
 © 2015, IJCSE All Rights Reserved 186

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-3, Issue-7 E-ISSN: 2347-2693

RDT: A New Data Replication Algorithm for Hierarchical Data Grid

Sheida Dayyani
1
, Mohammad Reza Khayyambashi

2*

1
Department of Computer Engineering, Sheikh Bahaei University, Iran

2
 Department of Computer Engineering, University of Isfahan, Iran

www.ijcseonline.org

Received: Jun/23/2015 Revised: July/06/2015 Accepted: July/21/2015 Published: July/30/ 2015

Abstract— Grid computing is a type of distributed computing system that provides access to various computational resources

which are shared by different organizations, in order to create an integrated powerful virtual computer. Nowadays, grid is

known as an essential technology which is used for different kinds of high performance applications and it is believed that it

will be applied more and more in the future as technology progresses. Data replication is a common method used in distributed

environments to improve ease of data access and to provide a high level of data availability, increased fault tolerance and data

reliability; and that’s why this method is used for data management in data grid systems. Since the data files are very large and

the Grid storages are limited, managing replicas in storage for the purpose of more effective utilization requires more attention.

In this paper, a novel data replication strategy, called Replication with Dynamic Threshold (RDT) is proposed that uses a new

threshold for characterizing the number of appropriate sites for replication. Appropriate sites have the higher number of access

for that particular replica from other sites. It also minimizes access latency by selecting the best replica when various sites hold

replicas. The simulated results with OptorSim, i.e. European Data Grid simulator show that the RDT strategy gives better

performance compared to the other algorithms and prevents the unnecessary creation of replicas which leads to efficient storage

usage.

Keywords—Distributed systems; Data grid; Data replication; Dynamic Threshold; OptorSim.

I. INTRODUCTION

Computing infrastructure and network application

technologies have come a long way over the past years and

have become more and more detached from the underlying

hardware platform on which they run. At the same time

computing technologies have evolved from monolithic to

open and then to distributed systems. Grid computing is a

wide area distributed computing environment that enables

sharing, selection, and aggregation of geographically

distributed resources. Also, it is an important mechanism for

utilizing distributed computing resources. These resources

are distributed in different geographical locations, but are

organized to provide an integrated service. The term "grid

computing" refers to the emerging computational and

networking infrastructure that is designed to provide

pervasive and reliable access to data and computational

resources over wide area networks, across organizational

domains [1], [2], [3], [4].

Nowadays, there is a tendency of storing, retrieving, and

managing different types of data such as experimental data

that are produced from many projects [1]. This data plays a

fundamental role in all kinds of scientific applications such

as particle physics, high energy physics, data mining,

climate modelling, earthquake engineering and astronomy,

to cite a few, manage and generate an important amount of

data which can reach terabytes and even petabytes, which

need to be shared and analysed [2], [3], [5]. Storing such

amount of data in the same location is difficult, even

impossible. Moreover, an application may need data

produced by another geographically remote application. For

this reason, a grid is a large scale resource sharing and

problem solving mechanism in virtual organizations and is

suitable for the above situation [6], [7], [8]. In addition,

users can access important data that is available only in

several locations, without the overheads of replicating them

locally. These services are provided by an integrated grid

service platform so that the user can access the resource

transparently and effectively [1], [6].

One class of grid computing is "Data Grids"; that provide

geographically distributed storage resources to large

computational problems that require evaluating and mining

large amounts of data [9], [10]. The Grid resources,

including computing facility, data storage and network

bandwidth, are consumed by the jobs. For each incoming

job, the grid scheduler decides where to run the job based

on the job requirements and the system status. In data-

intensive applications, the locations of data required by the

job impact the Grid scheduling decision and performance

greatly. Creating data replicas can reroute the data requests

to certain replica servers and offer remarkably higher access

speed than a single server. At the same time, the replicas

provide broader decision space for the grid scheduler to

achieve better performance from the perspective of the job

[2], [3], [10]. Managing this data in a centralized location

increases the data access time and hence much time is taken

to execute the job. So to reduce the data access time,

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(186-197) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 187

"Replication" is used [2], [3].

Replication is an important technique to speed up data

access for data grid systems that replicate the data in multiple

locations; so that a user can access the data from a site in its

vicinity. It has been shown that data replication not only

reduces access costs, but also increases data availability in

many applications [9], [11], [12]. Also, data replication is a

practical and effective method to achieve efficient network

performance in network bandwidth constrained environment,

and it has been applied widely in the areas of distributed

database and Internet. New challenges are faced in the data

grid, for example, huge data file sizes, system resources

belonging to multiple owners, dynamically changing

resources and complicated cost model [2], [9].

The experiments on the distributed systems show that the

replication promotes higher data availability, lower

bandwidth consumption, increase in fault tolerance and

improvement in scalability. In other words, the replication is

the process of creation and placement of the copies of

entities software. The phase of creation consists in

reproducing the structure and the state of the replicated

entities, whereas the phase of placement consists in

choosing the suitable slot of this new duplication, according

to the objectives of the replication. So, replication strategy

can shorten the time of fetching the files by creating many

replicas stored in appropriate locations [10], [13].

