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Abstract— Industrialization ,and urbanization lead to a change in land-use patterns and an increase in the utilization of 

water resources. In biogeochemical cycles, it requires good estimates of the areal extent and shape of water bodies. So 

timely monitoring of surface water and delivering data on the dynamics of surface water are essential for policy and 

decision-making processes. Change detection based on multispectral and multi-temporal remote sensing data is one of the 

most acceptable and ever-growing surface water change detection mechanisms in recent years. In this paper, a study has 

been conducted and we present an automated procedure that allows extraction of water body from a multispectral image 

based on its spectral data and spatial information. 
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I. INTRODUCTION 

 

This paper is a study of a multispectral image for the 

extraction of water bodies based on spectral and spatial 

data. Inland waters play an essential role in global 

biogeochemical cycles. Lakes and reservoirs are important 

sinks of reactive nitrogen. The global annual emission of 

carbon dioxide from inland waters to the atmosphere is 

similar in magnitude to the carbon dioxide uptake by the 

oceans and the global burial of organic carbon in inland 

water sediments exceeds organic carbon sequestration on 

the ocean floor. These results have been obtained by 

extrapolating information on areal carbon processing in 

lakes based on indirect estimates of the total number and 

area of lakes on Earth. 

 

Water body extraction is an important task in different 

disciplines, such as lake coastal zone management, 

coastline change, and erosion monitoring, flood 

prediction, and evaluation of water resources. Timely 

monitoring of surface water and delivering data on the 

dynamics of surface water are essential for policy and 

decision-making processes. In recent years, integration of 

remote sensing data with Geographic Information Systems 

(GIS) has been used in automatic or semiautomatic water 

body extraction and mapping Automatically extracted 

shorelines from Landsat TM and ETM+ multi-temporal 

images with sub-pixel precision techniques. 

 

Developed an approach called the Automatic Water 

bodies Extraction Method that combines remote sensing 

and GIS to extract water bodies and study their abundance 

and morphometry. However, automatic coastline 

extraction is a complex process due to water-saturated 

land transition zones at the land-water boundary. To 

determine the spatially accurate coastline position, two 

methods have been explored: image classification and 

spectral water indexing. Multi-class support vector 

machine (SVM) classification for water body extraction 

and coastline detection has been commonly used by many 

researchers because it successfully minimizes errors and 

maximizes the geometric characteristics of edge areas. 

Additionally, it has shown considerable potential in the 

supervised classification of remotely sensed data, 

requiring very limited training. 

 

However, several water-indexing methods for the 

extraction of water bodies from remotely sensed data have 

been introduced by researchers. Introduced the 

Normalized Difference Water Index (NDWI) to extract 

water features from Landsat TM using band 2 and band 4. 

Introduced another NDWI for water extraction from 

Landsat TM using bands 3 and 5. introduced the Modified 

Normalized Difference Water (MNDWI) for Landsat TM 

using bands 2 and 5. Introduced the Automated Water 

Extraction Index (AWEI) to improve water extraction 

accuracy in areas that include shadows and dark surfaces. 

Introduced a simple Enhanced Water Index (EWI) based 

on the Modified Normalized Difference Water Index 

(MNDWI). It can effectively distinguish water surfaces 

from background information such as desert, soil, and 

vegetation. Investigated NDWI, MNDWI, NDMI, WRI, 

NDVI, and AWEI for the extraction of surface water from 

Landsat data and used a novel surface water change 

detection process based on the principal components of 

multi-temporal NDWI. 
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In this study, water body extraction techniques were 

applied to Lake Burdur to determine decreasing trends in 

the lake surface area in specified time intervals. The study 

focuses on the performance of each satellite-derived index 

and SVM classification. The spectral and spatial 

performances of the applied satellite-derived indexes and 

SVM were evaluated with Pearson's r and the Structural 

Similarity Index Measure (SSIM). Until now, there has 

been no spatial performance analysis applied to satellite-

derived indexes based on SSIM. Our study contributes to 

the effectiveness of the SSIM-based quality evaluation of 

satellite-derived indexes. The SSIM analysis provides a 

simple quantitative interpretation by comparing the 

correlations of luminance, contrast, and structure locally 

between images and averaging these quantities over the 

entire image. 

