
 © 2019, IJCSE All Rights Reserved 1188

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-4, April 2019 E-ISSN: 2347-2693

Improved Hybrid Genetic Based Rule Mining Algorithm for Software

Defect Prediction

S. Maheswari
1*

, R. Ganesan
 2

, K. Chitra
 3

1
Dept. of Computer Science, Bharathiar ,University, Coimbatore, TN, India

2
Dept. of Computer Science, Govt Arts College, Melur, Madurai Dt,TN, India

3
Dept. of Mathematics, Govt Arts College, Melur, Madurai Dt,TN, India

*Corresponding Author: rkmahes04@gmail.com Tel: 9965153218

DOI: https://doi.org/10.26438/ijcse/v7i4.11881195 | Available online at: www.ijcseonline.org

Accepted: 20/Apr/2019, Published: 30/Apr/2019

Abstract - Predicting software defects is an important issue in the software development and maintenance process, which is

related to the overall success of the software. This is because predicting software failures in the previous phase can improve

software quality, reliability and efficiency, and reduce software costs. However, developing robust defect prediction models is

a challenging task and many techniques have been proposed in the literature. This paper proposes a software defect prediction

model based on the new improved hybrid genetic rule mining algorithm (IHGBR). The supervised IHGBR algorithm has been

used to predict future software failures based on historical data. The evaluation process shows that the IHGBR algorithm can

be used effectively with high accuracy. The collected results show that the IHGBR method has better performance.

Keywords: Rule mining, Defect, Genetic, software metrics, Prediction.

I. INTRODUCTION

Software testing can be defined as "the process Software

testing can be defined as "the process of analyzing software

elements to detect differences between existing and required

conditions and evaluating the characteristics of software

elements" [1]. The purpose of this test is to "provide

information about the quality of test elements in non-

functional and functional requirements" [2]. Software

quality, on the other hand, can be defined as "the extent to

which the software has the required combination of

attributes." Human error leads to product defects, which may

be involuntary behavior or produce unexpected or incorrect

results [3]. The basic principle of testing is to provide

information about software quality, failure of use, and

discovery of defects before completion.

These tests also help to better understand the system,

especially complex systems, making it an integral part of

software engineering [4].

This method is used to predict faults in a program module.

Association mining is a data mining method used to identify

frequently occurring sets of data elements. This is a way to

find the correlation between elements in a dataset [5].

The testing has long emphasized the flaws or deficiencies of

the system under different conditions. The main problem is

that the evidence manager delays the development process

and leads to limited final testing before the software is

completed. Another problem is the lack of evidence that the

test environment and manual testing or testing tools are

heavily dependent. Test environments typically do not rely

on precise configuration during software development.

There is no such problem in the test is the software test team,

around the system function, rather than looking for an

attitude, what limits the software defects they found [6].

1. OBJECTIVE

The objectives of this research are detailed below:

 To create novel dataset based on metrics extraction from

the source code

 To efficiently remove the noise in the novel dataset

using latest filtering mechanism.

 To create rule for predicting optimal fault detection.

 To create novel algorithm to predict software defects.

 Using efficient classification algorithm for better

prediction of software defects.

 Using efficient metrics and methods to evaluate the

result.

 To suggest low-cost software development processes.

 To reduce time for tracking faultiness and effort.

2. SCOPE

 Finding defects to help improve the level of quality.

 Reducing the risk of failures occurring during operation

and gain confidence about the level of quality.

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1189

Improved Hybrid Genetic algorithm

Based Rule mining (IHGBR)

Enhanced

Data

Preprocessin

g Technique

(EDPT)

PERFORMANCE

ANALYSIS

***Balanced

Accuracy

***Performa

nce Time

Novel Database of Software Metric's

(NDBSM)

 Preprocessing

Dataset

 Feature

Filtration

 Missin

g

Value

Handli

ng

Data Reduction

 Attribute
Value
reduction

 Attribut
e
Reducti
on

C,

C++

Progr

ams

set

Software

Metrics

Dataset

Metric

s

Extract

ion

 LOC
based

 McCa
bes

bas
ed

 Hal
ste
ad
bas
ed

Weighte

d

Factor

Anal

ysis

Rule

Mining

Rule

predictio

n

and

valid

ation

Proposed Algorithm to

Predict Software

Defects

 Improve management decisions by providing

information for decision making.

