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Abstract — Scour depth at abutment is a major cause of bridge failure and significant issue towards maintenance cost of a 

bridge. Thus, early estimation of scour depth at abutment is essential for safe and cost-effective abutment structure design. 

Extensive research has been carried out to develop methods for predicting the depth of abutment scour. Despite various models 

presented by researchers to estimate the equilibrium local scour depth, an efficient technique with enhanced estimation 

capability will be more beneficial. The paper is aimed at investigating the applicability of soft computing (SC) models viz. 

artificial neural network, gene-expression programming (GEP) and hybrid techniques for estimation of scour depth around 

vertical, semi-circular and 45° wing-wall abutments using laboratory data compiled from published literature. The paper also 

emphasizes on further enhancement of the performances of the SC based models. On experimentations, the performance of 

multilayer perceptron (MLP) neural network for each type of abutment was found more effective than radial basis function 

network, GEP model and empirical equations. The generalization performance of optimal MLP network developed for each 

type of abutment was then improved with evolving connection weights of the MLP by Genetic Algorithm (GA-MLP). Finally, 

the hybrid model is validated with different types of validation techniques. The study demonstrates the suitability of the SC 

based hybrid methodology in improving the predictive accuracy of scour depth around different types of abutments.  
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I.  INTRODUCTION  

      Scour around bridge foundation takes place due to the 

erosion of soil by water stream [1]. Excessive scour may 

encounter huge maintenance costs or collapses of bridge. 

Therefore, accurate estimation of the maximum scour depth 

around abutment and pier is necessary for cost-effective 

design of bridge foundation. According to a survey report, 

repairing and maintenance of bridge damage required 50% of 

total expenditure, out of which 70% was spent to repair 

abutment scour [2]. Thus, it is essential to estimate 

reasonably accurate maximum scour depth at bridge 

abutment for safe and economic design of abutment 

foundation. 

       In the recent past, experimental investigation has been 

conducted and various empirical formulae [3-6] have been 

developed to predict clear water scour depth around 

abutments. Each of the developed formulae is suitable to a 

specific abutment condition and the results of each formula 

highly differ with each other for the same dataset. Thus, the 

estimated scour depths using empirical formulae are not 

reliable due to underestimation or  overestimation which may 

cause bridge failure or increases construction cost. 

      To enhance the predictive accuracy, data-driven 

modeling tools based on soft computing (SC) techniques 

such as artificial neural networks (ANNs) [7-12], adaptive 

neuro-fuzzy inference system (ANFIS) [13-14], genetic 

programming (GP) [15-17] and gene expression 

programming (GEP) [18-20] have been recently employed to 

estimate scour depth around different types of hydraulic 

structures. The estimated results with SC methods have been 

reported to be effectively outperformed the empirical 

equations. 

      This paper presents a comparative analysis between 

MLP, radial basis function (RBF) neural network, GEP and 

empirical models for predicting scour depth around abutment 

using the same data set collected from different published 

literature. The main objective of this study is to enhance the 

performance of the available SC-based techniques in 

predicting scour depth around bridge abutment by 
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developing genetic algorithm-based multilayer perceptron 

(GA-MLP) hybrid computational model. Finally, the 

performance of hybrid GA-MLP model is compared with the 

models found more efficient among the aforementioned 

models. 

      The remaining contents of this paper are organized as 

follows: Section II introduces equilibrium scour depth. In 

section III, development of scour depth estimation models 

are described. The results obtained are presented in section 

IV, and section V concludes the paper.  

 

II. EQUILIBRIUM SCOUR DEPTH AROUND BRIDGE 

ABUTMENT  

      The equilibrium scour depth (dse) around an abutment in 

uniform sediment can be determined by different parameters 

such as, average approach flow velocity (U), fluid density 

(ρ), sediment mass density (ρs), acceleration due to gravity 

(g), abutment length (l), kinematic viscosity (ν), depth of the 

approach flow (h), median sediments diameter (d50) [6]. 

