
 © 2019, IJCSE All Rights Reserved 168

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-8, Aug 2019 E-ISSN: 2347-2693

Straggler Problem –Tail Latancy in Distributed network

Md. Nesar Rahman
1
, Ayesha Siddika

2
, Muhammad Shafiqul Islam

3
, Md. Shahajada

4

1
Department of ICT, Bangladesh University of Professionals (BUP), Bangladesh

2
Department of CSE, World University of Bangladesh (WUB), Bangladesh

3
Department of ICT, Bangladesh University of Professionals (BUP), Bangladesh

4
Senior Database Engineer, eGeneration Limited, Bangladesh

DOI: https://doi.org/10.26438/ijcse/v7i8.168178 | Available online at: www.ijcseonline.org

Accepted: 12/Aug/2019, Published: 31/Aug/2019

Abstract- Distributed processing frameworks split a data intensive computation job into multiple smaller tasks, which are then

executed in parallel on commodity clusters to achieve faster job completion.

A natural consequence of such a parallel execution model is that slow running tasks, commonly called stragglers potentially

delay overall job completion. Stragglers in general take more time to complete tasks than their peers. This could happen due to

many reasons such as load imbalance, I/O blocks, garbage collections, hardware configuration etc. Straggler tasks continue to

be a major hurdle in achieving faster completion of data intensive applications running on modern data-processing frameworks.

The trouble with stragglers is that when parallel computations are followed by synchronizations such as reductions, this would

cause all the parallel tasks to wait for others meaning that the parallel runtime is dominated by the slowest performing

straggler.

In a large-scale distributed system comprising a group of worker nodes, the stragglers' delay performance bottleneck, is caused

by the unpredictable latency in waiting for slowest nodes (or stragglers) to finish their tasks.

Such stragglers increase the average job duration by 52% in data clusters of Facebook and Bing even after these companies

using state of the art straggler mitigation techniques[1]. This is because current mitigation techniques all involve an element of

waiting and speculation. Existing straggler mitigation techniques are inefficient due to their reactive and replicative nature –

they rely on a wait speculate- execute mechanism, thus leading to delayed straggler detection and inefficient resource

utilization. Hence, full cloning of small jobs, avoiding waiting and speculation altogether is proposed in a system called as

Dolly. Dolly utilizes extra resources due to replication.

Keywords – Distributed network, latency, straggler detection, data clusters, slowest performing straggler

I. INTRODUCTION

One of the main causes of performance problems in

distributed data processing systems (from the original

MapReduce to modern Spark and Flink) is ―stragglers‖.

Stragglers are parts of the input that take an unexpectedly

long time to process, delaying the completion of the whole

job, and wasting resources that stay idle. Stragglers can

happen due to imbalance of data distribution or processing

complexity, hardware/networking anomalies, and a variety

of other factors.

Google Cloud Dataflow is the first system to address the

problem of stragglers in a fully general way. By dynamically

redistributing parts of already launched work from straggler

workers onto idle workers to maximize utilization, Google

Cloud Dataflow is able to preserve data consistency and

minimizing re-execution.

In all major distributed data processing engines — from

Google's original MapReduce, to Hadoop, to modern

systems such as Spark, Flink and Cloud Dataflow — one of

the key operations is Map, which applies a function to all

elements of an input in parallel called ParDo in the

terminology of Apache Beam (incubating) programming

model. All of these frameworks execute a Map step by

splitting the specification of its input into parts (often called

shards or partitions), of roughly equal size, and then

reading/processing data in each part in parallel. For example,

input specified by a glob file pattern might be split into

tuples; input from a key-value storage system such as Big

table, tuples. In all such frameworks, except Cloud

Dataflow, the splitting is done upfront, before starting to

execute any of the shards, and doesn't change during

execution. The number of shards is usually either specified

by the user or determined by the system heuristically, e.g.,

based on an estimate of the data size or just on the number of

input files.

A very common performance problem in Map steps, faced

by all frameworks, is stragglers — when a small number of

shards take much longer to be processed than the rest.

