desirable and cost-compelling if such imperfections

can be recognized and weeded out early on (e.g. at the plan

stage). Thorough improvement techniques, such as model-

based plan, can help to accomplish this objective, if

integrated into the improvement life-cycle(Almir

Badnjevic)[2].

In this paper, we center on client interface programming in

restorative devices, and present a formal approach for

recognizing plan issues in such software. The approach

deciphers the source-code execution of client interface

programming into a formal specification. Hypothesis

demonstrating is then utilized to create from this detail a

behavioral model of the software. This model catches the

control structure and conduct of the programming related to

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(185-189) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 186

handling client interactions. During this process, hypothesis

demonstrating is moreover utilized to demonstrate that

essential human variables standards are satisfied by (all

reachable states of) the model, or otherwise to recognize

potential collaboration plan issues. The behavioral model

produced is moreover thoroughly investigated to derive a

suite of test data groupings that can uncover the recognized

collaboration plan issues, if any, in the execution of the

client interface software.

The contributions of the paper are as follows. (i) We present

a formal approach to create and check behavioral models of

client interface software. The approach is based on a novel

use of arrangement charts. (ii) We describe a case study

based on a certifiable restorative mixture pump. The

exhibited approach is illustrated inside PVS for a C++

execution of the gadget client interface software. Our

approach was successful in recognizing multiple

collaboration plan issues from the execution of the client

interface programming of the subject pump, numerous of

which could conceivably cause serious consequences(P. Th.

Houngbo)[4].

The reason that we chose mixture pumps as a representative

class of restorative gadgets for study is since numerous

mixture pumps suffer from poor human variables design. In

fact, 87 models of mixture pumps were recalled in the US

alone between 2005 and 2009. Human variables issues were

among the primary causes for these recalls.

The present work builds on our past research on the check

of restorative gadget client interfaces and on client interface

prototyping. These past efforts have illustrated that formal

strategies can be utilized to distinguish human variables

issues in reverse-engineered models of restorative devices.

This paper presents an approach that continues our past

work, and extends thorough investigation to source code

usage of certifiable client interfaces.

II. ILLUSTRATION RESULTS FROM FORMAL SOURCE

CODE ANALYSIS

To better illustrate the usefulness of our approach, we first

explain the results of applying it to examine the client

interface execution of a certifiable mixture pump. In this

case study, the details of which are presented in area 4, our

approach recognized four collaboration issues listed below.

These issues cause the pump to either overlook client

mistakes or interpret data numbers in an erroneous way. In

either situation, unexpected numbers may be utilized to

configure the pump, which can conceivably cause serious

clinical consequences (e.g., a lethal dose of drug is infused

to the patient, since the amount of drug to be infused is

erroneously configured as an extremely large number)

Valid data key groupings are incorrectly enlisted without

the user’s awareness. The pump erroneously discards the

decimal point in data key groupings for fragmentary

numbers between. The reason for this issue is since the

pump incorrectly disregards the decimal point in the key

arrangement and registers the number as 2001, which is

beyond the permitted range. What the pump should have

reported is a message like “The data esteem 200.1 should

not have a fragmentary part”. Indeed though the pump

rejects the key arrangement for 2 0 0 • 1, it accepts key

groupings for integers on either side of 200.1. Without

suitable feedback, the client might not understand why

keying a number inside the range limits supported by the

gadget is rejected, and could incorrectly reach the

conclusion that the gadget is malfunctioning (Meng

Zhang)[3].

Formed data key groupings are quietly acknowledged

without the user’s awareness. For instance, the arrangement

9 • 9 • 1 is acknowledged and enlisted as 9.91 with the

second decimal point quietly discarded. This invalid data

arrangement might be the result of a client mistake in

reality. For example, the client intends to data the esteem of

99.1, but due to issues like inattention, he/she presses an

unvital • between two 9 keys. Accepting such invalid key

groupins could allow client mistakes to go undetected. The

safe and right way of handling such invalid groupings is to

halt client collaboration and return a caution message

(Michael R. Neuman)[7]. Digits after decimal point quietly

discarded without the user’s mindfulness For instance, the

pump erroneously registers the data key arrangement 1 0 • 0

9 as 10, as opposed to the proposed 10.09. The reason for

this issue is since the pump programming naturally limits

the precision of numbers to one decimal digit for values

between, and possibly other gadgets that incorporate

interdynamic data area programming (such as ventilators

and radiation therapy systems).