Thus, Replication causes three important features in grid

systems, such as follow [14]:

• Increased availability

• Increased performance

• Enhanced fault tolerance and reliability

By storing the data at more than one site, if a data site

fails, a system can operate using replicated data, thus

increasing availability and fault tolerance. At the same time,

as the data is stored at multiple sites, the request can find

the data close to the site where the request originated, thus

increasing the performance of the system. But the benefits

of replication, of course, do not come without overheads of

creating, maintaining and updating the replicas. If the

application has a read-only nature, replication can greatly

improve the performance. But, if the application needs to

process update requests, the benefits of replication can be

neutralised to some extent by the overhead of maintaining

consistency among multiple replicas [14].

There is a fair amount of work on data replication in grid

environments. Most of the existing work focused on

mechanisms for create, decision and delete replicas. The

purpose of this document is to present a novel replication

technique and compare it with previous techniques which

have been presented by other researches.

The rest of this paper is organized as follows. In the

second section, we present an overview of grid systems and

describe replication scenario, challenges and parameters of

evaluating replication techniques. Section three takes a

closer look on basic and new existing data replication

strategies in grid environment. In section four, a novel

replication algorithm is proposed. Section five shows the

simulation results. Finally, conclusions and some future

research works are presented in Section six.

II. GRID SYSTEMS

A large number of scientific and engineering applications

require a huge amount of computing time to carry out their

experiments by simulation. Research driven by this has

promoted the exploration of a new architecture known as

“The Grid” for high performance distributed application and

systems [12]. In [13], Foster defines the Grid concept as

“coordinated resource sharing and problem solving in

dynamic, multi-institutional virtual organizations”. There

are different types of Grid developed to emphasize special

functions that will be defined in the next section.

A. Types of Grid

Grid computing can be used in a variety of ways to address

various kinds of application requirements and it has three

primary types. Of course, there are no hard boundaries

between these grid types and often grids may be a

combination of two or more of these [14]. Types of grids are

summarized below:

• Computational grid: Computational grid is focused

on setting aside resources specifically for

computing power. Such as most of the machines

are high-performance servers [14].

• Scavenging grid: Scavenging grid is most

commonly used with large numbers of desktop

machines that are scavenged for available CPU

cycles and other resources. Owners of the desktop

machines are usually given control over when their

resources are available to participate in the grid

[14].

• Data grid: Data grid is a collection of

geographically distributed computer resources that

these resources may be located in different parts of

a country or even in different countries [10]. For

example, you may have two universities doing life

science research, each with unique data. A grid

connects all these locations and enables them to

share their data, manage the data, and manage

security issues such as who has access to which

data [15], [16].

B. Data Management in Grid

An important technique for data management in grid

systems is the replication technique. Data replication is

characterized as an important optimization technique in

Grid for promoting high data availability, low bandwidth

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(186-197) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 188

consumption, increased fault tolerance, and improved

scalability. The goals of replica optimization is to minimize

file access times by pointing access requests to appropriate

replicas and pro-actively replicating frequently used files

based on access statistics gathered.

Generally, replication mechanism determines which files

should be replicated, when the new replicas should be

created and where the new replicas should be placed [4],

[9], [15].

The main aims of using replication are to reduce access

latency and bandwidth consumption. The other advantages

of replication are that it helps in load balancing and

improves reliability by creating multiple copies of the same

data [4], [15].

Replication schemes can be classified as static and dynamic.

In static replication, a replica persists until it is deleted by

users or its duration is expired. The drawback of static

replication is evident when client access patterns change

greatly in the Data. Static replication can be used to achieve

some of the above mentioned goals but the drawback with

static replication is that it cannot adapt to changes in user

behavior. The replicas have to be manually created and

managed if one were to use static replication. But, in

dynamic replication, replica creation, deletion and

management are done automatically. Dynamic strategies

have the ability to adapt to changes in user behavior [17].

Various combinations of events and access scenarios of data

are possible in a distributed replicated environment. The

three fundamental questions any replica placement strategy

has to answer are as follow that Depending on the answers,

different replication strategies are born [4], [15]:

• When should be the replicas created?

• Which files should be replicated?

• Where should be the replicas placed?

Using replication strategies in grid environment may cause

some challenges. The four important challenges in

replicated environments are as follow [11]:

• Time of creation of a new replica: If strict data

consistency is to be maintained, performance is

severely affected if a new replica is to be created. As

sites will not be able to fulfill request due to

consistency requirements.

• Data Consistency: Maintaining data integrity and

consistency in a replicated environment is of prime

importance. High precision applications may require

strict consistency of the updates made by transactions.

• Lower write performance: Performance of write

operations can be dramatically lowered in applications

requiring high updates in replicated environment,

because the transaction may need to update multiple

copies.

• Overhead of maintenance: If the files are replicated at

more than one site, it occupies storage space and it has

to be administered. Thus, there are overheads in

storing multiple files.

Almost all the replications strategies try to reduce the access

latency thus reducing the job response time and hence

increase the performance of the grids. Similarly almost all

the replication strategies try to reduce the bandwidth

consumption to improve the availability of data and

performance of the system. The target is to keep the data as

close to the user as possible, so that data can be accessed

efficiently. Some of the replication strategies explicitly

target to provide a balanced workload on all the data

servers. This helps in increasing the performance of the

system and provides better response time. With more

number of replicas in a system the cost of maintaining them

becomes an overhead for the system. Some of the strategies

aim to make only an optimal number of replicas in the data

grid. This ensures that the storage is utilized in an optimal

way and the maintenance cost of replica is minimized.

Some strategies target the strategic placement of the replicas

along with an optimal number of replicas. The strategic

placement of replicas is a very important factor because it is

integrated with few other very important factors. For

example, if the replicas are placed on the optimal locations

it helps to optimize the workload of different servers. It is

also related with the cost of the maintenance. If a strategy

goes on replicating a popular file blindly, it will create too

many replicas thus increasing the burden for the system as

replica maintenance costs will become too high [18].

