Optimizing Fully Homomorphic Encryption Algorithm using RSA and Diffie-Hellman Approach in Cloud Computing

Aparna Negi1*, Anshika Goyal2

1Computer Science & Engineering, Faculty of Technology, Uttarakhand Technical University, Dehradun, India
2Computer Science & Engineering, Faculty of Technology, Uttarakhand Technical University, Dehradun, India

*Corresponding Author: Aparnanegi8@gmail.com, Tel.:7251985575

Available online at: www.ijcseonline.org

Abstract- Cloud computing is a technology where user can store their data and any application software on it. With the use of this technology user need not to worry about the cost of hardware installation and their maintenance cost. Hence, the cloud computing security becomes the current research focus. To secure the cloud data, Encryption Scheme is used. Different encryption techniques used for security purpose like Fully Disk Encryption and Fully Homomorphic Encryption. FDE encrypts the entire disk and FHE encrypts the particular functions. FHE is used to secure the cloud data from exploitation during the computation. In this research paper, FHE encryption scheme is optimized in which the Encryption Time, Probability of Attacks and Space Used by encrypted data is reduced using RSA and Diffie-Hellman Algorithm. RSA Algorithm is applied to improve performance of FHE schemes. The Diffie-Hellman algorithm is also applied for the secure channel establishment in the fully homomorphic encryption It has been analyzed that RSA algorithm based FHE performs well as compared to Diffie-Hellman algorithm.

Keywords- Cloud Computing, Diffie Hellman Algorithm, RSA Algorithm, Fully Homomorphic Encryption, Security

I. INTRODUCTION

Cloud Computing:
Cloud Computing is the environment which provides on-demand & convenient access of the network to a computing resources like storage, servers, applications, networks and the other services which can be released minimum efficiency way. Cloud is a design, where cloud service provider provides services to user on demand and it is also known as CSP stands for “Cloud Service Provider”. It is a technique which gives a huge amount of applications under different different topologies and each topology gives some new specialized services [20].

Service Models in Cloud Computing:
a) Software as a Service (SaaS): This is the capability of using applications which are running on cloud infrastructure. The users access these applications through internet connections.
b) Platform as a Service (PaaS): It gives the computational resources on which services and applications can be host and develop.
c) Infrastructure as a Service (IaaS): This is the capability of doing processing, storing and run software which is given to the consumer.

Deployment models of Cloud
a) Public Cloud: In this cloud, resources allocated are publically. Applications in this cloud are on pay-per-use basis. Public clouds can be managed by government organizations or business.
b) Private Cloud: In this cloud, resources are limited and used within an organization. It is more secure as employees in an organization can access the particular data only.
c) Hybrid Cloud: In this cloud, there is a combination of both Public and Private cloud. The services within the organization are control by the customer and resources which need to be delivered externally are controlled by the service provider.
d) Community Cloud: This cloud is used by those organizations which have same concerns like security requirements; mission or policy. This is managed by organizations within a community or by the third party auditor.
As a last paragraph of the introduction should provide organization of the paper/article (Rest of the paper is organized as follows, Section I contains the introduction of Cloud computing and its services and Deployment models. Section II contain the related work and brief description of research papers, Section III explain the methodology of research work with flow chart, Section VI describes results and discussions of all the experiment and results of experiment done in research work, and Section V concludes the research work with future directions and covers the complete thesis).

II. RELATED WORK

Geethu Thomas et al.(2010) in their paper titled on "Cloud Computing Security using Encryption Technique" In this paper they presented that the cloud computing is very efficient technology or important field used for data storage due to its efficiency and flexibility.

Sean Carlin et al.(2011) in their paper titled on “Cloud Computing Security” In this paper cloud computing is the distributed architecture that centralizes the resources of server on a scalable platform which provides services on demand. Various cloud deployment models are discussed i.e. public, private and hybrid. The main security issues and risks are discussed; sharing of resources is one of them.

Dawn Song et al.(2012) in their paper titled on “Cloud Data Protection for the Masses” proposed that the data-protection-as-a-service where different services are provided for protecting data. Two techniques have discussed i.e. FDE (Full Disk Encryption) and FHE (Fully Homomorphic Encryption). There is a comparison in these techniques on the basis of key management, sharing, and ease of development, maintenance, aggregation and performance.

Deyan Chen et al.(2012) in their paper titled on "Data Security and Privacy Protection Issues in Cloud Computing” In this paper it describes data security and privacy protection issues occurred in cloud computing in all the stages of data life cycle. There are seven stages of data lifecycle: Generation, use, transfer, share, storage, archival, destruction. They have discussed some current solutions like fully homomorphic technique, data integrity, client-based privacy management tool, etc.