III. THE APPROACH

Our approach, as depicted in figure 1, starts with

interpreting the source code of client interface programming

of restorative gadgets into a formal detail acceptable to the

PVS hypothesis prove. A behavioral model is then

extracted, in an automated manner, from the formal detail

utilizing PVS and arrangement diagrams (Homa

Alemzadeh)[8]. Hypothesis demonstrating is moreover

connected to the behavioral model to check its compliance

to human factor plan principles. Lastly, the behavioral

model is thoroughly investigated to create a suite of test key

groupings that uncover collaboration plan issues of the

unique device.

3.1 From C++ code to PVS specifications

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(185-189) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 187

PVS is a well-known industrial-level hypothesis

demonstrate that empowers automated check of conceivably

infinite-state systems. It is based on a typed higher request

logic, and its detail dialect has numerous highlights

comparative to those of C++ (Marcantonio Catelani)[6].

These similarities between the two languages make it

conceivable to devise a set of rules for interpreting (a subset

of) C++ programs into PVS specifications, with the

semantics of the unique C++ programs preserved.

Fig.1: Overview of our approach for checking client

interface software

Our approach adopts the following rules to manually

translate C++ programs into PVS specifications. These rules

give a systematic approach for the translation:

• Conditional and iterative statements in C++ are

straightforwardly deciphered to their counterparts

in the PVS detail language;

• Computation in C++, which is commonly

characterized as instructions modifying the values

of variables of objects, is copied in PVS with the

assistance of a record type, namely state. In sort

state, each field is characterized to record the

esteem of a member variable in C++. Thus,

computation over C++ variables can be deciphered

as updating the fields of state accordingly. Sort

state is then passed to all PVS capacities for

reference and update;

• C++ capacities are copied in PVS as higher-request

capacities with the same function arguments, while

neighborhood variables in C++ capacities are

copied utilizing the PVS LET-IN construct that

binds expressions to neighborhood names;

• Class inheritance in C++ is deciphered by

introducing a field in the structure that deciphers

(the state variables of) the base class.

Data sorts in C++, such as float and integer, can be

mimicked in PVS utilizing subtyping, a PVS dialect

mechanism that restricts the data domain of types. For

instance, the subsort {x: certifiable {x >= FLOATMIN

AND x <= FLOATMAX} checks if a real-typed variable

has esteem inside the range from FLOATMIN to

FLOATMAX. In numerous cases, subtyping is sufficient to

check whether a behavioral model correctly catches all

boundary conditions encountered by the C++

implementation. Furthermore, PVS includes a standard

library that emulates C++ data sorts such as lists and strings,

as well as regular C++ library capacities such as strcmp.

IV. DISCUSSION

Most of the model development and verification tasks in our

approach are automated by PVS and grind, a powerful

choice procedure included in PVS, which repeatedly applies

definition expansion, propositional simplification, and

choice support to help the investigation. Human mediation

is required only for two purposes: 1) guide PVS to prune

unimportant details away from the analysis, in request to

avoid case-explosion and keep the produced arrangement

outline compact; and 2) guide PVS to decompose theorems

into sub-theorems. More specifically, the investigator needs

to select or modify control conditions of the behavioral

model suggested by PVS. PVS then checks if the selected or

modified ones cover all conceivable model execution paths.

It should be noted that, indeed though human mediation

demands skills and expertise with PVS, the level of human

association required by our approach does promote dynamic

thinking for the analyst, giving her/him deep insights into

the software’s control structure and behavior. Since of this

dynamic involvement, it is conceivable to distinguish (the

root cause of) issues and their fixes before the investigation

is complete.