Stragglers can easily dominate the runtime of the map step,

defeating much of the parallelization benefits. They can also

 International Journal of Computer Sciences and Engineering Vol.7(8), Aug 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 169

waste resources and increase costs as other workers have to

stay idle for long periods of time before they can start

working on the next stage. Stragglers are recognized, both in

the industry and in academia, as one of the main causes of

poor performance of data processing jobs. Stragglers can

have a variety of causes: an abnormally slow worker; some

parts of data being particularly computationally intensive to

process; unbalanced splitting of the input where the amount

of data in different parts turns out to be drastically different.

This last case happens rarely when processing files, but is

quite frequent with key-value stores and other complex

inputs where not enough information is available about the

data distribution to split the input evenly in advance.

Another class of issues is when the amount of data is

balanced, but the processing complexity is not. For example,

we can imagine a pipeline which takes as input a file

containing filenames of videos to be transcended. It's not

enough to give the same number of videos to each worker to

ensure a balanced workflow, as the videos can be of very

uneven length. As one of the essential factors of system and

network performance, latency indicates how fast a user can

get a response after the user sent out a request. Low latency,

which means systems response quickly to actions, can make

users feel more natural and fluid than long response time[3].

In the financial market, as more and more business trades

and banking operations are executed online, lower latency

now means more revenues, especially for companies which

adopt high frequency trading to earn huge profit. High

frequency trading means to rapidly trade large volumes of

securities by using automated financial tools. A millisecond

decrease in a trade delay may boost a high-speed firm's

earnings by about 100 million per year, and also helps a firm

to gain great competition advantage. Traditionally, financial

organizations can achieve low latency via adopting high

performance computers, which provide great processing

capability, especially the capability of floating-point

processing. When the processing capability is not enough,

high performance computers can also be scaled via two

methods, which are scale up (adding more CPUs or memory

to a single computer) and scale out (adding more computing

nodes, and connecting them with high performance

interconnects). However, as the size of data needed to be

analyzed is growing dramatically in the last few years, the

primary bottleneck has shifted to the performance of storage

system, and the frequent data movement in traditional high

performance computing can significantly impact the latency

when the volume of processing data is huge. Therefore, the

system architecture for financial computing needs to be

improved in such a situation. Such data explosion problem

can also be called as the big data problem, which has been a

hot trend in recent years.

Objectives

a. To identify the cause of Straggler problem in the Map

Reduce frame work.

b. To analyze how changes in configuration of the system

especially memory, CPU, Storage added to the tail

latency problem in distributed environment.

c. Analyze how different configuration of nodes in a

distributed system like Hadoop performs while

performing big data processing and analyzing.

d. To study the straggler problem effect in distributed

framework.

II. LITERATURE REVIEW

Straggler is very known issue in parallel computing, and

many techniques have been developed to mitigate them. As

the data scale increases, the communities of architecture,

systems and data management pay more attention on

developing new big data systems to satisfy requirements

from different areas. The interactive nature of modern web

applications necessitates low and predictable latencies

because people naturally prefer fluid response times[6]. The

growing data volume makes applications more complex and

diverse. The increasing adoption of commercial clouds to

deliver applications further exacerbates the response time

unpredictability. In these environments, almost each and

every application almost unavoidably experience

performance interference due to contention for shared

resources (like CPU, memory, and I/O)[7].

Most distributed applications of iterative convergent

algorithms follow the Bulk Synchronous Parallel (BSP)

computational model which uses an input-data-parallel

approach. The input data is divided into worker node that

execute in parallel, each node perform the work associated

with their input data, and execute synchronizations barrier at

the end of each iteration. The model parameters are stored in

a shared data structure in distributed nodes and all nodes

update during each iteration. BSP guarantees that all workers

see all updates from the previous iteration, but not the

updates from the current iteration, which enable the leaf

nodes to use cached copies for efficiency. The assignment of

leaf nodes remain the same from one iteration to the next to

avoid the overheads of input data movement.

For BSP, stragglers are major performance issue. Because in

BSP in each iteration, all leaf nodes must wait for the

slowest node to complete its task. If one at least one leaf

node will run unusually slowly in a given iteration which is a

common scenario the straggler problem grows in

parallelism. Even when it is a different straggler in each

iterations, due to uncorrelated transitory effects, the entire

application can be slowed significantly.