Job execution time is another very important parameter.

Some replication strategies target to minimize the job

execution time with optimal replica placement. The idea is

to place the replicas closer to the users in order to minimize

the response time, and thus the job execution time. This will

increase the throughput of the system [18]. Only a few

replication strategies have considered replication as an

option to provide fault tolerance and quality assurance. All

replication strategies use subset of these parameters [18].

III. RELATED WORKS

The role of a replication strategy is to identify when a replica

should be created, where to place replicas, when to remove

replicas and how to locate the best replica. These strategies

are guided by factors such as demand for data, network

conditions, cost of transfer and storage cost [19].

Several replication replacement strategies have been

proposed in the past and they are the basics of other

replication algorithms. Details of some important replication

algorithms are as follows:

NO Replication strategy will not create replica and

therefore, the files are always accessed remotely. One

example of the implemented strategy is the SimpleOptimizer

algorithm [20], which never performs replication; rather it

reads the required replica remotely. SimpleOptimizer

algorithm is simple to implement and performs the best

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(186-197) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 189

relative to other algorithms in terms of the storage space

usage, but performs the worst in terms of job turnaround time

and network usage [17].

Best client creates replica at the client that has generated

the most requests for a file, this client is called the best client.

At a given time interval, each node checks to see if the

number of requests for any of its file has exceeded a

threshold, then the best client for that file is identified [17].

Cascading Replication supports tree architectur. The

data files generated in the top level and once the number of

accesses for the file exceeds the threshold, then a replica is

created at the next level, but on the path to the best client, and

so on for all levels, until it reaches to the best client itself

[17].

Plain Cashing: The client that requests a file stores a

copy locally. If these files are large and a client has enough

space to store only one file at a time, then files get replaced

quickly [17].

Cashing plus Cascading combines cascading and plain

cashing strategies. The client caches file locally, and the

server periodically identifies the popular files and propagates

them down the hierarchy. Note that the clients are always

located at the leaves of the tree but any node in the hierarchy

can be a server. Specifically, a Client can act as a Server to its

siblings. Siblings are nodes that have the same parent [17].

Fast Spread: In this method a replica of the file is stored

at each node along its path to the client. When a client

requests a file, a copy is stored at each tier on the way. This

leads to a faster spread of data. When a node does not have

enough space for a new replica it deletes the least popular file

that had come in the earliest [17].

Least Frequently Used (LFU) strategy always replicates

files to local storage systems. If the local storage space is full,

the replica that has been accessed the fewest times is removed

and then releases the space for new replica. Thus, LFU

deletes the replica which has less demand (less popularity)

from the local storage even if the replica is newly stored [21].

Least Recently Used (LRU) strategy always replicates

files to local storage system. In LRU strategy, the requested

site caches the required replicas, and if the local storage is

full, the oldest replica in the local storage is deleted in order

to free the storage. However, if the oldest replica size is less

than the new replica, the second oldest file is deleted and so

on [21].

Proportional Share Replica (PSR) policy is an

improvement in Cascading technique. The method is a

heuristic one that places replicas on the optimal locations by

assuming that the numbers of sites and the total replicas to be

distributed are already known. Firstly an ideal load

distribution is calculated and then replicas are placed on

candidate sites that can service replica requests slightly

greater than or equal to that ideal load [22].

Bandwidth Hierarchy Replication (BHR) is a novel

dynamic replication strategy which reduces data access time

by avoiding network congestions in a data grid network. With

BHR strategy, we can take benefits from “network-level

locality” which represents that required file is located in the

site which has broad bandwidth to the site of job execution.

BHR strategy was evaluated by implementing in

Optorsim; a data grid simulator initially developed by

European data grid projects. The simulation results show that

BHR strategy can outperform other optimization techniques

in terms of data access time when hierarchy of bandwidth

appears in Internet. BHR extends current site-level replica

optimization study to the network-level [23].

Simple Bottom-Up (SBU) and Aggregate Bottom-Up

(ABU) are two dynamic replication mechanisms that are

proposed in the multi-tier architecture for data grids.

The SBU algorithm replicates the data file that exceeds a

pre-defined threshold for clients. The main shortcoming of

SBU is the lack of consideration to the relationship with

historical access records. For the sake of addressing the

problem, ABU is designed to aggregate the historical records

to the upper tier until it reaches the root.

The performance of algorithms were evaluated and

improvements shown against Fast Spread dynamic

replication strategy. The values for interval checking and

threshold were based on data access arrival rate, data access

distribution and capacity of the replica servers [18].

Multi-objective approach is a method exploiting

operations research techniques that is proposed for replica

placement. In this method, replica placement decision is

made considering both the current network status and data

request pattern. The problem is formulated in p-median and

p-center models to find the p replica placement sites. The p-

center problem targets to minimize the max response time

between user site and replica server whereas the p-median

model focuses on minimizing the total response time between

the requesting sites and the replication sites. The dynamic

maintainability is achieved by considering the replica

relocation cost.

The decision of relocation is made when performance

metric degrades significantly in last K time periods. The

threshold value is varied proportionally to response time in

each time interval [24], [25].

