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Abstract- Distributed processing frameworks split a data intensive computation job into multiple smaller tasks, which are then 

executed in parallel on commodity clusters to achieve faster job completion.  

A natural consequence of such a parallel execution model is that slow running tasks, commonly called stragglers potentially 

delay overall job completion. Stragglers in general take more time to complete tasks than their peers. This could happen due to 

many reasons such as load imbalance, I/O blocks, garbage collections, hardware configuration etc. Straggler tasks continue to 

be a major hurdle in achieving faster completion of data intensive applications running on modern data-processing frameworks. 

The trouble with stragglers is that when parallel computations are followed by synchronizations such as reductions, this would 

cause all the parallel tasks to wait for others meaning that the parallel runtime is dominated by the slowest performing 

straggler.  

In a large-scale distributed system comprising a group of worker nodes, the stragglers' delay performance bottleneck, is caused 

by the unpredictable latency in waiting for slowest nodes (or stragglers) to finish their tasks.  

Such stragglers increase the average job duration by 52% in data clusters of Facebook and Bing even after these companies 

using state of the art straggler mitigation techniques[1]. This is because current mitigation techniques all involve an element of 

waiting and speculation. Existing straggler mitigation techniques are inefficient due to their reactive and replicative nature – 

they rely on a wait speculate- execute mechanism, thus leading to delayed straggler detection and inefficient resource 

utilization. Hence, full cloning of small jobs, avoiding waiting and speculation altogether is proposed in a system called as 

Dolly. Dolly utilizes extra resources due to replication.  

 

Keywords – Distributed network, latency, straggler detection, data clusters, slowest performing straggler 

 

I. INTRODUCTION 

 

One of the main causes of performance problems in 

distributed data processing systems (from the original 

MapReduce to modern Spark and Flink) is ―stragglers‖. 

Stragglers are parts of the input that take an unexpectedly 

long time to process, delaying the completion of the whole 

job, and wasting resources that stay idle. Stragglers can 

happen due to imbalance of data distribution or processing 

complexity, hardware/networking anomalies, and a variety 

of other factors. 

 

Google Cloud Dataflow is the first system to address the 

problem of stragglers in a fully general way. By dynamically 

redistributing parts of already launched work from straggler 

workers onto idle workers to maximize utilization, Google 

Cloud Dataflow is able to preserve data consistency and 

minimizing re-execution. 

 

In all major distributed data processing engines — from 

Google's original MapReduce, to Hadoop, to modern 

systems such as Spark, Flink and Cloud Dataflow — one of 

the key operations is Map, which applies a function to all 

elements of an input in parallel called ParDo in the 

terminology of Apache Beam (incubating) programming 

model. All of these frameworks execute a Map step by 

splitting the specification of its input into parts (often called 

shards or partitions), of roughly equal size, and then 

reading/processing data in each part in parallel. For example, 

input specified by a glob file pattern might be split into 

tuples; input from a key-value storage system such as Big 

table, tuples. In all such frameworks, except Cloud 

Dataflow, the splitting is done upfront, before starting to 

execute any of the shards, and doesn't change during 

execution. The number of shards is usually either specified 

by the user or determined by the system heuristically, e.g., 

based on an estimate of the data size or just on the number of 

input files. 

 

A very common performance problem in Map steps, faced 

by all frameworks, is stragglers — when a small number of 

shards take much longer to be processed than the rest. 

Stragglers can easily dominate the runtime of the map step, 

defeating much of the parallelization benefits. They can also 
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waste resources and increase costs as other workers have to 

stay idle for long periods of time before they can start 

working on the next stage. Stragglers are recognized, both in 

the industry and in academia, as one of the main causes of 

poor performance of data processing jobs.  Stragglers can 

have a variety of causes: an abnormally slow worker; some 

parts of data being particularly computationally intensive to 

process; unbalanced splitting of the input where the amount 

of data in different parts turns out to be drastically different. 