Stragglers can occur for a number of reasons[8][9] including

hardware heterogeneity[10][11], hardware failures[9],

 International Journal of Computer Sciences and Engineering Vol.7(8), Aug 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 170

unbalanced data distribution among tasks, garbage collection

in high-level languages, and various OS effects[12][13].

Even temporary latency spikes from individual nodes may

ultimately dominate end-to-end latencies. In shared cloud

infrastructures resource contention is another common cause

of straggler problem. Besides, expensive stopping criteria

computations can lead to straggler effects, when performed

on a different leaf node.

The HPC community runs applications using the BSP model

frequently. It gives significant effort to identifying and

remove sources of performance jitter based on the hardware

and OSs of their supercomputers[13][14]. Naiad used the

same approaches. While this approach can be effective at

reducing performance ―jitter‖ in specialized and dedicated

machines[2]. It does not solve the more general straggler

problem. For instance, it does not work for today‘s multi-

tenant computing infrastructures, it is not applicable to

programs written in garbage-collected languages, does not

handle algorithms that inherently cause stragglers during

some iterations[15][16][17]

Blacklisting is another approach to mitigate certain straggler

performance issue by ceasing to assign work to workers that

are falling behind. However, this approach is fragile.

Stragglers caused by temporary slowdowns, the reason could

be due to resource contention with a background activity

which often occur on non-blacklisted machines[5]. It can

even blacklist a good performing worker node which

worsens the performance further.

Dean and Barroso described techniques employed at Google

to tolerate latency problem[5]. They have developed short-

term adaptations in the form of request reissues, along with

additional logic to support prevention of duplicate requests

to reduce unacceptable additional load. In DSPTF[18], a

request is forwarded to a server. If the server has the data in

its cache, it will respond to the query. Otherwise, the server

forwards the request to all replicas, which then make use of

cross-server cancellations to reduce load[5].

Pisces is a multi-tenant key-value store architecture that

provides fairness guarantees between tenants[19]. It is

concerned with fair-sharing the data-store and presenting

proportional performances to different tenants.

Priority Meister focuses on providing tail latency QoS for

bursty workloads in shared networked storage by combining

priorities and rate limiters[20].

Speculative execution is used to mitigate stragglers in data

processing systems like MapReduce, Hadoop, and

Spark[8][9]. Jobs in these systems consist of stateless,

idempotent tasks like ―map‖ and ―reduce‖, and speculative

execution runs slow tasks redundantly on multiple machines.

While this consumes extra resources, it can significantly

reduce job completion delays caused by stragglers, because

the output from the first instance of any given task can be

used without waiting for slower ones.

Work stealing and work shedding are mirror approaches for

adaptively rebalancing work queues among workers. The

concept is to move work from a busy worker to an idle

worker. FlexRR carefully avoids data movement by limiting

and pre-determining reassignment patterns to avoid

expensive on-demand loading of input data and parameter

state. It is designed explicitly to work in conjunction with

flexible consistency bounds.

Hadoop Tools

The below list are the tools that are available in Hadoop DataNode

 Hadoop Distributed File System (HDFS)

 MapReduce

 Hbase

 Spark

 Hive

 Impala

 Sqoop

 Pig

 ZooKeeper

 NOSQL

 Mahout

 Solr

 Avro

 Oozie

 Flume

 Clouds

 Ambari

 MongoDB

III. TESTING TOOLS

A Details overview of the technology that we are using in

our experiment to find tail latency is given below. The Three

most used tools of Cloud era Hadoop are:

 HIVE

 IMPALA

 HUE

IV. METHODOLOGY

Our goal is to evaluate the performance of MapReduce job

using Hadoop tools like HDFS, Hive, Impala and Hue and

try to find how different node with varied configuration of

RAM, Memory, Processor and Storage perform a

MapReduce job. We also run parallel processing to find out

how performance varied due to multiple job execution in

 International Journal of Computer Sciences and Engineering Vol.7(8), Aug 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 171

parallel. To achieve this goal, we have prepared 4 machines

where one is Master Node and three Slave nodes. In the

Master node also called namenode in Hadoop, we have

installed Clouder Manager 5.16 and other necessary tools

like, HDFS, HIVE, IMPALA, HUE, HBASE, SPARK and

YARN MANAGER. In the 3 slave node, also called

datanode in hadoop, we have installed HDFS, Hive and

Impala only. We have also made necessary network

configuration to communicate with all the 4 nodes smoothly

using password less SSH Private and Public Key.