Weight-based dynamic replica replacement strategy

calculates the weight of replica based on the access time in

the future time window, based on the last access history. After

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(186-197) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 190

that, calculate the access cost which embodies the number of

replicas and the current bandwidth of the network. The

replicas with high weight will be helpful to improve the

efficiency of data access, so they should be retained and then

the replica with low weight will not make sense to the rise of

data access efficiency, and therefore, should be deleted. The

access history defines based on the zip-like distribution [26].

Latest Access Largest Weight (LALW) is a dynamic

data replication mechanism. LALW selects a popular file for

replication and calculates a suitable number of copies and

grid sites for replication. By associating a different weight to

each historical data access record, the importance of each

record is differentiated. A more recent data access record has

a larger weight. It indicates that the record is more pertinent

to the current situation of data access [27].

Agent-based replica placement algorithm is proposed

to determine the candidate site for the placement of replica.

For each site that holds the master copies of the shared data

files will deploy an agent.

The main objective of an agent is to select a candidate site

for the placement of a replica that reduces the access cost,

network traffic and aggregated response time for the

applications. Furthermore, in creating the replica an agent

prioritizes the resources in the grid based on the resource

configuration, bandwidth in the network and insists for the

replica at their sites and then creates a replica at suitable

resource locations.

The agent in this approach is autonomous, self-contained

software capable of making independent decisions. There are

two important issues that are considered in this strategy,

which are:

1. Choosing a replica location is to place a replica at sites

that optimize the aggregated response time.

2. Choosing a replica location is to place a replica at sites

that optimize the total execution time of the jobs executed

in the grid.

Response time is calculated by multiplying the number of

requests at site with the transmission time between the

nearest replication site to the requester and the sum of the

response times for all sites constitutes the aggregated

response time. Based on resource factors that influence the

data transmission time between the sites is the decision must

be made by an agent at each site. The factors include:

• Baud-rate between the sites

• CPU rating and CPU load,

• Site storage capacity

• Local demand of the replicas at each site

In order to evaluate the resource properties and grade with

an appropriate rank, the agent uses a multi-dimensional

ranking function.

The agent preferences are represented by a set of factor

weightings, which allow resource rank to be tailored to the

current resource characteristics [7].

Adaptive Popularity Based Replica Placement

(APBRP) is a new dynamic replica placement algorithm, for

hierarchical data grids which is guided by “file popularity”.

The goal of this strategy is to place replicas close to clients to

reduce data access time while still using network and storage

resources efficiently. The effectiveness of APBRP depends on

the selection of a threshold value related to file popularity.

APBRP determines this threshold dynamically based on data

request arrival rates [28].

Efficient Replication strategy is a new replication

strategy for dynamic data grids, which take into account the

dynamic of sites. This strategy can increase the file

availability, improved the response time and can reduce the

bandwidth consumption. Moreover, it exploits the replicas

placement and file requests in order to converge towards a

global balancing of the grid load. This strategy will focus on

read-only-access as most grids have very few dynamic

updates because they tend to use a "load" rather than "update"

strategy.

There are three steps provided by this algorithm, which

are [29]:

1. Selection of the best candidate files for replication;

Selected based on requests number and copies number of

each files.

2. Determination of the best sites for files placement which

are selected in the previous step; Selected based on requests

number and utility of each site regarding to the grid.

3. Selection of the best replica; Taking account the bandwidth

and the utility of each site [29].

Value-based replication strategy (VBRS) is proposed to

decrease the network latency and meanwhile to improve the

performance of the whole system.

In VBRS, threshold was made to decide whether to copy

the requested file, and then solve the replica replacement

problem. VBRS has two steps:

1. The threshold to decide whether a file should be replicated

in the local storage device is introduced according to the

access history and the storage capacity.

2. A measure based on the values of the local replicas, is

devised to choose the replica that should be replaced.

At the first steps, the threshold will be calculated to decide

whether the requested file should be copied in the local

storage site. Then at the second stage, the replacement

algorithm will be triggered when the requested file needs to

be copied at the local storage site does not have enough

space.

 It firstly, calculates the file’s values in the local storage

site. The files that have the least value will be deleted by the

replacement algorithm. The file’s value mostly concerns with

three factors: network bandwidth, file’s size, and the access

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(186-197) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 191

history. The files with higher value should be retained, and

then the files with lower value will be deleted.

The replica replacement policy is developed by

considering the replica’s value which is based on the file’s

access frequency and access time. To evaluate the

performance of the VBRS, the grid simulator Optorsim is

used that can simulate the real data grid environment. The

experiment results show that the effectiveness of VBRS

algorithm can reduce network latency [30].

Enhance Fast Spread (EPS) is an enhanced version of

Fast Spread for replication strategy in the data grid. This

strategy was proposed to improve the total of response time

and total bandwidth consumption. Its takes into account some

criteria such as the number and frequency of requests, the

size of the replica and the last time the replica was requested.

EFS strategy keeps only the important replicas while the

other less important replicas are replaced with more

important replicas. This is achieved by using a dynamic

threshold that determines if the requested replica should be

stored at each node along its path to the requester. This

strategy takes four factors or criteria that have been stated as

above into consideration when calculating the threshold:

1. The number of requests shows the sums or how

many times the replica has been requested by its node.

2. The frequency of requests shows how many times

the replica has been requested by its node within a specific

time interval.

3. The size of replica is also a significant factor in

deciding if the replica should be stored.

4. The number and frequency of requests in addition

to the last time the replica was requested give a hint of the

probability of requesting the replica again [31].