Thus, the functional relationship between equilibrium scour 

depth (dse) at abutment and its dependent parameters can be 

expressed as: 

                 dse = f (U, ρ, ρs, g, l, ν,  h,  d50)                           (1) 

       The terms ρ, ρs, g and ν can be eliminated from the 

above equation as they are constant for given sediment and 

fluid condition. Thus, the Eq. 1 takes the following 

functional form: 

                       dse = f (l, d50, h, U)                                       (2) 

       A pictorial representation of scour at abutment is shown 

in Fig.1. A detailed review of research related to scour at 

abutments can be found in [1]. 

 

Figure 1. Schematic representation of scour at abutment. 

III. DEVELOPMENT OF SCOUR DEPTH ESTIMATION 

MODELS 

      This paper presents the development of different SC 

models viz.  ANNs (i.e., MLP and RBF), GEP and GA-MLP 

for estimation of clear water scour depth around vertical, 

semi-circular and 45° wing-wall abutments using laboratory 

data compiled from different literature [6, 21-24].  

      The dataset used in this study for vertical, semi-circular 

and 45° wing-wall abutment comprised of four input 

parameters: abutment length, median grain size, flow depth 

and average approach flow velocity and one output 

parameter, i.e. scour depth. The dataset of vertical wall 

abutment consists of 258 samples after removing nine points 

as outlier from a total of 267. The sample sizes for semi-

circular and 45° wing-wall abutments are 107 and 176 

respectively. Table 1 summarizes the ranges of data for each 

type of abutment. 

 

Table 1. Ranges of experimental datasets 

Parameters with unit 

Range 

Vertical 

Abutment 

Semicircular  

abutment 

45° wing-wall  

abutment 

Abutment length (l), m 0.04−0.717 0.04−1.40 0.04−1.38 

Sediment size (d50), mm 0.26−18.0 0.26−3.10 0.26−3.10 

Flow depth (h), m 0.05−0.60 0.05−0.25 0.02−0.60 

Approach flow velocity 

(U), m/s 
0.17−1.54 0.22−0.67 0.20−0.67 

Scour depth (dse), m 0.043−0.514 0.053−0.32 0.047−0.74 

     

  Each dataset is normalized within 0.1 and 0.9 using (3) to 

make the training of SC models more effective.  

(3)
0.9 0.1

( ) 0.1N min

max min

x x x
x x


  


 

 

where, x is the actual value, xN is the value obtained after 

normalized of  x, xmax is the largest and xmin is the smallest 

value in the original dataset. Next, each dataset is divided 

randomly into training and testing sets consists of 80% and 

20% of data points, respectively. 

      To evaluate the efficiency of the developed SC models, 

their performances are compared with the empirical formulae 

[3-6] shown in Table 2. 
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Table 2. Empirical formulae for scour depth estimation around abutment 

The performances of all the models are validated in 

respect of the statistical measures: mean absolute error 

(MAE), root mean square error (RMSE) and coefficient of 

determination (R
2
). The expressions of these measures are as 

follows [20]: 
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where, oi and ti are predicted output and actual value for the i
th
 

input pattern, and o , t  are the average over estimated 

output and observed values, and n is the size of the dataset. 

A flowchart of the proposed methodology for developing 

the SC models to estimate scour depth around bridge 

abutment is shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A flowchart of the proposed methodology for developing SC 

models for estimation of scour depth at abutment 

A. Artificial Neural Network 

ANNs are universal function approximators, which can map 

any random input pattern to an output pattern through 

training. They do not require specifying functional 

relationship between the dependent and the independent 

parameters and thus very much suitable in solving complex 

water resource and hydraulic engineering problems that are 

often poorly defined. Most of the applications of ANN in 

hydraulic and water resource engineering involve the use of 

Author Empirical Formula 
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where Ks=shape factor of abutment, Kɵ = alignment factor 

of  abutment, Fr=approach flow Froude number, 
g = 

geometric standard deviation 

Melville 
[4] 