We have uploaded 350 GB of data in HDFS file system and

loaded these records in HIVE using HIVE tools so that we

can run HIVE query language in the records. After loading

these data in HIVE, we have performed different

experimental query and map/reduce job in the machines and

evaluate the output to find tail latency while executing the

job.

V. SETUP OF THE STUDY

First of all, we have setup a 4 node hadoop cluster in 4

machines with variant hardware configuration. To install

Hadoop, we have to perform the below task:

At first, we install Ubuntu 16.04 Linux operating system in

all four machines. Then we have made up necessary

configurations like network in all four machines, firewall

configuration, creating user with appropriate permission,

Password less SSH, and necessary software and updates etc.

Then we have installed the Cloud era Manager 5.16 of

Hadoop in one of my good machine that have good

configuration. We have made one Master and three Slave

Machine. The Master machine‘s is called Name Node and

Slave machine‘s is called Data Node Hadoop. Then we have

loaded 350GB data in HDFS file system to perform my

experiment.

Figure 1: Master-Slave Architecture in Hadoop

Sample data tables

Table 1: Sample Data for performing Map Reduce Job

Country Item Type Units Sold Unit Cost

Total Revenue Total Cost Total Profit

South Africa Fruits 1593 6.92

14862.69 11023.56 3839.13

Morocco Clothes 4611 35.84

503890.1 165258.2 338631.84

Papua New Guinea Meat 360 364.69

151880.4 131288.4 20592

Djibouti Clothes 562 35.84

61415.36 20142.08 41273.28

Slovakia Beverages 3973 31.79

188518.9 126301.7 62217.18

Sri Lanka Fruits 1379 6.92

12866.07 9542.68 3323.39

Seychelles Beverages 597 31.79

28327.65 18978.63 9349.02

Tanzania Beverages 1476 31.79

70036.2 46922.04 23114.16

Ghana Office Supplies 896 524.96

583484.2 470364.2 113120

In order to find tail latency, we have performed map reduce job by changing the configuration of the Hardware of the three

Data node.

Experiment: 1

Table 2: Hardware configuration of Nodes for experiment: 1
Node Name RAM No of Processor Storage in used Parallel Processing

Datanode1 8 GB 2 350 GB 1

Datanode2 8 GB 2 350 GB 1

Datanode3 8GB 1 350 GB 1

Master

slave1 slave2 slave3

 International Journal of Computer Sciences and Engineering Vol.7(8), Aug 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 172

Figure 1: RAM configuration of Nodes for experiment 1

Figure 2: Time Taken by Different nodes for a Map Reduce Job for experiment 1

In this experiment, we have kept same configuration Datanode1, Datanode2and Datanode3 has only 1 processor. We have

found that all node perform the task in same time despite datanode3 has different configuration, so no latency found in this

experiment.

Experiment 2

Table 3: Hardware configuration of Nodes for experiment 2
Node Name RAM No of Processor Storage in used Parallel Processing

Datanode1 8 GB 2 350 GB 1

Datanode2 8 GB 1 350 GB 1

Datanode3 6 GB 2 350 GB 1

Figure 3: RAM configuration of Nodes for experiment 2

0

1

2

3

4

5

6

7

8

9

Datanode1 Datanode2 Datanode3

G
B

RAM

14.5 14.5 14.5

0

3

6

9

12

15

18

Datanode1 Datanode2 Datanode3

in
 M

in
u

te
s

MapReduce Job Process Time

Time

0

5

10

Datanode1 Datanode2 Datanode3

G
B

RAM

RAM

 International Journal of Computer Sciences and Engineering Vol.7(8), Aug 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 173

Figure 4: Time Taken by Different nodes for a Map Reduce Job for experiment 2

In this experiment, we have only lower the RAM size of Data node 3 from8 GB to 6 GB and number of processor of

Datanode2 changed to 1. We have found that the node 3 also perform the task in same time like other 2 data node. So, we can

say only simple change does not degrade the performance of the Map Reduce Job and no tail latency is found in this

experiment.

Experiment 3

To find tail latency, we have performed Map Reduce job by changing the configuration of the three Data node machine.

