
 © 2016, IJCSE All Rights Reserved 100

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-4, Issue-11 E-ISSN: 2347-2693

Improvement of Time Complexity on Pattern Matching using One -Time

Look Indexing and Data Preprocessing

S.Hrushikesava Raju
1*

, M. Nagabhushana Rao
2

1
Research Scholar, Regd.No:PP.CSE.0158, Rayalaseema University,Kurnool,A.P.

2
Professor, Department of CSE, K L University, Vijayawada, A.P.

hkesavaraju@gmail.com, mnraosir@gmail.com

Available online at: www.ijcseonline.org

Received: Oct/22/2016 Revised: Oct/31/2016 Accepted: Nov/24/2016 Published: Nov/30/2016

Abstract- There are various pattern matching algorithms which take more comparisons in finding a given pattern in the text and

are static and restrictive. In order to search pattern or substring of a pattern in the text with less number of comparisons, a

general data mining technique is used called data preprocessing which named as D-PM using DP with help of one time look

indexing method. The D-PM using DP finds given pattern or substring of given pattern in the text in less time and the time

complexity involved is less than existing pattern matching algorithms. The new Pattern Matching Algorithm with data

preprocessing (D-PM using DP) proposes Pattern Matching with dynamic search behavior and makes users should have

flexibility in searching.

Keywords— Pattern Matching, Data Preprocessing (DP), Time Complexity, Comparisons, Onetime look Indexing.

I. Introduction

Pattern Matching is considered important now days because

the operations such as searching for interested patterns in a

huge text, in encrypting certain patterns when they are

replaced with some unknown data in maintaining secrecy are

required. There are variety of applications require these type

of operations. These operations are required in defense in

order to maintain secrecy, and in searching for some wanted

data in a corporate data bases. Pattern Matching means

finding whether a pattern is substring of given text or not. If

the pattern was found in given text, output just the index of

the pattern. Otherwise, display -1 denoting that pattern is not

a substring of the text. In Pattern Matching, pattern is

preprocessed before searching in the given text. Here, is

alphabet consisting of letters used to form pattern and text

and | | is alphabet size. For some Pattern Matching

Algorithms, | | is infinite and for other Pattern Matching

Algorithms, | | is finite. There are various algorithms

proposed to find a pattern in given text. All proposed Pattern

Matching algorithms are somehow expensive in terms of

comparisons. In order to reduce time complexity, a novel

method called D-PM using DP with heuristic one time look

indexing is proposed. The first D stands for Dynamic, PM

stand for Pattern Matching and DP is a technique called Data

Preprocessing with help of one time look indexing method.

The advantage of using Data Preprocessing is a technique

that removes unnecessary characters such as several spaces

instead of a single space and makes it as single space,

rectification of unbalancing of symbols in a sentence etc.

The dynamism of Pattern Matching is achieved by

comparing pattern from its size more than half of its size to

the end of pattern. The technique or algorithm used is D-PM

using DP with help of one time look indexing works by

taking input as an array that consisting indexes of substrings

of given pattern. This technique now compares the given

pattern in the text from only those indexes which was

returned by DP with help of one time look indexing

heuristic.

Based on [1,2,4], there are few pattern Matching

Algorithms such as (i) Brute force or linear Pattern matching

which compares pattern with every occurrence of text. (ii)

Boyer Moore compares pattern with the text using two

heuristics such as looking glass and character jump and this

somehow reduced the comparison time but still involves

overhead.(iii) KMP is performed using failure function

concept and uses knowledge of previously performed

comparisons. Although it has less comparisons but still

involves overhead. The following lists the difficulties of

Pattern Matching Algorithms in which n denote Text size

and m denote Pattern size.

Based on [12,13,14], Robin Karp String Pattern Matching

Method is proposed by Michael O. Rabin and Richard M.

Karp in 1987. The advantage is it can search multiple

patterns in the given text using hash function. This work

suffers with many issues such as first is more than one

pattern having same size can have same hash value and are

considered as spurious hits other than exact match, and

second is it works only on decimal digits by converting the

alphabets of text and pattern into equivalent digits, and third

is its time complexity became worst when the pattern is of

large size and its average complexity is O(n+m) and worst

complexity is O((n+m-1)m).

mailto:hkesavaraju@gmail.com
mailto:mnraosir@gmail.com

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 101

Based on [3], Although Michael Burrows and David

Wheeler produced efficient code in determining pattern

matching in a text in 1994, this approach also called block

sorting having two drawbacks such as first is it permutes or

rotates a block of text at a time, and second is text can be

sorted. The time it takes also expensive because it rotates a

block of text, then sorts each rotated block, output the

pattern by taking only last column from those sorted blocks.

The original text can be obtained using inverse BWT

approach which is also expensive. The advantage of this

approach is although block is transformed, the characters

don‘t change value and it compress the text using BZIP2,

and GZIP2.

Based on [5,6,7], Although it is easy to search a single

character or group in a text using regular expressions which

was introduced by Regex Buddy, it suffers with many

disadvantages such as first is more effort is required to learn

syntax of regular expressions and this varies with the type of

language that are using and second is Regex class causes

memory overhead at some situations.

PM Algorithm Computation Time

Complexity

Brute Force Comparing with every

Text index

O(n*m)

Boyer Moore Last Occurrence table O(|Ε|+n*m)

KMP Failure function O(n+m)

Rabin Karp

Method

Converting pattern and

text into decimals

More time

complexity

depends on

the context

BWT Method Rotating the block of

text

Regular

Expressions

Effort to learn the style

for each new language

To avoid this overhead, the Data Mining technique called

DATA PREPROCESSIG is used and it searches the pattern

in the text from only specified indexes which are in an array

returned by one time look indexing method (heuristic) of

Data Preprocessing.