This last case happens rarely when processing files, but is 

quite frequent with key-value stores and other complex 

inputs where not enough information is available about the 

data distribution to split the input evenly in advance. 

 

Another class of issues is when the amount of data is 

balanced, but the processing complexity is not. For example, 

we can imagine a pipeline which takes as input a file 

containing filenames of videos to be transcended. It's not 

enough to give the same number of videos to each worker to 

ensure a balanced workflow, as the videos can be of very 

uneven length. As one of the essential factors of system and 

network performance, latency indicates how fast a user can 

get a response after the user sent out a request. Low latency, 

which means systems response quickly to actions, can make 

users feel more natural and fluid than long response time[3]. 

 

In the financial market, as more and more business trades 

and banking operations are executed online, lower latency 

now means more revenues, especially for companies which 

adopt high frequency trading to earn huge profit. High 

frequency trading means to rapidly trade large volumes of 

securities by using automated financial tools. A millisecond 

decrease in a trade delay may boost a high-speed firm's 

earnings by about 100 million per year, and also helps a firm 

to gain great competition advantage. Traditionally, financial 

organizations can achieve low latency via adopting high 

performance computers, which provide great processing 

capability, especially the capability of floating-point 

processing. When the processing capability is not enough, 

high performance computers can also be scaled via two 

methods, which are scale up (adding more CPUs or memory 

to a single computer) and scale out (adding more computing 

nodes, and connecting them with high performance 

interconnects). However, as the size of data needed to be 

analyzed is growing dramatically in the last few years, the 

primary bottleneck has shifted to the performance of storage 

system, and the frequent data movement in traditional high 

performance computing can significantly impact the latency 

when the volume of processing data is huge. Therefore, the 

system architecture for financial computing needs to be 

improved in such a situation. Such data explosion problem 

can also be called as the big data problem, which has been a 

hot trend in recent years.  

 

 

 

Objectives 

a. To identify the cause of Straggler problem in the Map 

Reduce frame work. 

b. To analyze how changes in configuration of the system 

especially memory, CPU, Storage added to the tail 

latency problem in distributed environment.  

c. Analyze how different configuration of nodes in a 

distributed system like Hadoop performs while 

performing big data processing and analyzing.  

d. To study the straggler problem effect in distributed 

framework.  

 

II. LITERATURE REVIEW 

 

Straggler is very known issue in parallel computing, and 

many techniques have been developed to mitigate them. As 

the data scale increases, the communities of architecture, 

systems and data management pay more attention on 

developing new big data systems to satisfy requirements 

from different areas. The interactive nature of modern web 

applications necessitates low and predictable latencies 

because people naturally prefer fluid response times[6]. The 

growing data volume makes applications more complex and 

diverse.  The increasing adoption of commercial clouds to 

deliver applications further exacerbates the response time 

unpredictability. In these environments, almost each and 

every application almost unavoidably experience 

performance interference due to contention for shared 

resources (like CPU, memory, and I/O)[7]. 

 

Most distributed applications of iterative convergent 

algorithms follow the Bulk Synchronous Parallel (BSP) 

computational model which uses an input-data-parallel 

approach. The input data is divided into worker node that 

execute in parallel, each node perform the work associated 

with their input data, and execute synchronizations barrier at 

the end of each iteration. The model parameters are stored in 

a shared data structure in distributed nodes and all nodes 

update during each iteration. BSP guarantees that all workers 

see all updates from the previous iteration, but not the 

updates from the current iteration, which enable the leaf 

nodes to use cached copies for efficiency. The assignment of 

leaf nodes remain the same from one iteration to the next to 

avoid the overheads of input data movement. 

 

For BSP, stragglers are major performance issue. Because in 

BSP in each iteration, all leaf nodes must wait for the 

slowest node to complete its task. If one at least one leaf 

node will run unusually slowly in a given iteration which is a 

common scenario the straggler problem grows in 

parallelism. Even when it is a different straggler in each 

iterations, due to uncorrelated transitory effects, the entire 

application can be slowed significantly.  