 

II. RELATED WORK 

 

Lake Burdur, which is located in SW Turkey, has shrunk 

abruptly in recent decades. Therefore, regular and reliable 

measurements of the lake area are necessary to monitor 

the dynamic changes of lake water area for water resource 

balance analysis. Previous studies of the lake area were 

based on visual interpretation and manual digitization of 

satellite data. In this study, the spatiotemporal changes of 

Lake Burdur from 1987 to 2011 are investigated based on 

SVM classification and satellite-derived water body 

extraction indexes, including NDWI, MNDWI, and AWEI 

using Landsat TM and ETM+ data. The performances of 

the applied indexes were tested using Pearson's r, the 

SSIM and the Root Mean Square Error (RMSE). Overall, 

the SVM and NDWI were found superior to other indexes. 

The approach is highly significant for time-series analyses 

of extracted shorelines using any number of Landsat 

satellite images taken in different time intervals, and it 

provides an important comparison that can be used to 

investigate shoreline changes. 

 

Inland waters play an essential role in global 

biogeochemical cycles. Lakes and reservoirs are important 

sinks of reactive nitrogen. The global annual emission of 

carbon dioxide from inland waters to the atmosphere is 

similar in magnitude to the carbon dioxide uptake by the 

oceans, and the global burial of organic carbon in inland 

water sediments exceeds organic carbon sequestration on 

the ocean floor. These results have been obtained by 

extrapolating information on areal carbon processing in 

lakes based on indirect estimates of the total number and 

area of lakes on Earth. The abundance of lakes in large 

regions is difficult to estimate due to poor or incomplete 

lake inventories in many parts of the world. Early 

estimates on the global abundance of lakes suggested that 

1.8% of the non- oceanic area is covered by lakes. 

Different approaches have been proposed to achieve more 

accurate estimates. Based on the Pareto distribution, 

Downing et al. (2006) showed that the global extent of 

lakes is twice as high as previously thought (304 million 

lakes, 4.2 million km2, covering > 3% of continents), and 

that small lakes represent a substantial lake area 

previously not accounted for. However, uncertainty in 

these estimates. These uncertainties call for methods that 

allow the direct mapping of lake abundance with greater 

accuracy. 

 

Satellite remote sensing is the only practical way to 

determine the spatial and temporal patterns of inland 

water globally. Because the size distribution of lakes is 

globally dominated by small lakes, and the greatest 

uncertainties in current statistical methods applicable to 

them, high spatial resolution imagery is required. Several 

satellites provide data with a spatial resolution of 2 m or 

better. Unfortunately, these satellites do not provide full 

global coverage. The best data currently available for 

mapping lakes globally is the GeoCoverTM mosaics of 

the Landsat imagery covering all continents with 14.25 

m spatial resolution and minimal cloud coverage. 

Several algorithms and techniques have been proposed 

for retrieving water bodies from remote sensing data, but 

the scope has so far been restricted to a few lakes or at 

most the regional scale. 

 

These methods include digitizing through visual 

investigation, thresholding, edge detection using a single 

or a combination of multiple bands and algebraic 

operations (e.g. band ratio, spectral water indexes), 

classification techniques, spectral transformation, and 

texture analysis. The threshold method is considered 

popular for delineating water bodies because it is easy to 

use and less computationally time- consuming than 

alternatives approaches. This method is based on 

threshold values of the band intensity, which spatially 

corresponds to the land-water interface. Usually, the 

threshold values derive from histogram analysis of the 

image for one single band. However, separating water 

bodies from some other land cover types based on a 

single threshold in a single unique channel is frequently 

problematic. Moreover, since the optical properties of 

water are highly variable in space and time, the analysis 

cannot be restricted to one standard cut-off value. 

Consequently, threshold computations should use a 

range of threshold values and employ multiple band 

analysis. Identification of inland water can be improved 

by using specific spectral indices or rationing, where for 

each pixel the Digital Number (DN) value of one band is 

divided by the value of another band. This can be useful 

to reduce or eliminate the effect of shadowing, 

particularly dark shadows. 

 

Unfortunately, in our context, most of the common 

spectral indices cannot be applied because Landsat 7 

ETM + does not include the relevant bands (Table). Both 

supervised and unsupervised classification procedures 

are frequently applied for identifying and classifying 

water features in images. A supervised maximum-

likelihood classification was used to map wetlands on 

Landsat MSS imagery.  
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The number of classes and the spectral signature 

attributed to each class in the scene. Unsupervised 

classification based on “iso data” (Iterative Self 

Organizing Data Analysis Technique) or “k-mean” 

clustering is often used to generate spectral signatures of 

each class. Water pixels can also be separated from land 

pixels by morphological segmentation. More advanced 

approaches use both morphological segmentation and 

spectral thresholding to identify water bodies. As 

described above, several techniques are available for lake 

extraction. Some of the methods cannot be automated, 

and some cannot be applied to large regions. Some 

approaches are complicated due to the nature of the data 

used. However, there is no previous method that allows 

automated lake detection over large geographic regions. 