Lastly, the key point of generating useful key sequences, as

in traditional programming test generation, is to guarantee

that the key groupings derived from the arrangement outline

accomplish full coverage of the diagram. This guarantees

that the produced key groupings represent all conceivable

client connections that client interface programming may

encounter (Seungwoo Lee)[3]. Our approach currently

realizes the era of test groupings based on manual browsing

of arrangement diagrams. But it can certainly be extended

with compelling model based test era procedures, to

automate the investigation of (large-scale) arrangement

charts and the era of exhaustive test key groupings from

them.

V. CASE STUDY: ANALYZING A REAL-WORLD

MIXTURE PUMP

To evaluate the adequacy of our approach, we connected it

to the client interface execution of a certifiable mixture

pump1. It should be noted that, in the study we had access

to the source code of the client interface software, but we

did not have access to the plan documentation of the pump,

nor the library objects its execution referenced.

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(185-189) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 188

Fig.2: Layout of the mixture pump client interface under

study

Admittedly, the absence of library code may cause in-

precision of check (e.g., plan issues are falsely recognized

or omitted). Fortunately, the plan issues recognized in this

study, as reported in area 2, were confirmed as certifiable

and caused by the subject implementation.

VI. RELATED WORK

The work exhibited in the paper is based on arrangement

diagrams, originally presented by Rushby to check security

properties of conceivably infinite-state frameworks. For

such systems, formal check requires either a direct

verification through deductive automated strategies (e.g.,

hypothesis proving), or justification of an reflection that

downscales the framework so that it can be confirmed

through exhaustive state investigation (utilizing model

checking for example). In contrast, our approach uses

arrangement charts in a novel way to distinguish

collaboration plan issues in software (Meng Zhang)[3]. In

particular, we use arrangement charts to remove and check

a behavioral model of the programming specifying how the

programming manages the connections with the user.

Several approaches have been proposed to use model

checking to check client interface implementations. For

example, Rushby utilized model checkers Mur and SAL to

check mode confusion in a cockpit; Ruksenas et al utilized

SAL to distinguish post-completion mistakes in mixture

pumps; Campos and Harrison utilized IVY/NuSMV to

examine mixture pumps against properties such as

consistency, visibility, and criticism; and in our own work,

we utilized SAL and EventB/Rodin to examine the data area

framework of mixture pumps for their predictability and

other security properties recognized by FDA (Almir

Badnjevic)[2].

The main limitation of utilizing model checking to examine

client interface design/usage lies in that, one has to wisely

balance the complexity of the models developed for client

interface and the constancy of these models to the unique

design/implementation. On one hand, the developed models

can’t be too complex to be analyzable (inside sensible time

cost). This is why reflection has to be utilized to eliminate

unimportant details away from the models. On the other

hand, it is frequently di cult to find suitable sorts of

abstraction, so as to preserve vital details of the client

interface for verification (Michael R)[7]. Therefore, model

checkers frequently use too coarse reflection to remove

models from the certifiable design/implementation,

resulting in excessive spurious counterexamples (i.e.,

counterexamples representing behaviors that do not exist in

the certifiable design/implementation) to be reported.

Indeed though counter illustration guided techniques, such

as, can be utilized to guide model checkers to refine and

optimize the abstraction, such procedures still demand

critical effort from the investigators to first decide if a

counter illustration is certifiable or spurious. Unfortunately,

with respect to analyzing client interface programming for

its human variables properties, no general solution has been

proposed to help investigators in making such decisions (S.

D. Thangavelu)[5].

In contrast to model checking driven approaches, our

approach characterizes a general method for model

development based on hypothesis demonstrating and

arrangement diagrams. It avoids the difficulty of finding an

suitable level of reflection that guarantees the precision and

constancy of the developed behavioral models (K. Iyer)[8].

However, the behavioral models developed by our approach

can moreover be confirmed by model checkers for their

human variables properties.

VII. CONCLUSIONS

A thorough and compelling approach for formally checking

the source code execution of client interface programming

in restorative gadgets has been presented.