Table 4: Hardware configuration of Nodes for experiment 3
Node Name RAM No of Processor Storage in used Parallel Processing

Datanode1 8 GB 2 350 GB 1

Datanode2 4 GB 2 350 GB 1

Datanode3 4 GB 2 350 GB 1

Figure 5: RAM configuration of Nodes for experiment 3

 Figure 7: Time Taken by Different nodes for a Map Reduce Job for experiment 3

14.5 14.5 14.5

0
3
6
9

12
15
18

Datanode1 Datanode2 Datanode3

in
 M

in
u

te
s

MapReduce Job Process Time

Time

0

5

10

Datanode1 Datanode2 Datanode3

G
B

RAM

RAM

14.2 14.5 14.5

10

11

12

13

14

15

16

Datanode1 Datanode2 Datanode3

In
 M

in
u

te
s

MapReduce Job Process Time

Time

 International Journal of Computer Sciences and Engineering Vol.7(8), Aug 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 174

Experiment 4
We have made one of machine‘s RAM but we could not fond and difference in completing the Map Reduce job.

‗

Table 5: Hardware configuration of Nodes for experiment 4
Node Name RAM No of Processor Storage in used Parallel Processing

Datanode1 8 GB 2 350 GB 1

Datanode2 2 GB 1 350 GB 1

Datanode3 2 GB 1 350 GB 1

Figure 6: RAM configuration of Nodes for experiment 4

Figure 7: Time Taken by Different nodes for a Map Reduce Job for experiment 4

In this experiment, we have lowered the RAM size of Datanode2 and Data node 3 from 8 GB to2 GB and also number of

processor from 2 to 1. After running the Map Reduce job, we found that these two nodes finish the job 2 minutes 30 seconds

later than datanode1. So, we can say only these changes degrade the performance of the Map Reduce Job by 2 minutes 30

seconds which is a very significant change in a 4 node cluster system. From this experiment, we can say if there is a 1000 node

scenario this issue can cause and significant tail latency issue because then the performance of the job will be very slow.

Experiment 5

Table 6: Hardware configuration of Nodes for experiment 5
Node Name RAM No of Processor Storage in used Parallel Processing

Datanode1 8 GB 2 400 GB 1

Datanode2 8 GB 2 350 GB 1

Datanode3 8 GB 2 250 GB 1

0

2

4

6

8

10

Datanode1 Datanode2 Datanode3

G
B

RAM

RAM

14.2

16.5 16.5

10
11
12
13
14
15
16
17
18

Datanode1 Datanode2 Datanode3

In
 M

in
u

te
s

MapReduce Job Process Time

Time

 International Journal of Computer Sciences and Engineering Vol.7(8), Aug 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 175

Figure 8: Hardware configuration of Nodes for experiment 5

Figure 9: Storage used in Different node for experiment 5

Figure 10: Time Taken by Different nodes for a Map Reduce Job for experiment 5

In this experiment, we have changed the storage used of the two data node and kept same configuration of the other parameters

of all the 3 Data nodes and found that all node perform the task in due time, the node which got less record run faster. So, no

latency is found.

0

1

2

3

4

5

6

7

8

9

Datanode1 Datanode2 Datanode3

G
B

RAM

0

100

200

300

400

500

Datanode1 Datanode2 Datanode3

G
B

Storage in used

Storage

18.5

16
15.2

10
11
12
13
14
15
16
17
18
19
20

Datanode1 Datanode2 Datanode3

In
 M

in
u

te
s

MapReduce Job Proces Time

Time

 International Journal of Computer Sciences and Engineering Vol.7(8), Aug 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 176

Experiment 6

We have made one of machine‘s RAM but we could not fond and difference in completing the Map Reduce job.