Dr Nashaat el-Khameesey et al.(2012) in their paper titled on “A Proposed Model for Enhancing Data Storage Security in Cloud Computing Systems” In this paper suggests a methodical application of “defence in depth” security technique that can help all security risks in networked storage. More important is defence in depth based networked storage security policy provides a comprehensive framework to toward future attacks as the current technologies are more clearly understood.

Simarjeet Kaur(2012) in their paper titled on "Cryptography and Encryption In Cloud Computing" proposed that the various data encryption schemes like homomorphic encryption, searchable and structured encryption, Identity based encryption, signature based encryption etc. are discussed.

Anjana Chaudhary et al.(2014) in their paper titled on "Security in Cloud Computing by using Homomorphic Encryption Scheme with Diffie-Hellman Algorithm" stated that the secure channel should be established two users to transfer the data. Only authorized users can encrypt or decrypt the data. For encryption and decryption of data, basic homomorphic encryption scheme is used along with Diffie-Hellman algorithm.

Peidong Sha et al.(2016) in their paper titled on “The Modification of RSA algorithm to Adapt Fully Homomorphic Encryption Algorithm in Cloud Computing” proposed that the RSA is partially homomorphic cryptosystem, based on the features of the RSA algorithm, we design a encryption system, this encryption system firstly discriminates whether the values of the public key and private key generated during the encryption process contain prime number, then combines with the Pascal's triangle theorem and RSA algorithm model and inductive methods to construct a new cryptosystem that meets homomorphic computation of some operations on cipher texts. Thus the new cryptosystem satisfies fully homomorphic encryption in cloud computing.

III. METHODOLOGY

In this section, all the functions for the coding are written in the MATLAB. Several inbuilt functions of MATLAB are used for the implementation of different steps of the algorithm. First we will establish a path between the User node to Cloud node. The image file containing the secret plain text that will be encrypted to cipher text using RSA and Diffie-Hellman algorithm.
Parameters used to analyze performance

1. **Execution Time**: The execution time is the time which is taken to execute the algorithm.

 \[\text{Execution time} = \text{End of clock} - \text{start of clock} \]

2. **Probability of attacks**: The probability of attack is the probability value of the attacks.

 \[\text{Probability} = \frac{\text{no. of vulnerabilities in the algorithm}}{} \]

3. **Space Used**: The space utilization is the parameter which counts the number of buffers used by the algorithm.

 \[\text{Space used} = \text{time} \times \text{buffer used per unit time} \]

Fig. 2 Flow Chart of RSA Algorithm in FHE

Fig. 3 Flow Chart of Diffie-Hellman in FHE

Pseudo Code of RSA Algorithm

1. Let two large random prime integers: p and q.
2. Calculate \(n \) and \(\phi(n) \) where, \(n = pq \) and \(\phi(n) = (p-1)(q-1) \).
3. Choose an integer \(e \), range: \(1 < e < \phi(n) \) and \(\text{gcd} (e, \phi(n)) = 1 \) where \(\text{gcd} \) stands for greatest common denominator.
4. Compute \(d \), range: \(1 < d < \phi(n) \) such that: \(ed \equiv 1 \pmod{\phi(n)} \)

Where,
- There are two keys i) the public key is \((n,e)\)

 ii) the private key is \((n,d)\)
- \(P, q \) and \(\phi(n) \) are the private values.
- \(e \) is used as public or encryption exponent
- \(d \) is used as private or decryption exponent.

Pseudo Code of Diffie-Hellman Algorithm

Steps:
1. Alice and bob agree on a huge prime number \(p \) and a generator \(g \). It would not matter to both if someone listen it as they are using insecure communication.
2. Alice chooses a random integer \(x_A < p \). Similarly Bob chooses \(x_B < p \) both of them kept secret from everyone. These are their “Public key”.
3. Alice “public key” is \(y_A = g^{x_A} \pmod{p} \) and sends it to Bob using insecure communication. Bob’s “public key” is \(y_B = g^{x_B} \) and sends it to Alice. Here \(0 < y_A < p, 0 < y_B < p \).

As discussed above, sending these public keys with insecure communication is safe because it would be difficult to calculate \(x_A \) from \(y_A \) or \(x_B \) from \(y_B \), same as the powers of 2 above.

4. Alice computes \(z_A = y_B^{x_A} \pmod{p} \). Bob computes \(z_B = y_A^{x_B} \pmod{p} \). Here \(z_A < p, z_B < p \).

But \(z_A = z_B \) since \(z_A = y_B^{x_A} = (g^{x_B})^{x_A} = g^{x_A x_B} \pmod{p} \) and similarly \(z_B = (g^{x_A})^{x_B} = g^{x_A x_B} \pmod{p} \). So this value is their shared secret key. They can use it to encrypt and decrypt so that rest of their communication becomes faster.