 Prevent defects by identifying the processes in the

organization that need improvements by gaining insight

into the system behavior.

 Implementing proposed techniques in software systems

for automatic classification and detection of software

defects

In Introduction of this research work highlights the aims,

scope and contributions. Software defects and their

measurements have also been introduced. Literature Review

is an extensive on pre-processing, feature extraction and

classifications in the field of software defect prediction. Data

mining techniques used in predicting software defects are

also highlighted in this section. In this section we discusses

in detail the creation of a novel dataset for prediction of

software defects and discusses in a novel feature extraction

technique that can be applied to dimensionality reduction

and Filtering unwanted attributes for enhanced prediction of

software defects. Finally we discusses on a new data mining

technique using two existing data mining techniques for

accurate software defect predictions. The results of the

proposed models and techniques have also been discussed in

relevance to their respective areas of application in this

paper.

II. LITERATURE REVIEW

There are many studies on using machine learning

techniques to predict software errors. For example, the study

in [2] proposed a linear Auto-Regression (AR) method to

predict defective modules. The study predicts future

software failures based on historical data on accumulated

software failures. The study also evaluated and compared the

AR model and the Known power model (POWM) using

Root Mean Square Error (RMSE) measurements. In

addition, the study used three sets of data for evaluation and

the results were promising and studied the applicability of

several ML methods in predicting faults.

Sharma and Chandra [3] added the most important prior

research on each LD technique to their research and the

current trends in using machine learning to predict software

errors. This study can be used as a basis or step in preparing

for future work to predict software errors.

R. Malhotra in [5] used Machine Learning (ML) to perform

a good systematic evaluation of software error prediction

techniques. This document includes a review of all studies

from 1991 to 2013, analyzes the ML techniques of software

error prediction models and evaluates their performance.

Different ML techniques summarize the advantages and

disadvantages of ML techniques compared to statistical and

ML techniques.

In [6], this document provides a reference point to allow for

a common and useful comparison between different error

prediction methods. The study proposes a complete

comparison between known error prediction methods, and

introduces a new method that evaluates its performance by

using a good comparison with other methods.

III. METHODOLOGY

The proposed method predicts software defects using a

predetermined pattern and analyzes by establishing a novel

database for software metrics and ends with a software

defect. This chapter details the methods, the data sets used,

and the techniques used to identify software defects.

Figure 1. Software Defect Prediction Architecture

Table 1. Software metrics and its definition

Attribute name Description

Loc McCabe's line count of code

v(g) McCabe "cyclomatic complexity"

ev(g) McCabe "essential complexity"

iv(g) McCabe "design complexity"

n Halstead total operators + operands

v Halstead "volume"

l Halstead "program length"

D Halstead "difficulty

i Halstead "intelligence"

e Halstead "effort"

b Halstead

T Halstead's time estimator

lOCode Halstead's line count

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1190

lOComment Halstead's count of lines of comments

lOBlank Halstead's count of blank lines

 lOCodeAnd

Comment

Numeric

uniq_Op unique operators

uniq_Opnd unique operands

 total_Op total operators

 total_Opnd total operands

Branch_count Total flow graphs

1. Noise Reduction

The first step followed in preprocessing is preliminary

filtration. This step removes a portion of the existing noise in

the iteration to reduce its impact on subsequent steps. More

specifically, an example of noise identified with high

confidence is eliminated in this step. This filtering is

followed by noiseless filtering. The new filter consists of

partial clean data from the previous step and is applied to the

training example to produce a clean and noisy set. The final

step is to eliminate the noise of the noise score [11].

2. Feature Reduction

An attribute with a constant/fixed value in all instances is

easily identifiable because it changes to zero. These

attributes do not have any information to distinguish

between modules, and in the best case, they are a waste of

classification resources. This work reduces redundant

attributes in the dataset/metric database. Some attributes are

repeated and reduced again. Both attributes have the same

value for each instance, resulting in an over-representation

of a single attribute [12].