 

Stragglers can occur for a number of reasons[8][9] including 

hardware heterogeneity[10][11], hardware failures[9], 
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unbalanced data distribution among tasks, garbage collection 

in high-level languages, and various OS effects[12][13]. 

Even temporary latency spikes from individual nodes may 

ultimately dominate end-to-end latencies. In shared cloud 

infrastructures resource contention is another common cause 

of straggler problem. Besides, expensive stopping criteria 

computations can lead to straggler effects, when performed 

on a different leaf node. 

 

The HPC community runs applications using the BSP model 

frequently.  It gives significant effort to identifying and 

remove sources of performance jitter based on the hardware 

and OSs of their supercomputers[13][14]. Naiad used the 

same approaches. While this approach can be effective at 

reducing performance ―jitter‖ in specialized and dedicated 

machines[2]. It does not solve the more general straggler 

problem. For instance, it does not work for today‘s multi-

tenant computing infrastructures, it is not applicable to 

programs written in garbage-collected languages, does not 

handle algorithms that inherently cause stragglers during 

some iterations[15][16][17]  

 

Blacklisting is another approach to mitigate certain straggler 

performance issue by ceasing to assign work to workers that 

are falling behind. However, this approach is fragile. 

Stragglers caused by temporary slowdowns, the reason could 

be due to resource contention with a background activity 

which often occur on non-blacklisted machines[5]. It can 

even blacklist a good performing worker node which 

worsens the performance further.  

 

Dean and Barroso described techniques employed at Google 

to tolerate latency problem[5]. They have developed short-

term adaptations in the form of request reissues, along with 

additional logic to support prevention of duplicate requests 

to reduce unacceptable additional load. In DSPTF[18], a 

request is forwarded to a server. If the server has the data in 

its cache, it will respond to the query. Otherwise, the server 

forwards the request to all replicas, which then make use of 

cross-server cancellations to reduce load[5]. 

 

Pisces is a multi-tenant key-value store architecture that 

provides fairness guarantees between tenants[19]. It is 

concerned with fair-sharing the data-store and presenting 

proportional performances to different tenants. 

Priority Meister focuses on providing tail latency QoS for 

bursty workloads in shared networked storage by combining 

priorities and rate limiters[20]. 

 

Speculative execution is used to mitigate stragglers in data 

processing systems like MapReduce, Hadoop, and 

Spark[8][9]. Jobs in these systems consist of stateless, 

idempotent tasks like ―map‖ and ―reduce‖, and speculative 

execution runs slow tasks redundantly on multiple machines. 

While this consumes extra resources, it can significantly 

reduce job completion delays caused by stragglers, because 

the output from the first instance of any given task can be 

used without waiting for slower ones. 

Work stealing and work shedding are mirror approaches for 

adaptively rebalancing work queues among workers. The 

concept is to move work from a busy worker to an idle 

worker. FlexRR carefully avoids data movement by limiting 

and pre-determining reassignment patterns to avoid 

expensive on-demand loading of input data and parameter 

state. It is designed explicitly to work in conjunction with 

flexible consistency bounds. 

 

Hadoop Tools 

The below list are the tools that are available in Hadoop DataNode 

 Hadoop Distributed File System (HDFS) 

 MapReduce  

 Hbase 

 Spark 

 Hive 

 Impala 

 Sqoop 

 Pig 

 ZooKeeper 

 NOSQL 

 Mahout 

 Solr 

 Avro 

 Oozie 

 Flume 

 Clouds 

 Ambari 

 MongoDB

 

III. TESTING TOOLS 

 

A Details overview of the technology that we are using in 

our experiment to find tail latency is given below. The Three 

most used tools of Cloud era Hadoop are: 

 HIVE 

 IMPALA 

 HUE 

 

IV. METHODOLOGY 

 