50se hl I d s Gd K K K K K K  

where Khl reflects the effects of flow depth and abutment 
length, KI is the flow intensity factor, Kd50 correspond to 

the effects of abutment length and sediment size, KG 

signifies the approach channel geometry factor and Ks, Kɵ 
are as defined in the previous equations 

Kandasamy 
& Melville 

[5] 

1

2
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 where Ks is the shape factor, K2 = 5 and n = 1 for h/l 

<=0.04; K2 = 1 and n = 0.5 for 0.04 < h/l < 1; and K2 = 1 
and n = 0 for h/l> 1 
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where Fe is excess abutment Froude number. 
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MLP and RBF networks. Brief descriptions of these models 

are presented next. 

      Multilayer Perceptron network consists of an input 

layer, one or more hidden layer and an output layer of 

computational nodes. A diagrammatical representation of the 

MLP model implemented in this study is shown in Figure 3. 

A set of data (l, d50, h and U) was provided to the MLP 

model through the input layer, and subsequently, the network 

generates an expected result (dse) in the output layer. The 

network with single hidden layer was trained with 

Levenberg-Marquardt-Optimization (LMO) algorithm. The 

LMO algorithm adjusts the weights of each unit to reduce the 

quadratic error between the actual output and the estimated 

output [25]. The hidden layer performs the main 

computational work by extracting meaningful features from 

the input samples. The number of hidden layer units was 

determined by trial and error method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      The networks with 4 to 9 neurons in the hidden layer and 

initial random weights were trained for 1000-7000 epochs with 

learning rate and momentum constant values ranging from 

0.1 to 0.9. It consist of logistic sigmoid transfer function (7) in 

the hidden and output layer which was decided based on trails 

by examining training and testing results simultaneously. 

(7)
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      In Figure 2, w11,w21,…,wh4  are the weights between input 

and hidden layer, w1,w2,…,wh are weight between hidden and 

output layer. 

The output (zj) of the j
th

 node in the hidden layer is given by  

1

(8)
n

j ji i

i

z f w x


 
  

 
  

where, xi is the input value, n represents the number nodes in 

the input layer, wji is the weight between j
th

 hidden node and 

i
th

 input node and f is the transfer function associated with j
th

 

hidden node. 

      The output generated by the network is obtained by the 

following expression:  

1

(9)
h

se j j

j

d f w z


 
  

 
  

where, wj represents the weight between the output node and j
th
 

hidden unit and h specifies the number of nodes in hidden 

layer. 

 

     Radial Basis Function neural network consists of three 

layers viz. an input layer to receive data, a hidden layer and 

an output layer to produce results. The RBF network 

employed in the present study contains Gaussian transfer 

functions in the hidden layer which was trained with random, 

k-means and fuzzy c-means centre selection methods and 

pseudo-inverse method for weight initialization between 

hidden and output layer. Among the aforementioned methods 

for centre selection, fuzzy c-means method was selected in 

the RBF network as it produces more accurate results than 

the other methods for the considered dataset. The schematic 

diagram of the RBF network with four input parameters viz. 

l, d50, h and U and one output, dse is shown Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where, wj represents the weight between j
th

 unit in the hidden 

layer and the output node. 

      The values of the input parameters were first fed through 

the four input node. The output of the j
th

 hidden node is 

derived from the following expression: 
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where, σj and µj are the width and centre of the j
th

 hidden 

unit, respectively and the norm is the Euclidean norm. 

       The RBF model includes linear transfer function in the 

output layer and thus the output of the RBF model is derived 

by the following expression  

1

(11)( )
h

se j j

j

d w x


  

B. Gene Expression Programming  

GEP is a relatively new evolutionary computing technique 

proposed by Ferreira [26, 27] is an extension of the GP 

developed by Koza [28] solves a problem with evolving 

computer programs. The GEP is a full-fledged 

genotype/phenotype system with chromosomes consists of 

one or more genes and each gene encoded as a sub-program. 

GEP initially generates a random population of probable 

solutions to a problem called chromosomes of fixed length 

which are then assessed with a fitness function. Based on the 

fitness value, chromosomes are selected with roulette wheel 

selection method and reproduced through genetic operators. 