 

III. METHODOLOGY 

 

We present an approach, GWEM (GeoCoverTM Water 

Bodies Extraction Method), that combines all the methods 

described above to eliminate drawbacks of each technique 

in achieving a robust method that performs well under 

different circumstances. The method allows automatic 

extraction of water bodies from GeoCover, and we 

evaluated the accuracy by comparing the output with 

accurate lake maps available for Sweden. 

 

A. Water Balance Approach 

Water balance approach involves applying the water 

balance equation to the catchment area of interest over 

some time T and solving the equation for 

evapotranspiration, ET as given in Equation, 

 

ET = P Qin +Gin−Qout −Gout −∆ S 

 

where, P is Precipitation, in Q is the inflow of surface 

water, out Q is the outflow of surface water, in G is 

groundwater inflow, out G, are groundwater outflow and 

S changes in the amount of water stored over the time 

assuming a long-term negligible change in storage. The 

amount of infiltration of groundwater depends on soils, 

water table depth, rock layers, surface disturbance, the 

presence or absence of a liner in the pond, and other 

factors. The infiltration rate is governed by the Darcy 

equation. The dimensions of these quantities are L3 or if 

divided by drainage area, L. 

 

Even as the approach looks simple in concept, it is 

difficult in practice to measure the true values of the 

components in Equation. If reasonably accurate 

information on the balance components is available, the 

method can provide an accurate estimation of 

evapotranspiration. 

 

B. Energy Balance Approach 

At a land surface, the energy inputs and outputs are 

balanced according to the energy conservation law. The 

components of the energy balance can be calculated and 

the energy available for actual evapotranspiration can be 

solved by the energy balance equation given below 

 

Rn=H + λEE+G 

 

where n R is net radiation, H is sensible heat flux from 

the surface, G is the soil heat flux and E is latent heat 

flux. ET is estimated as the residual of the land surface 

energy balance if all other terms are observed and 

estimated. The units for these terms are commonly 

W/m2 (1mm of ET per day =28.36 W/m2). 

 

C. Materials and procedures GeoCoverTM Circa 2000 

The GeoCoverTM Circa 2000 product is built from the 

imagery of the Enhanced Thematic Mapper Plus (ETM 

+) sensor onboard the Landsat 7 satellite. Geo-location 

information was provided by the National Geospatial- 

Intelligence Agency (NGA) and the U.S. Geological 

Survey (USGS). The GeoCover Circa 2000 archive 

encompasses 8500 scenes (Tucker et al. 2004), which are 

the basis of the 862 mosaics built from mostly cloud-free 

images collected in the year 2000 ± 3 years. However, 

some persistent cloud contamination exists, especially in 

mountain regions. There are also some radiometric 

differences in the mosaics because the images were not 

acquired simultaneously. Stars indicate the three spectral 

bands (2, 4, 7) in blue, green, and red (BGR) used by 

GeoCoverTM and sharpened to the panchromatic band 

spatial resolution (14.25 m). 

 
Table 1. Spectral and spatial characteristics of the Landsat 7 

ETM + bands. 

Types of 

Bands 

Landsat 7 ETM+ 

Band No Wavelength Spatial resolution 

(m) 

Panchromatic 

visible 

 

1 
2 

0.52 – 0.90 

0.45 – 0.52 
0.52 – 0.60 

14.25 

30 
30 

NIR 

SWR 

3 
4 
5 

0.63 – 0.69 
0.76 – 0.90 
1.55 – 1.75 

30 
30 
30 

TIR 
6 
7 

2.08 – 2.35 
10.04 – 12.05 

30 
120 

 

The GeoCover mosaic is geo-referenced using Universal 

Transverse Mercator (UTM) projection and World 

Geodetic System 1984 (WGS84) datum and ellipsoid. 

Three (ETM +2, ETM + 4, ETM + 7) of the Landat7 

ETM + bands in the visible and near-infrared regions are 

included (Table 1). Originally, each of the spectral band 

providing a 30 m spatial resolution was sharpened with 

the panchromatic band (0.52-0.9 μm) following the 

cubic-convolution process offering am) following the 

cubic-convolution process offering a pixel size of 14.25 

m, and the Root means square error (RMSE) of the final 

product is better than 50 m in positional accuracy. 