3. Missing Value Reduction

The increase in the amount of data and the emergence of

data, the problem of missing data is still ubiquitous in

statistical problems, and specific methods are needed. In

view of our approach to reducing this large amount of data,

this paper proposes the application of the Random Forest

algorithm [13], which is an interpolation algorithm for the

missing data of mixed data sets. The purpose of the

algorithm is to accurately predict individual loss values

rather than randomly extracting distributions so that the

estimates can result in bias parameters estimated in the

statistical model.

4. Redundant Reduction

In this method, the numbers of studies that establish the use

of feature sub-selection techniques and which feature sub-

selection techniques are widely used are determined. It is

important that sub-selection of features is made in the input

data before the input data is provided to the learning

algorithm, as the data may contain redundant and unrelated

features. Of the 22 features selected for this system mapping,

16 studied using the feature sub-selection method, ie exactly

50% of the studies used the feature sub-selection method

[14].

5. Rule Mining

Rule mining is a classification method designed for accurate

defect measurement and prediction. Before creating a failure

prediction model, determine the learning scenario to build

the model. The data set is divided into two parts, and the

identifier learns in 60% of the data in the data set.

Knowledge is implicit in a set of rules. Rule mining consists

of two nested loops. The outer loop selects the value of the

class, while the inner loop creates rules that apply to the

class and returns the best combination for the class [15].

Define simple rules for each metric based on the

recommended time interval. These rules are activated if the

module metrics are not within the specified time interval

(which means that the module was manually verified). It

shows 12 basic rules and corresponding indicators, as well

as 2 derived rules. The first derivative rule, rule 13, defines

the separation of the 12 basic rules. If you shoot some basic

rules, it is the trigger for rule 13.

6. Clustering Techniques

The clustering technique divides the training data into

groups so that the similarity within the group is greater than

the similarity in all groups. The clustering technique uses

distance and similarity measures to find similarities between

two objects to group them. In this work, he studied K-means

technology and fuzzy c means clustering. K-means divides

the data into k clusters and iteratively randomly selects the

centroid. The value of k affects the performance of the

technology [16]. We tried four different k values (ie 2, 3, 4

and 5) and found that k = 2 tends to perform better. We also

studied the technique of fuzzy C-means [17] (FCM), which

automatically divides the data set into (approximate) optimal

number of groups [18].

IV. RESULTS AND DISCUSSION

1. Novel Database of Software Metrics (NDBSM)

The proposed software indicator NDBSM data set considers

several software indicators in real time in its collection. The

collected metrics are then subjected to a series of steps in

which the LOC, McCabes, and Halstead techniques are

applied to the creation of the database. The metrics

considered are based on completed software projects to

support the benchmarking business.

NASA IV&V Metrics Data Program - The Software Data

Set provided by the Metric Data Repository (MDP) is being

used for most experiments in software engineering and

related fields. The data repository contains software metrics

as attributes in the dataset and also indicates whether a

particular dataset is defective or defect free. All data

contained in the repository is collected and verified by the

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1191

metrics data program. All software indicators are listed in

the table 1 above.

NDBSM extracted a total of 22 attributes because it contains

5 different lines of code, 3 metrics for McCabe, 4 basic

Halstead metrics, 8 derived Halstead metrics, 1 branch count

and 1 output field.

Figure 2. Dataset metric extraction

2. Enhanced Data Preprocessing Technique (EDPT)

The NDBSM database is used as input to the EDPT. EDP T

deletes all files that are not included in the metric extraction,

namely the readme file, test scripts, and help files. In

addition, 0.2% of the "confirmation ID - filename" record

associated with the source code file (9 of the 4623 unique

tuples) is also eliminated. These records are outliers and, in

extreme cases, the source files are moved or deleted. More

specifically, the version control system identifies directory

change/refactoring as a complete deletion of the file by

default. An unusual number of rows are added or deleted

each time a file moves one or more levels up or down in the

directory structure. In some cases, including large files, more

than 10,000 rows have been added or removed in one

promise. The above cleaning leads to more accurate model

creation. Figure 4 shows the reduced EDPT record for the

data set.

Figure 3. Record Reduction

Figure 4. Attribute Reduction

3. Improved Hybrid Genetic Based Rule mining

(IHGBR)

In the current work, software metric 21 is a metric for

McCabe and Halstead and is measured using a target metric.