The process of selection and genetic modification is repeated 

until a specified level of accuracy is attained or the specified 

number of generations is reached. The steps in the GEP 

development process is briefly discussed below. 

      In the initial step of GEP development process, a random 

population chromosome composed of terminal set and 

function set is generated. In this study, the terminal set 

contains independent parameters, l, d50, h and U and random 

floating point numbers between -5 to +5.  The basic 

arithmetic operators (+, -, *, /) and mathematical functions 

(exp, sqrt, power) were used as the function set. After many 

number of trials, population sizes of 50, 30, 40 for vertical, 

semi-circular and 45° wing-wall abutments, respectively 

were selected as the optimal sizes and then used in the 

development of GEP models.  

      Each chromosome is then evaluated with the fitness 

function which is the inverse of the mean square error 

(MSE). The fitness (fi) of i
th 

chromosome can be expressed as 

 

(12)1
i

iMSE
f 

 

     The architecture of chromosomes i.e., number of genes in 

a chromosome and the head, and tail length in each gene 

were selected in the next step. To evolve solutions to 

complex problems, it is more appropriate to use multi-gene 

chromosomes [26]. Thus, in the present study, three genes 

per chromosomes were chosen by trail method. The head 

includes functions as well as terminals, and the tail contains 

terminals only. The head length greater than 10 did not 

significantly increase the training and testing performance 

and thus the length of head (h) equal to 10 is chosen in the 

development of GEP model. The tail length (t) is a function 

of h and the maximum arity (n) of functions and the 

relationship is t=h*(n-1) +1. As the maximum arity of the 

function set used in this work is 2, the value of t=10*(2-1) 

+1, i.e., t=11. 

      After selecting the architecture of the chromosomes, the 

linking functions are chosen to link sub-expression trees 

corresponding to each gene. After experimentation with 

addition and multiplication as the linking function, the 

performance of GEP model with addition was found better 

for the considered problem and thus selected. 

      In the final step of GEP parameter selection, the set of 

genetic operators i.e. crossover or recombination, mutation, 

inversion and transposition and their rate were determined. 

Table 3 summarizes the parameters of the optimized GEP 

model for vertical, semi-circular and 45° wing-wall 

abutments. 
 

Table 3. Parameters of the optimized GEP model 
 

Parameters 

Setting of parameters 

Vertical  

abutment 

Semicircular  

abutment 

45° wing-

wall  

abutment 

Population size 50 30 40 

Terminal set l, d50, h, U l, d50, h, U l, d50, h, U 

 

Function set +, -, *, /, exp, 

 sqrt, power 

+, -, *, /, exp, 

 sqrt, power 

+, -, *, /, 

exp, sqrt, 
power 

Random constant 
type 

Floating point 
Floating 
point 

Floating 
point 

Random constant 

range 
[-5, +5] [-5, +5] [-5, +5] 

Head length 10 10 10 

Number of genes 3 3 3 

Linking function Addition Addition Addition 

One-point 

recombination rate 
0.15 0.2 0.15 

Two-point 
recombination rate 

0.3 0.4 0.35 

Gene recombination 

rate 
0.2  0.1 0.2 

Mutation rate 0.03 0.03 0.03 

Gene transposition 
rate 

0.1 0.1 0.1 

Inversion rate 0.2 0.2 0.2 

 

C. Hybrid GA-MLP Network 

      Backpropagation (BP) learning algorithm is a widely 

used network learning algorithm but it has a shortcoming of 

converging to local minima due to gradient search technique. 
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Genetic algorithm is an effective optimization technique [29] 

that can be used to optimize initial connection weights in 

neural network. In this study, a hybrid model of ANN and 

GA is proposed to initialize and optimize the connection 

weights of MLP network so as to improve the predictive 

accuracy of the network for estimating scour depth. 