The case study shows that this approach can recognize

collaboration plan issues in certifiable usage that might lead

to basic security consequences. These issues exist since of a

combination of plan highlights in client interface software,

each of which is not problematic individually. Interestingly,

we fed the test cases produced by the approach to another

mixture pump made by a diverse manufacturer, and

watched comparative plan issues.

The case study exhibited only formally analyzed a portion

of the programming execution of the subject mixture pump.

As a result, only part of the arrangement outline was

developed, and only part of the proofs produced by PVS

were formally proved. However, indeed with this partially

completed formal analysis, certifiable issues were

identified. This proposes that our approach has the potential

to assess and improve the quality and security of client

interface programming in restorative gadgets indeed before

their complete execution is available.

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(185-189) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 189

Once human variables properties are assured utilizing PVS,

the detail can be utilized to rapidly model a new client

interface plan in which the recognized collaboration plan

issues have been addressed. In fact, PVS gives a part called

PVSio-web that helps developers to define the layout of a

client interface; and a part called PVSio that empowers

interface execution of details defining the conduct of the

client interface, and a ground evaluator that naturally

compiles these details into executable code.

REFERENCES

[1] R.Priyanka; R.Sivakumar, “The Evaluation of

Medical Device Interaction Based Prototype

Verification System Using Human Operator

Model”, in International Journal of Computer

Sciences and Engineering Volume-4, Issue-4,

Year-2016.

[2] Almir Badnjevic; Lejla Gurbeta; Dusanka

Boskovic; Zijad Dzemic, “Medical devices in legal

metrology”, 2015 4th Mediterranean Conference

on Embedded Computing (MECO), Year: 2015,

Pages: 365 – 367.

[3] Meng Zhang; Anand Raghunathan; Niraj K. Jha,

“MedMon: Securing Medical Devices through

Wireless Monitoring and Anomaly Detection”,

IEEE Transactions on Biomedical Circuits and

Systems, Year: 2013, Volume: 7, Issue: 6, Pages:

871 – 881.

[4] Seungwoo Lee; Nam Kim, “Measurement and

analysis of the electromagnetic fields radiated by

themedical devices”, 2015 9th International

Symposium on Medical Information and

Communication Technology (ISMICT), Year:

2015, Pages: 56 – 58.

[5] P. Th. Houngbo; G. J. v. d. Wilt; D. Medenou; L.

Y. Dakpanon; J. Bunders; J. Ruitenberg, “Policy

and management of medical devices for the public

health care sector in Benin”, Appropriate

Healthcare Technologies for Developing

Countries, 2008. AHT 2008. 5th IET Seminar on,

Year: 2008, Pages: 1 – 7.

[6] S. D. Thangavelu; M. S. Pillay; J. Yunus; E.

Ifeachor, “Towards implementation of

international standards in medical devices

regulation in Malaysia”, Appropriate Healthcare

Technologies for Developing Countries, 2008.

AHT 2008. 5th IET Seminar on, Year: 2008,

Pages: 1 – 7.

[7] Marcantonio Catelani; Lorenzo Ciani; Chiara

Risaliti, “Risk assessment in the use of medical

devices: A proposal to evaluate the impact of the

human factor”, Medical Measurements and

Applications (MeMeA), 2014 IEEE International

Symposium on, Year: 2014, Pages: 1 – 6.

[8] Michael R. Neuman; Gail D. Baura; Stuart

Meldrum; Orhan Soykan; Max E. Valentinuzzi;

Ron S. Leder; Silvestro Micera; Yuan-Ting Zhang,

“Advances in Medical Devices and Medical

Electronics”, Proceedings of the IEEE, Year: 2012,

Volume: 100, Issue: Special Centennial Issue,

Pages: 1537 – 1550.

[9] Homa Alemzadeh; Ravishankar K. Iyer; Zbigniew

Kalbarczyk; Jai Raman, “Analysis of Safety-

Critical Computer Failures in Medical Devices”,

IEEE Security & Privacy, Year: 2013, Volume: 11,

Issue: 4, Pages: 14 – 26.