Using the Matlab tool, the data set is applied to the naive

Bayes classifier and the proposed algorithm. This data set is

based on a combination of structure and object orientation.

Most of the source code is written in C and C++. The study

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1192

compared the mean accuracy (values from 0 to 1 in the

table), true positive rate, false positive rate, sensitivity and

specificity. Accuracy is calculated based on the number of

instances correctly classified. Based on the results of these

analyses, the method is applicable to size data sets. The table

below uses different classifiers to accurately classify and

classify instances using the total number of instances in the

dataset. It is also highlighted based on sensitivity and

specificity values to provide the best classifier. Table 2 lists

the weight analysis of the IHGBR in the extracted features,

while Table 3 lists the weighting factors table for the

IHGBR.

Table 2. Weighted factor prediction

Rule

ID

Rule Weight

1 If LOC>150 4

 Else if LOC >101 &&

LOC <=150

3

 Else if LOC >51 &&

LOC <=100

2

 Else if LOC >25 &&

LOC <=50

1

 Else if LOC <=25 0

2 If V(G) >10 4

 Else if V(G) >7 &&

V(G) <=10

3

 Else if V(G) >5 &&

V(G) <=7

2

 Else if V(G) >2 &&

V(G) <=5

1

 Else if V(G) <=2 0

3 If ev(G) >5 2

 Else if ev(G) >2 &&

ev(G) <=5

1

 Else if ev(G) <=2 0

4 If iv(G) >10 4

 Else if iv(G) >7 &&

iv(G) <=10

3

 Else if iv(G) >5 &&

iv(G) <=7

2

 Else if iv(G) >2 &&

iv(G) <=5

1

 Else if iv(G) <=2 0

5 If V >350 2

 Else if V >100 && V

<=350

1

 Else if V <=100 0

6 If l > 0.1 1

 Else 0

7 If d >10 2

 Else if d >5 && d <=10 1

 Else if d <=5 0

8 If i >50 2

 Else if i >20 && i <=50 1

 Else if i <=20 0

9 If e >5000 4

 Else if e >3000 && e

<=5000

3

 Else if e >1500 && e

<=3000

2

 Else if e >500 && e

<=1500

1

 Else if e <=500 0

10 If t >500 4

 Else if t >300 && t

<=500

3

 Else if t >150 && t

<=300

2

 Else if t >50 && t <=150 1

 Else if t <=50 0

11 If IOBlank >50 1

 Else 0

12 If Uniq_Opr > 15 1

 Else 0

13 If Uniq_Oprnd > 35 1

 Else 0

14 If Branch_Count > 35 4

 Else if Branch_Count

>25 && Branch_Count

<=35

3

 Else if Branch_Count

>15 && Branch_Count

<=25

2

 Else if Branch_Count > 8

&& Branch_Count <=15

1

 Else if Branch_Count <=

8

0

Table 3. Weighted Factor Table

 A

1

A

2

A

3

A

4

A

5

A

6

A

7

A

8

A

9

A

10

A

11

A

12

A

13

A

14

A

15

R

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

R

2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

R

3 4 4 2 4 4 0 2 2 4 4 0 1 1 1 4

R

4 4 4 2 4 4 0 2 2 4 4 1 0 1 1 4

R

5 4 4 2 4 4 0 2 2 4 4 1 0 1 1 4

R

6 4 4 2 4 4 0 2 2 4 4 1 0 1 1 4

R

7 4 4 2 4 4 0 2 2 4 4 1 0 1 1 3

R

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

R

9 0 1 0 1 1 1 1 0 1 2 0 0 0 0 0

R

10 0 1 0 1 1 1 1 0 1 2 0 0 0 0 0

R

11 0 0 0 0 0 1 2 0 1 1 0 0 0 0 0

R

12 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

R

13 0 1 0 0 1 1 1 0 1 1 0 0 0 0 0

R

14 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

R

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R

16 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

R

17 1 2 0 1 4 0 2 1 0 3 0 0 1 1 1

R

18 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

4. RULE PREDICTION

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1193

Any attribute with a weight > 2.5 receives a prediction factor

of 1, otherwise IHGBR is zero. Table 4 lists the predictions

for the IHGBR rules, while Table 5 lists the difference

tables.