      The combination of genetic algorithm in MLP for weight 

optimization is done by three major steps. In the initial step, 

chromosomes are considered as weight sets and weights 

between neurons are considered as gene segments. In step 2, 

fitness’ values are evaluated for these connection weights 

using (12). This is done by constructing the corresponding 

neural network with each weight set.  

      In the final step, application of genetic operators such as 

selection, crossover and mutation is carried out repeatedly 

until the goal of accuracy level is acquired or maximum 

number of iteration is reached. 

      The hybrid learning process is performed in two stages: 

Initially sub-optimal connection weights for the network is 

searched by employing GA. To obtain the sub-optimal 

weights, GA is run by different number of generations for 

different types of abutment. In next stage, a final weight 

adjustment of MLP is done by employing BP algorithm. 

      One important concern in developing a neural network 

model is generalization i.e. how efficiently a network can 

predicts for unseen i.e. new data. ANNs can have either 

underfitting  or overfitting issue. It may happen that the 

network produce output on training set with a very small 

error, but the error is large when new data is fed into the 

network. This happens due to the fact that the network 

memorized the training samples, but it is not learned enough 

to generalize new circumstances. The simplest method for  

generalization of network is hold out method in which data is 

divided into training and testing sets to train the model and 

test its performance. There are various other methods for 

improving generalization performance of network viz. early 

stopping, k-fold cross-validation and regularization [30]. In 

early stopping, data are divided at random into training, 

validation and testing sets and train various networks using 

the training set; once error on validation set start increasing, 

network training is stopped and evaluates the performance 

with testing set. In k-fold cross-validation technique, data are 

divided randomly into k approximately equal distinct subsets. 

The network is trained with k –1 subsets and tested on the 

remaining subset and the process of training and testing is 

repeated for a total of k times, each time using a different 

subset for validation. The average performance of the k 

tested cases is considered to evaluate the network. Improving 

generalization with regularization can be done by modifying 

the performance measurement function, which is usually 

selected to be the MSE. This is done by adding a term which 

contains the mean of the sum of squares of the network 

weights.  

 

 

where, γ represents the performance ratio, and  

2

1

1 n

j

j

msw w
n 

   

      Although in a very limited number of studies, early 

stopping was applied on GA-ANN, there is a lack of study 

on application of other methods to improve generalization 

performance in hybrid GA-ANN. As generalization 

approaches are problem dependent, different approaches 

should be explore, and thus in the present study, hold out, 

early stopping, cross-validation and regularization techniques 

are employed in GA-MLP and the comparative analysis of 

performance with each technique is discussed. 

 

IV. RESULTS AND DISCUSSION 

      The scour depth estimation models development starts 

with the development of standalone SC models i.e., MLP, 

RBF and GEP. The optimal performances in terms of the 

statistical measures MAE, RMSE and R
2 

of the SC models 

were compared with the considered empirical equations as 

well as among each other.  

      In order to verify the applicability and suitability of the 

proposed hybrid GA-MLP model for estimation of scour 

depth around abutment, the optimal performance of the 

hybrid computational model was compared to that of the 

MLP, RBF and GEP. 

A. Comparison of ANNs and GEP models with empirical 

equations 

      To compare the performances of the MLP, RBF and GEP 

model, the optimal cases of each model was identified. The 

model configuration having minimum MAE, RMSE and 

maximum R
2
 values between target and predicted values 

during testing were selected as optimal. The performance 

indices values of these optimal SC models along with that 

obtained with the empirical formulae for vertical, 

semicircular and 45° wing-wall abutment are tabulated in 

Table 4-6. 