Table 7: Hardware configuration of Nodes for experiment 6
Node Name RAM No of Processor Storage in used Parallel Processing

Datanode1 8 GB 2 350 GB 4

Datanode2 8 GB 2 350 GB 6

Datanode3 8 GB 2 350 GB 6

Figure 11: Hardware configuration of Nodes for experiment 6

Figure 12: No of Parallel Map Reduce job in Different node for experiment 6

0

2

4

6

8

10

Datanode1 Datanode2 Datanode3

G
B

RAM

0

1

2

3

4

5

6

7

Datanode1 Datanode2 Datanode3

N
o

 o
f

P
ar

al
le

l
P

ro
ce

ss

Parallel MapReduce Process

Parallel
Process

 International Journal of Computer Sciences and Engineering Vol.7(8), Aug 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 177

Figure 13: Time Taken by Different nodes for a Map Reduce Job for experiment 6

In this experiment, we have fixed the RAM size of all the Data

nodes and process multiple jobs in parallel. Datanode1 has 4

processes running in parallel while datanode2 and datanode3

has 6 processing running. Here, we have found that overall

performance of the job is degraded due to multiple parallel

processing. We have also found that datanode2 and datanode3

finishes their job 1 minute 50 seconds later than datanode1. So,

we can say that parallel processing degrades the performance of

the Map Reduce Job and there are tail latency found in this

experiment by1 minutes 50 seconds which is significant in a 4

node cluster.

In this experiment, we have lower the RAM size of Datanode2

and Data node 3 from 8 GB to 4 GB and found that these two

nodes finish the job 3seconds later than datanode1. So, we can

say that only these changes degrade the performance of the Map

Reduce Job by 3seconds and also there are tail latency found in

this experiment as 3 seconds delay in Data node is still

significant in a 4 node cluster.

VI. ANALYSIS OF THE EXPERIMENTS

After completing all the experiment, we have found that if we

make minor changes in the parameter of the hardware

configuration then the Map Reduce job is not delaying and no

tail latency is found. The tail latency is only found only when

we have made significant changes in the parameter of the

hardware or run multiple jobs in parallel. That means if the

Data Node‘s configuration is too bad or perform poorly the map

reduce job is taking longer time despite other node perform the

job faster. We have also found the capacity of storage does not

add to the performance of the Map Reduce job. Another

observation is that if we perform multiple processes in parallel

in the data nodes, then we found performance of the Map

Reduce changes a lot which also cause tail latency. Here we

have observed that one slow service can drastically slow down

the entire combined response of the job. Identifying the slow

node is a big step forward the solve the issue. If we can identify

the slow node, we can take that job away from the slow node to

faster node and also can prevent to send job in the slower node

to avoid tail latency.

We cannot perform the geographically distributed record

processing and also have limited node due to scarcity of

resource. Due to these reasons, we couldn‘t perform the above

mention test to find out latency.

VII. CONCLUSION

In this study paper, we have tried to give our focus on finding

the tail latency of Apache Hadoop distributed system. We

basically used Hadoop Map Reduce technology using Apache

Hive to find out the Straggler problem. We have created a 4

node hadoop system and perform several experiments on it

using different hardware configuration. After running multiple

jobs, we have found tail latency in some our experiment.

Especially when a particular node performs very poorly, it

degrades the overall performance of a job very significantly. In

one case, we have found that overall performance degraded for

2.5 minutes which is15% of the overall time. We have also

found that if multiple jobs run in parallel then performance of

the jobs degraded a lot and in this case there are a lot of chance

that some of the slowly performing node does take longer time

than usual which increases the overall processing time and

decrease the performance of the job. Tail latency is of great

importance in user-facing real-time big data processing.

However, maintaining low tail latency is challenging.

This Straggler problem can cause huge impact when processing

huge amount of data (pet byte data), so it should be taken very

seriously while processing huge data. Many techniques have

been evolving recently to mitigate the tail latency issue. Google

has developed short-term adaptations of tail latency issue but

the issue still persists.

Outcome of the Study

The outcome of the study is if a particular node has very poor

configuration i.e. (RAM, CPU) then it performs very poorly and

degrade the overall performance of a job which add to tail

latency problem. Secondly, if multiple jobs run in parallel, then

the node that running more multiple jobs simultaneously then it

takes more time to perform a task which increases the overall

processing time and decrease the performance of the job.

18.5

20.4 20.4

10
11
12
13
14
15
16
17
18
19
20
21
22

Datanode1 Datanode2 Datanode3

In
 M

in
u

te
s

MapReduce Job Proces Time

Time

 International Journal of Computer Sciences and Engineering Vol.7(8), Aug 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 178

Drawback of the Study
We have some limitations while performing the experiments

which are given below:

 Does not have geographically Distributed record set

 Fewer number of node

 Fewer number of processor in a node

 Latency due to distance Network issue cannot be tested

Future Planning

There is lots of solution on tail latency for various type of

problem. We want to analyze those papers and try to find out a

better solution which is lot better than existing solutions. So,

our future goal is to invent a new solution which will be much

more effective to solve the Straggler problem which will be

better than the existing solutions and try to solve the tail latency

issue.