Predictive hierarchical fast spread (PHFS) is a new

dynamic replication method in multi-tier data grid

environments which is an improve version of common fast

spread. The fast spread is a dynamic replication method in the

data grid. The multi-tier is a tree-like structure to build data

grid. The PHFS tries to forecast future needs and pre-

replicates the min hierarchal manner to increase locality in

accesses and improve performance that consider spatial

locality. This method is able to optimize the usage of storage

resources, which not only replicates data objects

hierarchically in different layers of the multi-tier data grid for

obtaining more localities in accesses. It is a method intended

for read intensive data grids.

In PHFS, to predict future needs and pre-replicates them

hierarchically in different nodes of different tiers in the multi-

tier data grid on the path from the source node to the client by

using predictive methods. The nodes in upper layers of multi-

tier data grid have more storage capacity and computational

power than the lower level nodes. Also, the bandwidth of the

links among nodes in upper levels is greater than the links in

the lower level nodes. So, the replication method in fast

spread can replicate more items in upper level nodes.

Otherwise, it can decrease the amount of replicated items on

the path to lower levels toward the client. In order to optimize

the utilization of resources for replication and provide

maximum locality with available resources the hierarchal

replication is used.

The PHFS method use priority mechanism and replication

configuration change component to adapt the replication

configuration dynamically with the obtainable condition.

Besides that, it is developed on the basis of the concept that

users who work on the same context will request some files

with high probability.

Although common fast spread makes some improvements

in some metrics of performance like bandwidth consumption,

it shows poor results in local accesses patterns. Therefore

PHFS is used by predicting user’s subsequent file demands

and pre-replicate them earlier in hierarchal manner to

increase locality in accesses.

The results show that PHFS causes lower latency and

better performance compared with common fast spread.

Moreover, compared with common fast spread it showed that

the most of the accesses in PHFS occur in lower levels.

Besides that, it is more suitable for applications wherein the

clients work on a context for a period of time and the requests

of clients are not random, like scientific applications that

researchers work on a project [32].

Dynamic Hierarchical Replication (DHR) is a dynamic

replication algorithm for hierarchical structure that places

replicas in appropriate sites. Best site has the highest number

of access for that particular replica.

The algorithm minimizes access latency by selecting the

best replica when various sites hold replicas. The replica

selection strategy that proposed in [33], selects the best

replica location for the users running jobs by considering the

replica requests that waiting in the queue and data transfer

time. It stores the replica in the best site where the file has

been accessed most, instead of storing files in many sites.

Modified Latest Access Largest Weight (MLALW) is a

dynamic data replication strategy. This strategy is an

enhanced version of Latest Access Largest Weight strategy.

MLALW deletes files by considering three important factors:

1. Least frequently used replicas

2. Least recently used replicas

3. The size of the replica

MLALW stores each replica in an appropriate site, i.e.

appropriate site in the region that has the highest number of

access in future for that particular replica. The algorithm is

simulated using Optorsim data grid simulator. The

experiment results show that MLALW strategy gives a better

performance compared to the other algorithms and prevents

unnecessary creation of replica which leads to efficient

storage usage [34].

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(186-197) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 192

IV. PROPOSED DATA REPLICATION ALGORITHM

In this section, first network structure of data grid is

described, and then the novel RDT algorithm is proposed.

A. Grid Network Structure

The grid topology of the simulated platform is given in

Figure 1, which is based on European Data Grid CMS test-

bed architecture [35] and has three levels similar to what is

given by Horri et al. [36].

1) First level are Regions that are connected through

internet i.e. have low bandwidth.

2) Second level comprises of LAN’s (local area network)

within each region that have moderately higher

bandwidth compared to the first level.

3) The third level is the sites within each of the LAN’s that

are connected to each other with a high bandwidth.

B. Replication with Dynamic Threshold

When a job is allocated to the grid scheduler, before job

execution the replica manager should transfer all the

required files that are not available in the local site. So, the

data replication enhances the job scheduling performance by

decreasing job execution time. RDT is a novel dynamic

hierarchical replication strategy and has three parts:

1) Replica Selection

Generally when several replicas are available within the

local LAN, the local region or other regions, RDT selects

the site that has the most storage space. Figure 2 describes

RDT’s selection algorithm.

2) Replica Decision

When a requested replica is not available in the local

storage, replication should take place. According to the

temporal and geographical locality the replica is placed in

the best sites (BSEs). To select the BSEs, RDT

characterizes the number of appropriate sites for replication

by a dynamic threshold. Decision algorithm calculates this

threshold from Eq. (1).

Fig. 1. Grid topology in the simulation.

Fig. 2. Selection algorithm of DHRT strategy.

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(186-197) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 193

Then, RDT creates a sorted list (by number of replica

access) of all SEs that requested the particular file in the

region. Now the replica will be placed in the storage

elements of the above sorted list that threshold shows.

The dynamic threshold allows to candidate more than one

SE and increase number of replicas. On the other hand,

replica is not placed in all the requested sites. Hence, RDT

helps to find an appropriate number of replicas based on

four factors, such as:

� NA(f): Number of access to that particular file

� NS(f): Number of sites that will require that

particular file

� NR(f): Number of existing replicas of that particular

file

� S(f): Size of that particular file

Figure 3 describes RDT’s decision algorithm.

Fig. 3. Decision algorithm of DHRT strategy.

3) Replica Replacement

If enough storage space exists in the local site, the selected

file will be replicated. Otherwise if the file is available in

the local LAN, then it will be accessed remotely. Now, if

enough space for replication does not exist and requested

file is not available in the same LAN, one or more files

should be deleted using the following rules:

� Generate a LFU (least Frequently Used) sorted list of

replicas that are both available in the current site as

well as the local LAN.