Our goal is to evaluate the performance of MapReduce job 

using Hadoop tools like HDFS, Hive, Impala and Hue and 

try to find how different node with varied configuration of 

RAM, Memory, Processor and Storage perform a 

MapReduce job. We also run parallel processing to find out 

how performance varied due to multiple job execution in 
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parallel.  To achieve this goal, we have prepared 4 machines 

where one is Master Node and three Slave nodes. In the 

Master node also called namenode in Hadoop, we have 

installed Clouder Manager 5.16 and other necessary tools 

like, HDFS, HIVE, IMPALA, HUE, HBASE, SPARK and 

YARN MANAGER. In the 3 slave node, also called 

datanode in hadoop, we have installed HDFS, Hive and 

Impala only. We have also made necessary network 

configuration to communicate with all the 4 nodes smoothly 

using password less SSH Private and Public Key.  

 

We have uploaded 350 GB of data in HDFS file system and 

loaded these records in HIVE using HIVE tools so that we 

can run HIVE query language in the records. After loading 

these data in HIVE, we have performed different 

experimental query and map/reduce job in the machines and 

evaluate the output to find tail latency while executing the 

job. 
 

V. SETUP OF THE STUDY 

 

First of all, we have setup a 4 node hadoop cluster in 4 

machines with variant hardware configuration.  To install 

Hadoop, we have to perform the below task: 

 

At first, we install Ubuntu 16.04 Linux operating system in 

all four machines. Then we have made up necessary 

configurations like network in all four machines, firewall 

configuration, creating user with appropriate permission, 

Password less SSH, and necessary software and updates etc. 

Then we have installed the Cloud era Manager 5.16 of 

Hadoop in one of my good machine that have good 

configuration. We have made one Master and three Slave 

Machine. The Master machine‘s is called Name Node and 

Slave machine‘s is called Data Node Hadoop. Then we have 

loaded 350GB data in HDFS file system to perform my 

experiment.  

 

 
Figure 1: Master-Slave Architecture in Hadoop 

 

Sample data tables 

Table 1: Sample Data for performing Map Reduce Job 

Country Item Type Units Sold Unit Cost 
 

Total Revenue Total Cost Total Profit 

South Africa Fruits 1593 6.92 
 

14862.69 11023.56 3839.13 

Morocco Clothes 4611 35.84 
 

503890.1 165258.2 338631.84 

Papua New Guinea Meat 360 364.69 
 

151880.4 131288.4 20592 

Djibouti Clothes 562 35.84 
 

61415.36 20142.08 41273.28 

Slovakia Beverages 3973 31.79 
 

188518.9 126301.7 62217.18 

Sri Lanka Fruits 1379 6.92 
 

12866.07 9542.68 3323.39 

Seychelles  Beverages 597 31.79 
 

28327.65 18978.63 9349.02 

Tanzania Beverages 1476 31.79 
 

70036.2 46922.04 23114.16 

Ghana Office Supplies 896 524.96 
 

583484.2 470364.2 113120 

In order to find tail latency, we have performed map reduce job by changing the configuration of the Hardware of the three 

Data node.  

 

Experiment: 1 

Table 2: Hardware configuration of Nodes for experiment: 1 
Node Name RAM No of Processor Storage in used Parallel Processing 

Datanode1 8 GB 2 350 GB 1 

Datanode2 8 GB 2 350 GB  1 

Datanode3 8GB 1 350 GB 1 

 

Master 

slave1 slave2 slave3 
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Figure 1: RAM configuration of Nodes for experiment 1 

 

 
Figure 2: Time Taken by Different nodes for a Map Reduce Job for experiment 1 

 

In this experiment, we have kept same configuration Datanode1,  Datanode2and Datanode3 has only 1 processor. We have 

found that all node perform the task in same time despite datanode3 has different configuration, so no latency found in this 

experiment.  