Table 4. Rule Prediction
 A

1

A

2

A

3

A

4

A

5

A

6

A

7

A

8

A

9

A

10

A

11

A

12

A

13

A

14

A

15

R

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R

3 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1

R

4 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1

R

5 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1

R

6 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1

R

7 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1

R

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R

1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R

1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R

1

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R

1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R

1

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R

1

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R

1

7 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

R

1

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Table 5. Rule Prediction Differentiation Table

 Mean Difference

(Sum(Attr_PrWeight)/15)

R1 0

R2 0

R3 0.466667

R4 0.466667

R5 0.466667

R6 0.466667

R7 0.466667

R8 0

R9 0

R10 0

R11 0

R12 0

R13 0

R14 0

R15 0

R16 0

R17 0.133333

R18 0

According to the established survey and analysis of NASA's

MDP data, the difference in mean values is > 0.407, which is

described as "software defect" in IHGBR. Table 6 lists the

prediction table IHGBR.

Table 6. Prediction Table

 Mean Difference

(Sum(Attr_PrWeight)/ 15)

Prediction

Result

Actual

Result

R1

0

No Defect No

Defect

R2

0

No Defect No

Defect

R3 0.466667 Defect Defect

R4 0.466667 Defect Defect

R5 0.466667 Defect Defect

R6 0.466667 Defect Defect

R7 0.466667 Defect Defect

R8

0

No Defect No

Defect

R9

0

No Defect No

Defect

R10

0

No Defect No

Defect

R11

0

No Defect No

Defect

R12

0

No Defect No

Defect

R13

0

No Defect No

Defect

R14

0

No Defect No

Defect

R15

0

No Defect No

Defect

R16

0

No Defect No

Defect

R17 0.133333 No Defect Defect

R18

0

No Defect No

Defect

5. PERFORMANCE MEASURES

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1194

Performance measures of IHGBR are detailed below along

with IHGBR classification results in Table 7 and Figure 5

and 6.

True Positive = a =4

False Negative = b =0

False Positive = c =13

True Negative = d = 1

Accuracy = acc = (a+d)/(a+b+c+d) = (4+1)/(4+0+13+1) =

5/18 = 99.72

probability of detection = pd = recall = d/(b+d) = 1 /

(0+1) = 1

probability of false alarm = pf = c/(a+c) = 13/17 =

0.765

precision = prec = d/(c+d) = 1/14 =

0.0714

effort = amount of code selected by detector

 = (c.LOC + d.LOC)/(Total LOC)= 1174 /1262.1 =

0.9302

Table 7. IHGBR Classification Results

Methods Sensitivity Specificity Accuracy

CM1 0.483 0.986 89.13

JM1 0.198 0.956 83.04

KC1 0.450 0.983 87.91

KC3 0.412 0.922 84.8

MC1 0.693 1 99.34

MC2 0.591 1 69.23

MW1 0.429 0.978 89.14

PC1 0.51 0.999 89.62

PC2 0 1 99.37

PC3 0.986 0.966 84.02

PC4 0.577 0.928 92.27

PC5 0.491 0.990 97.28

Figure 5. IHGBR Sensitivity and Specificity

Figure 6. IHGBR Accuracy

V CONCLUSION AND FUTURE WORK

Predicting software defects is a technique in which a

predictive model is created to predict future software failures

based on historical data. Several methods have been

proposed that use different data sets, different software

metrics, and different performance metrics. This paper

evaluates the use of algorithms proposed in software defect

prediction problems. Three machine learning techniques

have been used, namely NDBSM, EDPT and IHGBR. The

evaluation process is implemented using a real test/debug

data set. The experimental results are collected based on

accuracy, sensitivity, and specificity. The results show that

IHGBR technology is an effective method to predict future

software defects. In addition, the experimental results show

that using the IHGBR method provides better performance

for predictive models than other methods. In future the

model can be adapted to Java based open source projects and

E-Commerce networking projects using the same metrics.