REFERENCES

[1] S. Venkataraman, A. Panda, M. J. Franklin, and I. Stoica, ―The Power
of Choice in Data-Aware Cluster Scheduling This paper is included in

the Proceedings of the Operating Systems Design and Implementation

.,‖ 2014.
[2] D. Ford et al., ―Availability in Globally Distributed Storage Systems,‖

9th USENIX Symp. Oper. Syst. Des. Implement., pp. 61–74, 2010.

[3] X. Tian, R. Han, L. Wang, J. Zhan, and G. Lu, ―Latency critical big
data computing in finance,‖ J. Financ. Data Sci., vol. 1, no. 1, pp. 33–

41, 2015.

[4] J. Dean and S. Ghemawat, ―Summary of Installed Capacity ,
Dependable Capacity , Power Generation and Consumption (2003-

2016),‖ pp. 137–149, 2016.

[5] J. Dean and L. A. Barroso, ―The tail at scale,‖ Commun. ACM, vol.
56, no. 2, p. 74, 2013.

[6] W. D. Gray and D. A. Boehm-Davis, ―Milliseconds matter: An

introduction to microstrategies and to their use in describing and
predicting interactive behavior,‖ J. Exp. Psychol. Appl., vol. 6, no. 4,

pp. 322–335, 2000.

[7] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim, ―Measuring
interference between live datacenter applications,‖ Int. Conf. High

Perform. Comput. Networking, Storage Anal. SC, no. 3, 2012.

[8] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, ―Effective
Straggler Mitigation: Attack of the Clones,‖ Nsdi, p. 185, 2013.

[9] G. Ananthanarayanan et al., ―Reining in the Outliers in Map-Reduce

Clusters using Mantri,‖ Time, pp. 265–278, 2010.
[10] E. Krevat, J. Tucek, and G. R. Ganger, ―Disks are like snowflakes: no

two are alike,‖ Proc. 13th USENIX Conf. Hot Top. Oper. Syst., p. 5,

2011.
[11] A. Tumanov, R. H. Katz, M. A. Kozuch, C. Reiss, and G. R. Ganger,

―Heterogeneity and dynamicity of clouds at scale,‖ pp. 1–13, 2012.

[12] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan, ―The influence of
operating systems on the performance of collective operations at

extreme scale,‖ Proc. - IEEE Int. Conf. Clust. Comput. ICCC, 2006.

[13] F. Petrini, D. J. Kerbyson, and S. Pakin, ―The Case of the Missing
Supercomputer Performance,‖ vol. 836, p. 55, 2011.

[14] K. B. Ferreira, P. G. Bridges, R. Brightwell, and K. T. Pedretti, ―The

impact of system design parameters on application noise sensitivity,‖
Cluster Comput., vol. 16, no. 1, pp. 117–129, 2013.

[15] C. Curino, D. E. Difallah, C. Douglas, and S. Krishnan, ―Socc14-

Paper15.‖
[16] A. D. Ferguson, P. Bodik, E. Boutin, and R. Fonseca, ―Jockey :

Guaranteed Job Latency in Data Parallel Clusters,‖ Proc. 8th ACM

Eur. Conf. Comput. Syst. - EuroSys ’12, pp. 99–112, 2012.
[17] B. Hindman et al., ―2011_Benjamin Hindman_Benjamin

Hindman_Mesos A Platform for Fine-Grained Resource Sharing in
the Data Center.‖

[18] C. R. Lumb and R. Golding, ―D-SPTF: Decentralized Request

Distribution in Brick-based Storage Systems,‖ ACM SIGOPS Oper.

Syst. Rev., vol. 38, p. 37, 2004.
[19] D. Shue, M. Freedman, and A. Shaikh, ―Performance Isolation and

Fairness for Multi-Tenant Cloud Storage Setting : Shared Storage in
the Cloud.‖

[20] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R.