 

Experiment 2 

Table 3: Hardware configuration of Nodes for experiment 2 
Node Name RAM No of Processor Storage in used Parallel Processing 

Datanode1 8 GB 2 350 GB 1 

Datanode2 8 GB 1 350 GB  1 

Datanode3 6 GB 2 350 GB 1 

 

 
Figure 3: RAM configuration of Nodes for experiment 2 
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Figure 4: Time Taken by Different nodes for a Map Reduce Job for experiment 2 

 

In this experiment, we have only lower the RAM size of Data node 3 from8 GB to 6 GB and number of processor of 

Datanode2 changed to 1. We have found that the node 3 also perform the task in same time like other 2 data node. So, we can 

say only simple change does not degrade the performance of the Map Reduce Job and no tail latency is found in this 

experiment.  

 

Experiment 3 

To find tail latency, we have performed Map Reduce job by changing the configuration of the three Data node machine.  

 

Table 4: Hardware configuration of Nodes for experiment 3 
Node Name RAM No of Processor Storage in used Parallel Processing 

Datanode1 8 GB 2 350 GB 1 

Datanode2 4 GB 2 350 GB  1 

Datanode3 4 GB 2 350 GB 1 

 

 

Figure 5: RAM configuration of Nodes for experiment 3 

 
                                          Figure 7: Time Taken by Different nodes for a Map Reduce Job for experiment 3 
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Experiment 4 
We have made one of machine‘s RAM but we could not fond and difference in completing the Map Reduce job. 

‗ 

Table 5: Hardware configuration of Nodes for experiment 4 
Node Name RAM No of Processor Storage in used Parallel Processing 

Datanode1 8 GB 2 350 GB 1 

Datanode2 2 GB 1 350 GB  1 

Datanode3 2 GB 1 350 GB 1 

 

 
Figure 6: RAM configuration of Nodes for experiment 4 

 

 
Figure 7: Time Taken by Different nodes for a Map Reduce Job for experiment 4 

 

In this experiment, we have lowered the RAM size of Datanode2 and Data node 3 from 8 GB to2 GB and also number of 

processor from 2 to 1. After running the Map Reduce job, we found that these two nodes finish the job 2 minutes 30 seconds 

later than datanode1. So, we can say only these changes degrade the performance of the Map Reduce Job by 2 minutes 30 

seconds which is a very significant change in a 4 node cluster system. From this experiment, we can say if there is a 1000 node 

scenario this issue can cause and significant tail latency issue because then the performance of the job will be very slow.  

 

Experiment 5 

Table 6: Hardware configuration of Nodes for experiment 5 
Node Name RAM No of Processor Storage in used Parallel Processing 

Datanode1 8 GB 2 400 GB 1 

Datanode2 8 GB 2 350 GB  1 

Datanode3 8 GB 2 250 GB 1 
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Figure 8: Hardware configuration of Nodes for experiment 5 

 

 
Figure 9: Storage used in Different node for experiment 5 

 

 
Figure 10: Time Taken by Different nodes for a Map Reduce Job for experiment 5 

 

In this experiment, we have changed the storage used of the two data node and kept same configuration of the other parameters 

of all the 3 Data nodes and found that all node perform the task in due time, the node which got less record run faster.  So, no 

latency is found.  
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Experiment 6 

We have made one of machine‘s RAM but we could not fond and difference in completing the Map Reduce job. 

 

Table 7: Hardware configuration of Nodes for experiment 6 
Node Name RAM No of Processor Storage in used Parallel Processing 

Datanode1 8 GB 2 350 GB 4 

Datanode2 8 GB 2 350 GB  6 

Datanode3 8 GB 2 350 GB 6 

 

 
 

Figure 11: Hardware configuration of Nodes for experiment 6 

 

 

 
Figure 12: No of Parallel Map Reduce job in Different node for experiment 6 
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Figure 13: Time Taken by Different nodes for a Map Reduce Job for experiment 6 

 
In this experiment, we have fixed the RAM size of all the Data 

nodes and process multiple jobs in parallel. Datanode1 has 4 

processes running in parallel while datanode2 and datanode3 

has 6 processing running. Here, we have found that overall 

performance of the job is degraded due to multiple parallel 

processing. We have also found that datanode2 and datanode3 

finishes their job 1 minute 50 seconds later than datanode1. So, 

we can say that parallel processing degrades the performance of 

the Map Reduce Job and there are tail latency found in this 

experiment by1 minutes 50 seconds which is significant in a 4 

node cluster.   