 

 

 

 

 

(18)* (1 )Error mse msw   
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Table 4. Comparison of ANNs, GEP and empirical formulae for vertical 
wall abutment 

Method 
Training Testing 

MAE RMSE R
2
 MAE RMSE R

2
 

Froehlich 
[3] 

0.1235 0.1864 0.2272 0.0972 0.1680 0.2521 

Melville [4] 
0.0903 0.1278 0.5597 0.0971 0.1378 0.5366 

Kandasamy 

and 
Melville[5] 

0.1158 0.1457 0.5284 0.0865 0.1137 0.5649 

Dey and 

Barbhuiya 

[6] 

0.0972 0.1442 0.4749 0.0857 0.1321 0.4517 

GEP 0.0129 0.0176 0.8810 0.0135 0.0189 0.8590 

MLP 0.0085 0.0125 0.9318 0.0109 0.0154 0.9310 

RBF 0.0116 0.0157 0.8947 0.0117 0.0168 0.8815 

 
Table 5. Comparison of ANNs, GEP and empirical formulae for 

semicircular abutment 

Method 
Training Testing 

MAE RMSE R
2
 MAE RMSE R

2
 

Froehlich 

[3] 
0.0876 0.1102 0.4508 0.1624 0.2103 0.2417 

Melville [4] 
0.0397 0.0486 0.6556 0.1038 0.1334 0.2775 

Kandasamy 

and 

Melville[5] 

0.0489 0.0675 0.4951 0.0613 0.0829 0.4341 

Dey and 
Barbhuiya 

[6] 

0.0124 0.0195 0.8651 0.0205 0.0318 0.7080 

GEP 0.0062 0.0094 0.9752 0.0102 0.0196 0.9157 

MLP 0.0028 0.0043 0.9956 0.0067 0.0150 0.9432 

RBF 0.0041 0.0063 0.9892 0.0096 0.0152 0.9386 

 

Table 6. Comparison of ANNs, GEP and empirical formulae for 45° wing-
wall abutment 

Method 
Training Testing 

MAE RMSE R
2
 MAE RMSE R

2
 

Froehlich 
[3] 

0.0716 0.0869 0.5078 0.0941 0.1548 0.4714 

Melville [4] 
0.0384 0.0558 0.6140 0.0490 0.0584 0.6036 

Kandasamy 

and 

Melville[5] 

0.0957 0.1326 0.4836 0.0628 0.0851 0.5592 

Dey and 

Barbhuiya 

[6] 

0.0312 0.0534 0.5800 0.0315 0.0459 0.6500 

GEP 0.0083 0.0107 0.9522 0.0116 0.0145 0.9361 

MLP 0.0036 0.0059 0.9948 0.0051 0.0072 0.9833 

RBF 0.0058 0.0073 0.9708 0.0054 0.0074 0.9819 

 

      As shown in the above tables, the low values of MAE, 

RMSE and high values of R
2
 of SC models compared to the 

empirical equations indicate that the SC models are able to 

estimate scour depth much more precisely than the empirical 

formulae for all the three types of abutments. From Table 4-

6, it is also observed that ANN models outperform GEP for 

all the three types of abutments. Moreover, MLP is found 

more effective than RBF in predicting scour at abutment for 

the considered dataset.  

      It may also be observed from Table 4-6 that the 

performances of SC models in predicting scour depth at 

vertical wall abutment is inferior to their performance for 

other two types of abutment. This is due to the fact that the 

dataset for scour around vertical wall abutment was collected 

from more number of sources than the other type of 

abutments, and thus more diverse than the other sets. 

B.  Comparison of GA-MLP and ANN models 

As the performance of MLP was found better, it was 

considered for further enhancement by developing hybrid 

GA-MLP model. To compare the performance of GA-MLP 

with MLP, the best testing cases of both the models along 

with the corresponding training cases for each type of 

abutments are tabulated in Table 7. 

Table 7. Comparison between GA-MLP and MLP 

A
b

u
tm

e
n

t 

ty
p

e 

M
e
th

o
d

 Training Testing 

MAE RMSE R2 MAE RMSE R2 

V
er

ti
ca

l GA-

MLP 
0.0082 0.0114 0.9514 0.0105 0.0139 0.9374 

MLP 0.0085 0.0125 0.9318 0.0109 0.0154 0.9310 

S
em

i-

C
ir

cu
la

r GA-

MLP 
0.0034 0.0052 0.9936 0.0063 0.0140 0.9618 

MLP 0.0028 0.0043 0.9956 0.0067 0.0150 0.9432 

4
5
° 

W
in

g
-

w
al

l 

GA-

MLP 
0.0029 0.0041 0.9952 0.0040 0.0055 0.9855 

MLP 0.0036 0.0059 0.9948 0.0051 0.0072 0.9833 

 