 

D. The Test Site and Reference Data Set 

We validated the lake extraction method against 

accurately mapped data for all of Sweden. Sweden is a 

good test area because accurate maps of water bodies are 
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available, and the landscape has a large variety of 

surfaces, ranging from undeveloped forests and 

mountains to cities, and also a wide range of optical 

water properties of lakes. The lakes are both optically 

deep and shallow and range from oligotrophic to 

hypertrophic. Lakes with a high concentration of colored 

dissolved organic matter (CDOM) are abundant, but 

there are also lakes with high concentrations of 

phytoplankton and suspended sediment. Seven 

GeoCover mosaics were put together to cover Sweden 

(~450,000 km2). The neighboring countries (Norway, 

Denmark, and Finland) were cut off. 

 

To evaluate the accuracy of the developed remote sensing 

approach, we compared our results to an independent 

dataset with high spatial resolution, called ViVaN 

(Virtuellt Vattendrags Nätverk, “virtual watercourse 

network”). The ViVaN data set was built from several 

public archives and maps (SMHI 2008; Lantmäteriet 

1998). The ViVaN data were imported into a GIS 

database encompassing a total of 254,111 lakes. 

According to the ViVaN data set, Swedish lakes cover 

~38,465 km2, which represents approximately 9% of the 

country, and there are 83,059 lakes larger than 1 ha (with 

a total surface of 37,912 km2). Although there are 

171,052 lakes smaller than 1 ha, the latter only represents 

a total surface area of ~553 km2. We mainly focus on 

lakes greater than 1 ha because this is the reported lower 

limit of the database, and since our visual comparison 

with GeoCover data shows frequent inaccuracies in the 

ViVaN database for lakes smaller than 1 ha. 

 

IV. RESULTS AND DISCUSSION 

 

The overall methodology (GWEM) can be summarized 

into these steps: (A) Thresholding and Classification; (B) 

Texture Analysis (C) Vectorization, and (D) shadow 

removal. 

 

A. Thresholding and classification 

Image processing was performed in ENVI v.4.8 (ITT Vis) 

software and model developments were generated using 

procedures written in Interactive Data Language (IDL, 

Resources Systems). We also used ArcGIS v 10 (ESRI) to 

create and analyze the lake database made from Landsat 

mosaics. Although most water bodies are substantially 

darker than surrounding land, there are cases where the 

water leaving signal is high, e.g., shallow water areas with 

bright bottoms, submerged vegetation close to the water 

surface, aquatic vegetation with floating leaves, strong 

algal blooms, and high turbidity caused by suspended 

mineral particles. Statistical analysis of several test sites 

and validation against aerial photos revealed that simple 

conventional thresholding method based on the single 

Digital Number (DN) values of original GeoCover bands 

(ETM + 2, ETM + 4, ETM + 7), would not allow 

automatic extraction of water bodies over large areas. 

Therefore, we developed an automated procedure that 

employs multiple thresholds, generating various DN 

magnitudes and spectral shapes of the original bands for 

each of the resulting classes. 

 

Moreover, it includes additional threshold values deriving 

directly from Principal Component Analysis (PCA) 

transformation and from brightness index calculation. 

Principal Component Analysis (PCA) was performed on 

the three ETM + bands to enhance water detection. To 

discern the water bodies from the other land categories, 

we restricted the thresholding analysis to the first 

Principal Component (PC1) which explains the major 

variability in the image and contains the overall scene 

brightness variation shared by all the input bands. 

 

 
Fig. 1 

 

The recognition of water pixels was further improved by 

adding criteria from spectral brightness calculation. Low 

brightness is associated with wet, dark- colored, rough 

surfaces whereas higher brightness is associated with dry, 

light-colored, smooth surfaces. The spectral brightness of 

lakes depends on water quality. Brightness is also 

sensitive to the state of the sky and inparticular the type 

and amount of cloud and the sun angle. Here, the overall 

brightness is defined as a simple ratio over the entire 

spectral range. The Modified Brightness Index (MBI) 

index can be expressed as: 
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where DNETM+2, DNETM+4, DNETM+7 are the 

Digital Numbers resulting from GeoCover spectral 

bands. MBI was calculated for each pixel of the mosaic 

image by applying the equation. 

 

B. Texture Analysis 

There are water bodies that are just one or a few Landsat 

pixels in size (i.e., one or a few units of 14.25 × 14.25 m). 

However, some of these small objects may be random 

image noise. Therefore, only objects larger than 10 pixels 

were considered as water bodies. A simple low pass filter 

with kernel size 3 × 3 pixels was applied to eliminate 

small objects. As a result of filtering, any object smaller 

than 0.1827 ha (0.00187km2) was automatically removed 

from the data. Segmentation was applied after noise 

removal, to group connected water pixels into one single 

water body. 