 

In this experiment, we have lower the RAM size of Datanode2 

and Data node 3 from 8 GB to 4 GB and found that these two 

nodes finish the job 3seconds later than datanode1. So, we can 

say that only these changes degrade the performance of the Map 

Reduce Job by 3seconds and also there are tail latency found in 

this experiment as 3 seconds delay in Data node is still 

significant in a 4 node cluster.   

 

VI. ANALYSIS OF THE EXPERIMENTS 

 

After completing all the experiment, we have found that if we 

make minor changes in the parameter of the hardware 

configuration then the Map Reduce job is not delaying and no 

tail latency is found. The tail latency is only found only when 

we have made significant changes in the parameter of the 

hardware or run multiple jobs in parallel. That means if the 

Data Node‘s configuration is too bad or perform poorly the map 

reduce job is taking longer time despite other node perform the 

job faster. We have also found the capacity of storage does not 

add to the performance of the Map Reduce job. Another 

observation is that if we perform multiple processes in parallel 

in the data nodes, then we found performance of the Map 

Reduce changes a lot which also cause tail latency.  Here we 

have observed that one slow service can drastically slow down 

the entire combined response of the job. Identifying the slow 

node is a big step forward the solve the issue. If we can identify 

the slow node, we can take that job away from the slow node to 

faster node and also can prevent to send job in the slower node 

to avoid tail latency.  

We cannot perform the geographically distributed record 

processing and also have limited node due to scarcity of 

resource. Due to these reasons, we couldn‘t perform the above 

mention test to find out latency.  

 

VII. CONCLUSION 

 

In this study paper, we have tried to give our focus on finding 

the tail latency of Apache Hadoop distributed system. We 

basically used Hadoop Map Reduce technology using Apache 

Hive to find out the Straggler problem. We have created a 4 

node hadoop system and perform several experiments on it 

using different hardware configuration. After running multiple 

jobs, we have found tail latency in some our experiment. 

Especially when a particular node performs very poorly, it 

degrades the overall performance of a job very significantly. In 

one case, we have found that overall performance degraded for 

2.5 minutes which is15% of the overall time. We have also 

found that if multiple jobs run in parallel then performance of 

the jobs degraded a lot and in this case there are a lot of chance 

that some of the slowly performing node does take longer time 

than usual which increases the overall processing time and 

decrease the performance of the job. Tail latency is of great 

importance in user-facing real-time big data processing. 

However, maintaining low tail latency is challenging. 

 

This Straggler problem can cause huge impact when processing 

huge amount of data (pet byte data), so it should be taken very 

seriously while processing huge data. Many techniques have 

been evolving recently to mitigate the tail latency issue. Google 

has developed short-term adaptations of tail latency issue but 

the issue still persists.  

 

Outcome of the Study 

The outcome of the study is if a particular node has very poor 

configuration i.e. (RAM, CPU) then it performs very poorly and 

degrade the overall performance of a job which add to tail 

latency problem. Secondly, if multiple jobs run in parallel, then 

the node that running more multiple jobs simultaneously then it 

takes more time to perform a task which increases the overall 

processing time and decrease the performance of the job. 
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Drawback of the Study 
We have some limitations while performing the experiments 

which are given below:  

 Does not have geographically Distributed record set  

 Fewer number of node 

 Fewer number of processor in a node 

 Latency due to distance Network issue cannot be tested  
 

Future Planning 

There is lots of solution on tail latency for various type of 

problem. We want to analyze those papers and try to find out a 

better solution which is lot better than existing solutions. So, 

our future goal is to invent a new solution which will be much 

more effective to solve the Straggler problem which will be 

better than the existing solutions and try to solve the tail latency 

issue. 
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