� Start deleting files from the above list till space is

available for replica.

� If space is still insufficient, then repeat previous step

for each LAN in current region, randomly. In other

word, generate a LRU sorted list of replicas that are

both available in the site as well as the local region.

� If space is still insufficient, generate a LFU sorted list

of the remaining files in the site and start deleting files

from the above list till space is available for replica.

Figure 4 describes RDT’s replacement algorithm.

Fig. 4. Replacement algorithm of DHRT strategy.

V. EXPERIMENTAL EXPERIENCE

A. Simulation Tool

OptorSim is used to evaluate the performance of RDT

algorithm. OptorSim [37] was developed by European

Data Grid projects and is written in Java. It provides a

framework to simulate the real grid environment. It is

(1)

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(186-197) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 194

developed to test the dynamic replication strategies. In

data grid environment various job execution scenarios

are present.

OptorSim has several important components such as

computing element (CE), storage element (SE), resource

broker (RB), replica manager (RM), and replica optimizer

(RO). Computing elements and storage elements are

used to execute grid jobs and store the files respectively.

OptorSim architecture is shown in Figure 5. Additional

details about OptorSim are available in the literatures

[21], [37].

Fig. 5. OptorSim architecture.

B. Evaluation Parameters

The architecture used here is the European Data Grid

CMS testbed architecture [35]. In this there are twenty

sites in which two of them have only storage element and

which acts as master node. There are 8 routers which is

used to forward request to other sites.

With OptorSim, it is possible to simulate any grid
topology and replication strategy. So OptorSim code has
been modified to implement the hierarchical structure,
since it uses a flat network structure. It is assumed the
network has four regions and on average two LAN’s in
every region. The average storage capacity is 24.25 GB.
Bandwidth in each level is given in Table 1. Also, Table 2
specifies the simulation parameters and their values used
in our study. Data replication strategies commonly

assume that the data is read only in Data Grid
Environments.

Table 1. Bandwidth configuration.

Parameter Value (Mbps)

Inter LAN bandwidth 1000

Intra LAN bandwidth 100

Intra Region bandwidth 10

Table 2. General configuration parameters.

Parameter Value

Number of jobs types 6

Job Delay (ms) 2500

Maximum queue size 200

Number of jobs 100

Average size of storage elements (GB) 54.25

Size of each file (GB) 10

C. Results and Discussion

The proposed RDT algorithm is compared with four

replication algorithms namely, No Replication, Least

Frequently Used (LFU), Least Recently Used (LRU), and

DHR. In No Replication strategy files are accessed

remotely. When storage is full, LRU deletes least recently

accessed files and LFU deletes least frequency accessed

files. The DHR algorithm places replicas in appropriate

sites i.e. best site that has the highest number of access

for that particular replica. It also minimizes access

latency by selecting the best replica by considering the

replica requests that waiting in the storage and data

transfer me.

Figure 6 shows the mean job execution time for the

various replication algorithms. Obviously, the No

Replication strategy has the worst performance as all the

files requested by jobs have to be transferred from main

site. In this simulation LRU and LFU have almost the

same execution time. DHR improves data access time by

considering the differences between intra-LAN and inter-

LAN communication. RDT mean job execution time is

faster than other algorithms since it considers a dynamic

threshold to distinguish the best number of replicas. If

the available storage for replication is not enough, RDT

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(186-197) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 195

will not delete those file that have a high transferring

time. It also improves the mean job execution time by

storing the replica in the most frequently accessed site of

the requested region. Valuable information can be gained

by monitoring storage resources usage. Since resource

cost is proportional to the resource used, so minimizing

storage usage is a must.

Fig. 6. Job execution time for various replication algorithms.

Figure 7 shows the storage usage which is the

percentage of available spaces that are used. No

Replication strategy has best storage since it gets files

remotely. LFU and LRU are always replicate when a

request is made; hence they use a lot of space. DHR

strategy performs better than the previous three

strategies since it keeps at most one copy of file in the

region. The proposed RDT strategy has minimum

storage usage among the current algorithms because it

place replicas in the appropriate sites so reduces

unnecessary replication.

Fig. 7. Mean storage usage for various replication algorithms.

Figure 8 displays the mean job time based on changing

number of jobs for LRU, DHR and proposed algorithm. It

is clear that at the job number increases, RDT is able to

process the jobs in the lowest mean time in comparison

with other methods. It is similar to a real Grid

environment where a lot of jobs should be executed.

Fig. 8. Mean job execution time based on varying number of jobs

VI. CONCULATION ANDFUTURE WORKS

In Data Grid is the highlight in the development of the
Grid technology, which can be treated as a suitable
solution for high performance and data-intensive
computing applications. Replication is a technique used in
grid environments that helps to reduce access latency and
network bandwidth utilization. Replication also increases
data availability thereby enhancing system reliability. This
technique appears clearly applicable to data distribution
problems in large scale scientific collaborations, due to
their globally distributed user communities and
distributed data sites. Data replication strategies depend
on the followings: location of data, time and method of
data creation, and the method that data is destroyed.

Despite the large amount of research done on the
dynamic data replication topic, this system still faces many
challenges, such as: long job execution time, file access
delay, limited accessible storage resources, and lack of an
integrated strategy for replication and scheduling.