0

0.2

0.4

0.6

0.8

1

1.2

Sensitivity

Specificity

0

20

40

60

80

100

120

Accuracy

Accuracy

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1195

REFERENCES

[1] Y. Tohman, K. Tokunaga, S. Nagase, and M. Y. “Structural

approach to the estimation of the number of residual software faults

based on the hyper-geometric districution model,” IEEE Trans. on

Software Engineering, pp. 345–355, 1989.

[2] A. Sheta and D. Rine, “Modeling Incremental Faults of Software

Testing Process Using AR Models ”, the Proceeding of 4th

International Multi-Conferences on Computer Science and

Information Technology (CSIT 2006), Amman, Jordan. Vol. 3.

2006.

[3] D. Sharma and P. Chandra, "Software Fault Prediction Using

MachineLearning Techniques," Smart Computing and Informatics.

Springer, Singapore, 2018. 541-549.

[4] R. Malhotra, "Comparative analysis of statistical and machine

learning methods for predicting faulty modules," Applied Soft

Computing 21, (2014): 286-297

[5] Malhotra, Ruchika. "A systematic review of machine learning

techniques for software fault prediction." Applied Soft Computing

27 (2015): 504-518.

[6] D'Ambros, Marco, Michele Lanza, and Romain Robbes. "An

extensive comparison of bug prediction approaches." Mining

Software Repositories (MSR), 2010 7th IEEE Working Conference

on. IEEE, 2010.

[7] Gupta, Dharmendra Lal, and Kavita Saxena. "Software bug

prediction using object-oriented metrics." Sādhanā (2017): 1-15.

[8] M. M. Rosli, N. H. I. Teo, N. S. M. Yusop and N. S. Moham, "The

Design of a Software Fault Prone Application Using Evolutionary

Algorithm," IEEE Conference on Open Systems, 2011.

[9] T. Gyimothy, R. Ferenc and I. Siket, "Empirical Validation of

ObjectOriented Metrics on Open Source Software for Fault

Prediction," IEEE Transactions On Software Engineering, 2005.

[10] Singh, Praman Deep, and Anuradha Chug. "Software defect

prediction analysis using machine learning algorithms." 7th

International Conference on Cloud Computing, Data Science &

EngineeringConfluence, IEEE, 2017.

[11] M. C. Prasad, L. Florence and A. Arya, "A Study on Software

Metrics based Software Defect Prediction using Data Mining and

Machine Learning Techniques," International Journal of Database

Theory and Application, pp. 179-190, 2015.

[12] Okutan, Ahmet, and Olcay Taner Yıldız. "Software defect

prediction using Bayesian networks." Empirical Software

Engineering 19.1 (2014): 154-181.

[13] Bavisi, Shrey, Jash Mehta, and Lynette Lopes. "A Comparative

Study of Different Data Mining Algorithms." International Journal

of Current Engineering and Technology 4.5 (2014).

[14] Y. Singh, A. Kaur and R. Malhotra, "Empirical validation of

objectoriented metrics for predicting fault proneness models,"

Software Qual J, p. 3–35, 2010.

[15] Malhotra, Ruchika, and Yogesh Singh. "On the applicability of

machine learning techniques for object oriented software fault

prediction." Software Engineering: An International Journal 1.1

(2011): 24-37.

[16] A. TosunMisirli, A. se Ba¸ S.Bener,“A Mapping Study on

Bayesian Networks for Software Quality Prediction”, Proceedings

of the 3rd International Workshop on Realizing Artificial

Intelligence Synergies in Software Engineering, (2014).

[17] T. Angel Thankachan1, K. Raimond2, “A Survey on Classification

and Rule Extraction Techniques for Data mining”,IOSR Journal of

Computer Engineering ,vol. 8, no. 5,(2013), pp. 75-78.

[18] T. Minohara and Y. Tohma, “Parameter estimation of hyper-

geometric distribution software reliability growth model by genetic

algorithms”, in Proceedings of the 6th International Symposium on

Software Reliability Engineering, pp. 324–329, 1995.

[19] Olsen, David L. and Delen, “ Advanced Data Mining Techniques

”, Springer, 1st edition, page 138, ISBN 3-540-76016-1, Feb 2008.

[20] L. H. Crow, “Reliability for complex repairable systems,”

Reliability and Biometry, SIAM, pp. 379–410, 1974