 

C. Texture Analysis 

Vectorization and water boundary delineation To enable 

calculation of surface area, perimeter, and shape of water 

bodies, the water-pixel groups resulting from the previous 

processing steps were converted to a polygon vector 

format with smoothing to remove pixel corner effects in 

ArcMap. Multi-pixels boundaries (water body) were 

automatically digitized into shoreline vector geometries. 

To assess the morphometry of lakes, we employed several 

previously developed morphometry indices. The Shoreline 

Development Index is the ratio of water body boundary 

(the perimeter, P) to the circumference of a circle whose 

area (A) is equal to that of the given water body Equation, 

    
 

√  
    

 

For a perfectly circular lake SDI = 1, and it increases with 

the number of inlets, bays, and islands. The circularity can 

also be calculated by the thickness index Miller Equation. 

 

            
 

  
        

 

To take into account that the perimeter is the scale-

dependent quantity (Roche 1963, Kent and Wong 1982), 

some morphometric indices are based on the length (L) of 

the equivalent rectangle which encompasses the water 

body. The compacity index Eq. , expresses the ratio of the 

square of the water body length (L) to the water body 

area. 

          
  

 
       

 

The spreading ratio or Morton Index Eq. characterizes 

how the shape of the water bodies deviates from a circle. 

 

          
 

 
 
 

  
        

D. Shadow removal 

Shadowing of the ground by mountains and clouds can 

generate misclassification of water bodies. A Digital 

Elevation Model (DEM) with 50 m cell resolution was 

merged with the remotely sensed data. Mountain shadow 

surfaces were modeled from the hill shade algorithm 

developed in ArcMap. We verified visually that there was 

a good match between shadow zones from DEM and the 

shadows observed from the RGB color composite of 

GeoCover. If mountain shadow zones produced from the 

DEM overlapped with a detected water body, the water 

body was deleted from the data set. The DEM was also 

used to reduce the number of cloud shadows in the 

GeoCover data. This was done in three steps: 

 

i. Detection of clouds edge pixels. 

ii. Identification of isolated water  bodies not connected  to 

the river network. 

iii. Removal of water bodies that intersect with cloud 

structures. 

 

The first step consisted of detecting bright cloud 

boundaries based on their typical high radiance values. 

The clouds were easy to separate from the rest of the scene 

by using the high brightness values (DN) in optical band 2 

(blue) by visually inspecting the range of cloud types and 

the digital numbers (DN's). Note that here we only 

considered the very bright clouds, since clouds may also 

be misclassified as other landscape surfaces such as ice 

cover or a certain type of rocks (e.g., calcareous sand). In 

the second step, based on the digital elevation model 

(DEM) analysis in the ArcGIS hydrology tools, we 

designed the drainage pattern of Swedish catchments. 

Geo-processing was performed to create a depression less 

DEM and generate data on flow direction, flow 

accumulation, stream definition, stream segmentation, and 

watershed delineation. The resulting data were then used 

to spatially distinguish water bodies, which are connected 

to the river network from isolated lakes. If cloud zones 

produced from thresholding overlapped with an isolated 

lake, it was deleted from the data set. This step was done 

only on the isolated lake map to avoid true lake removal. 

Cloud shadow miss classifications may remain in the data 

if they are connected to the river networks.  
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Fig. 2 

 

V. CONCLUSION AND FUTURE SCOPE 

 

In this paper, we have studied many different methods of 

water body extraction from the multispectral image but we 

get the best and nearly accurate results with GeoCover 

Water Bodies Extraction Method (GWEM). A major 

benefit of GWEM is that it is simple and straightforward, 

providing a wealth of information for water body retrieval 

at relatively low cost and independently of previous 

mapping other than GeoCover. 

 

Our method automatically derives water bodies by a 

straightforward stepwise procedure built on multi- 

thresholding decision making, including the original 

spectral band values, principal component analysis, and 

MBI calculation. This allowed good separation of water 

pixels from all other surfaces. Using multiple satellite 

images for different purposes usually requires atmospheric 

correction of the imagery. 

 

The GeoCover data are put together from multitude of 

Landsat images acquired at different times, and it does not 

contain enough spectral bands to perform atmospheric 

correction. However, the GeoCover CircaTM 2000 data 

are relatively homogeneous in the sense that atmospheric 

correction has a minor effect on classification accuracy. 
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