The main objective of this paper is to introduce a novel
methods used for data replication in a three level
hierarchical structure network. Most of the presented
algorithms create only one replica at a time, which may
reduce the performance and increase the bandwidth
consumption in case there are a lot of requests to access the
file this happens due to not having enough replicas
created. Thus, setting a dynamic threshold which defines
number of required file replicas based on the grid

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(186-197) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 196

environment conditions is necessary and can minimize the
execution time and improve performance. It should be
mentioned that using the proposed strategy, file replicas
will not be created on all of the sites that requested the file,
which results in reducing the storage cost and shorter
execution time. Also, in RDT strategy file replicas will be
created only in the suitable sites which are dynamically
identified.

To evaluate the efficiency of the proposed replication
strategy, grid simulator OptorSim is configured to
represent a real world data grid testbed. The simulation
results shows that proposed algorithm performs better
when compared to other traditional algorithm such as
LRU, LFU and no replication and a new algorithm such as
DHR.

In future work, more realistic scenarios and user access
patterns can be investigated and the RDT algorithm can be
combined with a proper scheduling to improve
performance. We also plan to investigate more replica
replacement strategies to further improve the overall
system performance. Data transferring between different
grid sites is time consuming and consequently scheduling
jobs to the appropriate sites is necessary. Replica selection
can also be extended by considering additional parameters
such as security. Searching for advanced replica
replacement methods certainly enhances replication
strategies.

REFERENCES

[1] M. Li and M. Baker, “The grid core technologies”, John

Wiley & Sons, 2005.

[2] N. Mohd. Zin, A. Noraziah, A. Che Fauzi, and T. Herawan,

“Replication Techniques in Data Grid Environments”, in

Intelligent Information and Database Systems, vol. 7197,

Eds. Springer Berlin, Heidelberg, pp. 549–559, 2012.

[3] K. Ranganathan and I. Foster, “Decoupling computation and

data scheduling in distributed data-intensive applications”,

in 11th IEEE International Symposium on High

Performance Distributed Computing, pp. 352–358, 2002.

[4] K. Sashi and A.S. Thanamani, “A new replica creation and

placement algorithm for data grid environment”, in

International Conference on Data Storage and Data

Engineering (DSDE), pp. 265–269, 2010.

[5] S. Naseera and K.V.M. Murthy, “Agent Based Replica

Placement in a Data Grid Environement”, in First

International Conference on Computational Intelligence,

Communication Systems and Networks, pp. 426–430, 2009,.

[6] F.B. Charrada, H. Ounelli, and H. Chettaoui, “Dynamic

period vs static period in data grid replication”, in

International Conference on P2P, Parallel, Grid, Cloud and

Internet Computing (3PGCIC), pp. 565–568, 2010.

[7] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and

K. Stockinger, “Data management in an international data

grid project”, in Grid Computing, Springer, pp. 77–90, 2000.

[8] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S.

Tuecke, “The data grid: Towards an architecture for the

distributed management and analysis of large scientific

datasets”, in Network Computing Application, vol. 23, no. 3,

pp. 187–200, 2000.

[9] I. Foster and C. Kesselman, “The Grid 2: Blueprint for a

New Computing Infrastructure”, Morgan Kaufmann, 2003.

[10] S. Venugopal, R. Buyya, and K. Ramamohanarao, “A

taxonomy of data grids for distributed data sharing,

management, and processing”, in Acm Computing Surveys,

vol. 38, no. 1, p. 3, 2006.

[11] M. Mat Deris, J.H. Abawajy, and A. Mamat, “An efficient

replicated data access approach for large-scale distributed

systems”,in Future generation computer systems, vol. 24,

no. 1, pp. 1–9, 2008.

[12] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman,

“Data replication strategies in grid environments”, in Fifth

International Conference on Algorithms and Architectures

for Parallel Processing, pp. 378 –383, 2002.

[13] K. Ranganathan, A. Iamnitchi, and I. Foster, “Improving

data availability through dynamic model-driven replication

in large peer-to-peer communities”, in 2nd IEEE/ACM

International Symposium on Cluster Computing and the

Grid, pp. 376–376, 2002.

[14] S. Goel and R. Buyya, “Data replication strategies in wide

area distributed systems”, in Enterprise Service Computing:

From Concept to Deployment, vol. 17, 2006.

[15] R. Buyya, D. Abramson, and J. Giddy, “An architecture for

a resource management and scheduling system in a global

computational grid”, in The Fourth International

Conference/Exhibition on High Performance Computing in

the Asia-Pacific Region, vol. 1, pp. 283–289, 2000.

[16] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of

the Grid: Enabling Scalable Virtual Organizations”, in

International Journal of High Performance Computing

Applications, vol. 15, no. 3, pp. 200–222, 2001.

 [17] K. Ranganathan and I. Foster, “Identifying dynamic

replication strategies for a high-performance data grid”,

Grid Computing, pp. 75–86, 2001.

[18] M. Tang, B.S. Lee, C.K. Yeo, and X. Tang, “Dynamic

replication algorithms for the multi-tier Data Grid”, in

Future Generation Computer Systems, vol. 21, no. 5, pp.

775–790, 2005.

 [19] K. Sashi and A.S. Thanamani, “Dynamic replication in a

data grid using a Modified BHR Region Based Algorithm”,

in Future Generation Computer Systems, vol. 27, no. 2, pp.

202–210, 2011.

[20] J. Gwertzman, “M. seltzer: The Case for Geographical Push-

Cashing,” in 5th Conference on Hot Topics in Operating

systems, Orcas Island, USA, 1995.