In this calculation, notice that the step \(y_B^{x_A} \equiv (g^{x_B})^{x_A} \) involved replacing \(g^{x_B} \) by its remainder \(y_B \), (in the reverse direction) here we were using the “as often as you want” principle.

IV. RESULTS AND DISCUSSION

The results and discussion contains the results of the RSA and Diffie-Hellman algorithm. The performance of RSA and Diffie-Hellman algorithms are compared in terms of execution time, probability of attacks and space utilization. It has been analyzed that RSA Algorithm performs well in terms of all parameters.

Comparison of these algorithms are shown in the form of following graphs:
Figure 6 shows the Space Used graph of the Diffie-Hellman algorithm is compared with the RSA algorithm in the form of bar graphs.

Table 1: Qualitative Comparison of the algorithms

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>RSA</th>
<th>DIFFIE-HELLMAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephemeral Keys</td>
<td>Generating ephemeral keys for RSA is extremely difficult.</td>
<td>Generating ephemeral keys for Diffie-Hellman is extremely easy.</td>
</tr>
<tr>
<td>Security</td>
<td>Relies on the difficulty of integer factorization.</td>
<td>Relies on the difficulty of discrete logarithm.</td>
</tr>
<tr>
<td>Encryption Cost</td>
<td>Encryption is cheaper.</td>
<td>Encryption is expensive.</td>
</tr>
<tr>
<td>Public Key Encoding</td>
<td>Public key is smaller to encode.</td>
<td>Public key is bigger to encode.</td>
</tr>
<tr>
<td>Strength</td>
<td>RSA 1024 bits is less robust than Diffie-Hellman.</td>
<td>Diffie-Hellman 1024 bits is much more robust.</td>
</tr>
<tr>
<td>Authentication</td>
<td>Authenticates only the sender.</td>
<td>Authenticates both the sender and the receiver.</td>
</tr>
<tr>
<td>Attacks</td>
<td>Susceptible to low exponent, common modules and cycle attack.</td>
<td>Susceptible to man-in-the-middle attack.</td>
</tr>
</tbody>
</table>

After analyzing it conclude that RSA algorithm is more secure, more reliable and more practically used algorithm available today in comparison to Diffie-Hellman algorithm. It is much faster as compare to less secured algorithms.

Table 2: Quantitative Comparison of the algorithm

<table>
<thead>
<tr>
<th>Factors</th>
<th>Diffie-Hellman</th>
<th>RSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution time</td>
<td>40 seconds</td>
<td>21 seconds</td>
</tr>
<tr>
<td>Space Utilization</td>
<td>2600 buffers</td>
<td>2400 buffers</td>
</tr>
<tr>
<td>Probability</td>
<td>92 percent</td>
<td>45 percent</td>
</tr>
</tbody>
</table>

It shows the comparison of RSA and Diffie-Hellman algorithm on following parameters as Execution Time, Probability of attacks and Space Used. After analyzing the graph it conclude that the execution time, probability of attacks and space used of RSA algorithm is much less than the Diffie-Hellman algorithm.

V. CONCLUSION AND FUTURE SCOPE

In this research work, the diffie-hellman algorithm is applied for the secure channel establishment in the fully homomorphic encryption. The RSA algorithm is also applied to improve performance of fully homomorphic encryption schemes. The performance of the RSA and Diffie-Hellman algorithms are compared in terms of execution time, probability of attacks and space utilization. On the basis of graphs shown in Fig 3, Fig 4 and Fig 5 respectively, the execution time of the RSA algorithm is less as compared to the diffie-hellman algorithm, the probability of attacks in the RSA algorithm is less as compared to diffie-hellman algorithm and the space utilization of RSA algorithm is less as compared to diffie-hellman due to less complexity. It has been analyzed that RSA algorithm performs well as compared to diffie-hellman algorithm. The hybridization of RSA algorithm is the efficient algorithm than the hybridization of diffie-hellman for the secure channel establishment. This work mainly focuses on the security of two parties so that data should be protected from various unauthorized users. In future, RSA algorithm will be further improved for OTP generation in the network. The RSA algorithm can be compared with other symmetric algorithms to analyze its reliability on Fully Homomorphic Encryption basis.

REFERENCES

[24] Matlab Tutorial by Tutorials Point
https://www.tutorialspoint.com/matlab/matlab_overview.htm

Authors Profile

Ms. Aparna Negi completed Bachelor of Computer Science and Engineering from Uttarakhand Technical University, Dehradun in 2016. She is currently pursuing Master of Technology under Uttarakhand Technical University, Dehradun, India.

Mrs. Anshika Goyal is currently working as Assistant Professor in Department of Computer Science & Engineering, Faculty of Technology, Uttarakhand Technical University, Dehradun, India.