Ganger, ―PriorityMeister: Tail Latency QoS for Shared Networked
Storage,‖ Symp. Cloud Comput., pp. 1–14, 2014.

[21] M. Capitão, ―Mediator Framework for Inserting Data into Hadoop

Micael José Pedrosa Capitão Plataforma de Mediação para a Inserção
de Dados em Hadoop Mediator Framework for Inserting Data into

Hadoop,‖ no. January, 2015.

[22] ―Apache Hadoop.‖ [Online]. Available: http://hadoop.apache.org/.
[Accessed: 08-Mar-2019].

[23] ―NameNode and DataNode – Hadoop In Real World.‖ [Online].

Available: http://www.hadoopinrealworld.com/namenode-and-
datanode/. [Accessed: 08-Mar-2019].

[24] ―What is Hadoop Distributed File System (HDFS)? - Definition from

WhatIs.com.‖ [Online]. Available:
https://searchdatamanagement.techtarget.com/definition/Hadoop-

Distributed-File-System-HDFS. [Accessed: 10-Jan-2019].

[25] ―20 Essential Hadoop Tools for Crunching Big Data – Data Science
IO – Medium.‖ [Online]. Available: https://medium.com/data-science-

io/20-essential-hadoop-tools-for-crunching-big-data-efbc8b5c77ce.

[Accessed: 15-Jan-2019].
[26] A. Manzanares et al., ―Improving MapReduce performance through

data placement in heterogeneous Hadoop clusters,‖ Ned. Tijdschr.

Psychol., vol. 4, no. 4, pp. 1–9, 2010.
[27] ―Hadoop Soup: 01/10/14.‖ [Online]. Available:

http://dailyhadoopsoup.blogspot.com/2014_01_10_archive.html.

[Accessed: 10-Sep-2018].
[28] ―20 essential Hadoop tools for crunching Big Data.‖ [Online].

Available: https://bigdata-madesimple.com/20-essential-hadoop-tools-

for-crunching-big-data/. [Accessed: 08-Sep-2018].
[29] ―Apache Spark Introduction.‖ [Online]. Available:

https://www.tutorialspoint.com/apache_spark/apache_spark_introducti

on.htm. [Accessed: 08-Aug-2018].
[30] ―Home - Apache Hive - Apache Software Foundation.‖ [Online].

Available: https://cwiki.apache.org/confluence/display/HIVE.

[Accessed: 08-Aug-2018].
[31] ―What is Hive? Architecture & Modes.‖ [Online]. Available:

https://www.guru99.com/introduction-hive.html. [Accessed: 08-Jul-

2018].
[32] ―Impala Hadoop Tutorial.‖ [Online]. Available:

https://www.dezyre.com/hadoop-tutorial/hadoop-impala-tutorial.

[Accessed: 20-Nov-2018].
[33] ―Cloudera Impala Overview | 5.3.x | Cloudera Documentation.‖

[Online]. Available:

https://www.cloudera.com/documentation/enterprise/5-3-
x/topics/impala_intro.html. [Accessed: 04-Oct-2018].

[34] ―Big Data: How to manage Hadoop.‖ [Online]. Available:

https://www.cleverism.com/how-to-manage-hadoop-big-data/.
[Accessed: 20-Dec-2018].

[35] ―Introduction to batch processing - MapReduce - Data, what now?‖

[Online]. Available: https://datawhatnow.com/batch-processing-
mapreduce/. [Accessed: 05-Jan-2019].

[36] A. Gupta and G. N. Campus, ―HIVE- Processing Structured Data in
HADOOP,‖ no. August, 2018.

[37] ―Why is Impala faster than Hive? - Quora.‖ [Online]. Available:

https://www.quora.com/Why-is-Impala-faster-than-Hive. [Accessed:
30-Sep-2018].

[38] ―What is the advantages of Hadoop and Big data? - Quora.‖ [Online].

Available: https://www.quora.com/What-is-the-advantages-of-
Hadoop-and-Big-data. [Accessed: 12-Jan-2019].

[39] ―Advantages of Hadoop MapReduce Programming.‖ [Online].

Available: https://www.tutorialspoint.com/articles/advantages-of-
hadoop-mapreduce-programming. [Accessed: 10-Dec-2018].