          Table 7 shows that the performance of GA-MLP is 

more effective than MLP during testing i.e. for unseen data 

for all the three types of abutments. The scatter diagrams of 

observed equilibrium scour depth versus GA-MLP predicted 

values along with performance indices for all the three types 

of abutments are shown in Figure 5. 
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Figure 5 (a) Observed versus GA-MLP predicted scour depth for vertical 
wall abutment 

 

 

 

Figure 5(b) Observed versus GA-MLP predicted scour depth for 
semicircular wall abutment 

 

 

Figure 5(c) Observed versus GA-MLP predicted scour depth for 45° wing-
wall abutment 

      The above figures illustrate the performances of the 

proposed GA-MLP model validated with holdout method. R
2
 

value of 0.9374, 0.9618 and 0.9855 with testing dataset of 

vertical, semicircular and 45° wing-wall abutment and 

MAE=0.0105, RMSE=0.0139 for vertical wall abutment, 

MAE=0.0063, RMSE=0.0140 for semi-circular wall 

abutment and MAE=0.0040, RMSE=0.0055 for 45° wing-
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wall abutment during testing indicate that the GA-MLP 

model provide reasonably acceptable results. 

      The generalization performance of the hybrid model is 

further improved by employing different techniques such as, 

early stopping, cross-validation and regularization. Some of 

the generalization performances of GA-MLP for each type of 

abutment with different approaches are tabulated in Table 8 –

10. The “epoch” in the tables represents the number of BP 

runs, after obtaining suboptimal weights with GA. 

Table 8. GA-MLP Training and Testing Results for vertical wall abutment 

Epoch  
Training Testing 

MAE RMSE R
2
 MAE RMSE R

2
 

Early stopping 

741 0.0169 0.0237 0.8571 0.0164 0.0229 0.8562 

794 0.0152 0.0209 0.8642 0.0175 0.0251 0.8471 

836 0.0116 0.0174 0.8780 0.0189 0.0276 0.8345 

Regularization 

900 0.0117 0.0178 0.8720 0.0123 0.0187 0.8681 

1000 0.0110 0.0165 0.8774 0.0116 0.0176 0.8767 

1100 0.0124 0.0183 0.8658 0.0134 0.0195 0.8608 

k=5 fold cross validation 

1000 0.0098 0.0129 0.9278 0.0108 0.0131 0.9362 

1100 0.0087 0.0118 0.9425 0.0095 0.0125 0.9444 

1200 0.0076 0.0107 0.9436 0.0115 0.0136 0.9306 

 

Table 9. GA-MLP Training and Testing Results for semicircular wall 
abutment 

Epoch  
Training Testing 

MAE RMSE R
2
 MAE RMSE R

2
 

Early stopping 

553 553 553 553 553 0.0229 0.8562 

601 601 601 601 601 0.0251 0.8471 

678 678 678 678 678 0.0276 0.8345 

Regularization 

600 600 600 600 600 0.0187 0.8681 

700 700 700 700 700 0.0176 0.8767 

800 800 800 800 800 0.0195 0.8608 

k=5 fold cross validation 

700 700 700 700 700 0.0131 0.9362 

800 800 800 800 800 0.0125 0.9444 

900 900 900 900 900 0.0136 0.9306 

 

Table 10. GA-MLP Training and Testing Results for 45° wing-wall 
abutment 

Epoch  
Training Testing 

MAE RMSE R
2
 MAE RMSE R

2
 

Early stopping 

636 0.0067 0.0138 0.9222 0.0065 0.0134 0.9256 

684 0.0063 0.0126 0.9308 0.0062 0.0121 0.9477 

739 0.0062 0.0114 0.9510 0.0061 0.0112 0.9537 

Regularization 

800 0.0097 0.0159 0.8979 0.0068 0.0149 0.9107 

900 0.0092 0.0133 0.9160 0.0064 0.0142 0.9185 

1000 0.0094 0.0140 0.9378 0.0063 0.0137 0.9235 

k=5 fold cross validation 

900 0.0053 0.0088 0.9557 0.0043 0.0063 0.9677 

1000 0.0048 0.0071 0.9716 0.0038 0.0049 0.9870 

1100 0.0041 0.0064 0.9685 0.0040 0.0056 0.9845 

 