[21] D.G. Cameron, R. Carvajal-Schiaffino, A.P. Millar, C.

Nicholson, K. Stockinger, and F. Zini, “OptorSim: a grid

simulator for replica optimisation”, in UK e-science all

hands conference, vol. 31, 2004.

[22] J. Abawajy, “Placement of File Replicas in Data Grid

Environments”, in Computational Science (ICCS), vol.

3038, Springer Berlin, Heidelberg, pp. 66–73, 2004.

[23] S.M. Park, J.H. Kim, Y.B. Ko, and W.S. Yoon, “Dynamic

data grid replication strategy based on Internet hierarchy”, in

Grid and Cooperative Computing, pp. 838–846, 2004.

[24] R.M. Rahman, K. Barker, and R. Alhajj, “Replica placement

design with static optimality and dynamic maintainability”,

 International Journal of Computer Sciences and Engineering Vol.-3(7), PP(186-197) July 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 197

in Sixth IEEE International Symposium on Cluster

Computing and the Grid (CCGRID), vol. 1, pp.4, 2006.

[25] R.M. Rahman, K. Barker, and R. Alhajj, “Replica placement

in data grid: a multi-objective approach”, in Grid and

Cooperative Computing (GCC), Springer, pp. 645–656,

2005.

[26] W. Zhao, X. Xu, N. Xiong, and Z. Wang, “A weight-based

dynamic replica replacement strategy in data grids”, in IEEE

Asia-Pacific Services Computing Conference,(APSCC), pp.

1544–1549, 2008.

[27] R.S. Chang and H.P. Chang, “A dynamic data replication

strategy using access-weights in data grids”, in The Journal

of Supercomputing, vol. 45, no. 3, pp. 277–295, 2008.

[28] M. Shorfuzzaman, P. Graham, and R. Eskicioglu, “Adaptive

popularity-driven replica placement in hierarchical data

grids”, in The Journal of Supercomputing, vol. 51, no. 3, pp.

374–392, 2010.

[29] F.B. Charrada, H. Ounelli, and H. Chettaoui, “An efficient

replication strategy for dynamic data grids”, in International

Conference on P2P, Parallel, Grid, Cloud and Internet

Computing (3PGCIC), pp. 50–54, 2010.

[30] W. Zhao, X. Xu, Z. Wang, Y. Zhang, and S. He, “Improve

the performance of data grids by value-based replication

strategy”, in Sixth International Conference on Semantics

Knowledge and Grid (SKG), pp. 313–316, 2010.

[31] M. Bsoul, A. Al-Khasawneh, E.E. Abdallah, and Y. Kilani,

“Enhanced fast spread replication strategy for data grid”, in

Journal of Network and Computer Applications , vol. 34, no.

2, pp. 575–580, 2011.

[32] L.M. Khanli, A. Isazadeh, and T.N. Shishavan, “PHFS: A

dynamic replication method, to decrease access latency in

the multi-tier data grid”, in Future Generation Computer

Systems, vol. 27, no. 3, pp. 233–244, 2011.

[33] N. Mansouri and G.H. Dastghaibyfard, “A dynamic replica

management strategy in data grid”, in Journal of Network

and Computer Applications, vol. 35, no. 4, pp. 1297–1303,

2012.

[34] N. Mansouri, “An Effective Weighted Data Replication

Strategy for Data Grid”, in Australian Journal of Basic and

Applied Sciences, vol. 6, no. 10, pp. 336–346, 2012.

[35] W. H. Bell, D. G. Cameron, R. Carvajal-Schiaffino, A. P.

Millar, K. Stockinger, and F. Zini, “Evaluation of an

Economy- Based File Replication Strategy for a Data Grid”,

in Proc. Of 3rd IEEE Int. Symposium on Cluster Computing

and the Grid (CCGrid), Tokyo, Japan, IEEE CS-Press,

2003.

[36] A. Horri, R. Sepahvand, and G. Dastghaibyfard, “A

hierarchical scheduling and replication strategy”,

International Journal of Computer Science and Network

Security- IJCSNS, vol. 8, no. 8, pp. 30–35, 2008.

 [37] D. G. Cameron, “OptorSim v2.1 Installation and User

Guide”, User Guide, University of Glasgow, Scotland, 2006.

AUTHORS PROFILE

Sheida Dayyani was born in Isfahan, Iran

1989. She received the B.Sc. degree in

Computer Software Engineering from

Sheikh Bahaei University (SHBU),

Esfahan, Iran in 2011. She received his

M.Sc. in Software Engineering from the

same university, Isfahan, Iran in 2013.

Her research interest are Grid and Cloud

Computing, Scheduling algorithms,

Health Information systems and Medical

Informatics.

Dr. Mohammad Reza Khayyambashi
was born in Isfahan, Iran in 1961. He

received the B.Sc. degree in Computer

Hardware Engineering from Tehran

University, Tehran, Iran in 1987. He

received his M.Sc. in Computer

Architecture from Sharif University of

Technology (SUT), Tehran, Iran in 1990.

He got his Ph.D. in Computer Engineering,

Distributed Systems from University of

Newcastle upon Tyne, Newcastle upon Tyne, England in 2006. He

is now working as a lecturer at the Department of Computer,

Faculty of Engineering, University of Isfahan, Isfahan, Iran. His

research interests include Distributed Systems, Networking, Fault

Tolerance and E-Commerce. He has published in these areas

extensively.