      Table 8 – table 10 indicate that the k-fold cross validation 

is more effective compared to early stopping and 

regularization for the considered dataset.  From the above 

tables, it is found that GA-MLP with k-fold cross validation 

yields R
2
 value of 0.9444, 0.9641 and 0.9870 for the testing 

dataset of vertical, semicircular and 45° wing-wall abutment. 

It indicates that 94.44%, 96.41% and 98.70% total variations 

of scour depth predicted by GA-MLP for unknown situation 

of vertical, semicircular and 45° wing-wall abutment can be 

explained by the linear relation between the target and 

predicted values. GA-MLP with small error values of 

MAE=0.0095, RMSE=0.0125 for vertical wall abutment, 

MAE=0.0062, RMSE=0.0134 for semi-circular wall 

abutment and MAE=0.0038, RMSE=0.0049 for 45° wing-

wall abutment on testing dataset also confirms the acceptable 

generalization performance of the proposed model. 

Therefore, GA-MLP with k-fold validation may be 

considered as an addition to the scour depth estimation 

methodologies. 

C. Sensitivity Analysis 

      To find out the relative influence of each of the affecting 

parameters on scour depth, sensitivity analysis was carried 

out with the trained hybrid model. This was done by 

eliminating one of the independent factors from (2) at a time. 

The results of the sensitivity tests for vertical, semicircular 

and 45° wing-wall abutment are summarized in Table 11. 
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Table 11. Sensitivity analysis 
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       From the sensitivity analysis it is observed that when the 

abutment length was removed, maximum error and minimum 

coefficient of determination was given by the model. Thus, 

abutment length has maximum affect on scour depth and is 

considered as more sensitive than the other parameters. It is 

also observed that sediment size has least effect on scour 

depth. 

V. CONCLUSION AND FUTURE SCOPE  

       The application of the SC methods such as, ANNs (i.e. 

MLP and RBF), GEP and hybrid GA-MLP to estimate local 

scour at vertical, semicircular and 45° wing-wall abutment in 

clear-water condition is presented in this paper. The 

application of GA-MLP and comparison with ANN and GEP 

carried out in this study is another significant addition to 

scour-depth estimation methodologies for abutments. The 

results obtained in the study demonstrate the suitability of SC 

models in scour depth estimation at bridge abutment. It is 

found that the scour depth prediction with SC models is much 

more accurate than the existing empirical methods. It is also 

observed that the performances of ANNs are more effective 

than GEP. Moreover, MLP outperforms RBF network for the 

considered dataset. The performance of the MLP model is 

further been enhanced by combining with GA, which 

optimizes connection weights. By comparing the 

generalization performance of the GA-MLP with early 

stopping, k-fold cross-validation and regularization, k=5 fold 

cross validation is found more efficient. Thus, GA-MLP with 

k-fold cross-validation method may be recommended as an 

efficient approach for the prediction of scour depth around 

abutment. With sensitivity analysis, abutment length is found 

most sensitive while median grain size is found least 

sensitive. 

       The research work carried out in this study contributes to 

the development of the expert systems for efficient estimation 

of maximum scour depth for constructing safe and economic 

bridge foundation. While a significant progress in the 

enhancement of SC methods for scour depth estimation is 

made, the developed models may be further enhanced by 

appropriate adjustment of the algorithmic framework of the 

techniques. Although, the developed model is efficiently 

predicting scour depth, observations and availability of more 

experimental data will be beneficial for the development of 

more generalized models and validation with field 

observations will be more effective for practical purpose. 
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