 III. Proposed Work
 The proposed technique is Dynamic Pattern

Matching using DP with help of One time look Indexing

causes producing results fastly and also results substrings of

given pattern whose size more than half of the pattern. The

advantage of producing substrings indexes is the substrings

can be replaced with some other strings at sender and are

substituted at receiver by using those indices. This prevent

any third party to know the original text. Yet safety is

provided by sending the indices in ASCII. This also makes

unknown person in understanding what those values

indicate. Yet much more safety is provided by sending octal

values of indices ASCII values. So, the receiver who aware

of the mechanism, they follow and can only interpret the

index array and can allowed to understand the original text.

In proposed, first Data Preprocessing (DP) is applied which

removes several white spaces at a place and replace with

single space, and also checks the special operators like

parenthesis, curely braces and Square Brackets are balanced,

if not balanced, it asks the user to enter text with correct

balanced symbols. Second, The output of DP is now

processed with one time look indexing method which returns

separate index array for each substring of the pattern using

indexOf() in String class. Later, Dynamic Pattern Matching

is Applied.

i) First Step: It uses DP which is a Data Mining

technique used to clean the given data. This Data

Preprocessing contain many methods in order to get quality

data. The methods it have are Data Cleaning which removes

noise, Data Integration which merges different files in to

one, Data Transformation which produces given data in to

required format, and Data reduction which produce given

data in reduced size. All these methods are not mandatory

and are required based on quality of given data. For our

problem, the data cleaning is required which removes noise

such as several spaces rather than a single space is enough,

validate the balanced symbols in given text. The following is

pseudo code which does data Cleaning:

Procedure DP_Dataclean(String text)

1. read text

2. compare every character with Space,

2.1 count the characters when adjacent characters read are

spaces.

2.2 if count>=2, keep a space instead of several spaces.

2.3 if read character is opening symbol, push it into stack.

2.4 If any later read is closing symbol, pop the stack till its

matching opening symbol is encountered.

2.5 if end of text is reached and stack found not empty,

display unbalanced text is read.

2.6 At end of text is reached and stack found empty,

display text entered is valid and is balanced symbols

text.

3. output the updated text (clean text).

ii) Second: After the text is cleaned, index arrays are

returned for the substrings of pattern whose sizes are more

than half of the pattern. This step uses one time look index

method which in turn involves indexOf(String subp). This

One time look indexing method returns index array

separately for each substring of the pattern. The following is

the pseudo code that returns array of indexes.

Procedure DP_Onetimelookindexing(String tac):

1. read the pattern and declare two dimensional array

and assume array name dsubstringind[10][10].

2. take the sub string of pattern whose size exactly one

more than half size of pattern initially.

3. compare this substring with tac string

3.1 if substring is in any portion in the tac, store its

index in dsubstringind[0].

3.2 if substring is not anywhere in tac, return -1 which

indicate substring is not in tac.

TABLEI: Drawbacks of Pattern Matching Algorithms

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 102

3.3 if the same substring occurs more than once, their

indexes are stored in dsubstringind[1 to no. of times

occurred].

4. repeat step2 for one character more size than existing

substring and increment first dimension index by 1 for

each separate substring of pattern until last but one

character of pattern is encountered.

In proposed work, First step produce text in which no noise

exists such as several spaces at a time, and no unbalanced

symbols. This First step uses data cleaning method of Data

Preprocessing. Second step produce index array for each

substring of the pattern and that array contain indexes of

matching each substring of pattern separately in first

dimension. This second step is performed using

indexOf(substring of pattern) over a text and that achieves

the functionality of One time look Indexing. One time look

Indexing method is a method that first searches sub string of

a given pattern in the given text whose size is one more than

half of the pattern size and if there are any matches found for

that substring in the text, those matched starting indexes are

stored in one unique first dimension whose index initially is

zero. Secondly, next substring of pattern is checked in the

given text whose size is one more than first substring size.

If any matches are found for second substring, those

matched starting indexes are stored in another unique

dimension whose value is 1. This procedure is repeated by

picking the substrings from pattern and search continue until

substring of pattern whose size is one less than pattern size.

The advantage of using second step is the substring of

pattern whose size is one less than pattern size are stored in

last index of dsubstringind[] first dimension. Using only that

last index array, pattern is easily found in the text and

produces the index array that contain indexes of matching

pattern in the text. The benefit of having other index arrays

is user can know indexes of substrings of text and also

sender can replace a particular substring with unknown

pattern which the third party can‘t identify. The text can be

understood only by the authorized receiver by interpreting

index as ASCII value or Octal Value, and size of substring

pattern .

The flow chart for DP with one time look indexing method

is constructed using DP_DataClean(String text) and

DP_onetimelookindexing(String tac) and is pictured as

follows:

DP_DataClean(String text) of Flowchart I is depicted in

Flowchart II.

The second step also specified in Flowchart III which

includes steps like reading pattern, reading two dimensional

array, repeating loop from substring of pattern of size

initially one more than half of pattern size till last but one

character of pattern of reached, storing indexes of each

separate substring in first dimension of two dimensional

array dsubstringind .

 Start

call DP_DataClean(String text) method

call DP_Onetimelookindexing(String tac) method

 End

FLOWCHART I: DP using OnetimelookIndexing Method

Start

 End

 Read text from user

repeat read until end

char is reached

check

with' ‗

count the

spaces

replace all

grouped

spaces with

single space

check

with

‗(‗

check

with

‗) ‗

if it

is

char

push into

stack

pop the

stack

store in

tac string

Display text of clean string

FLOWCHART II: DP_DataClean(String text) Method

T
F

stack

empty

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 103

The pictorial diagram is as follows:

IV. Results with examples

Dynamic Pattern Matching: It start search the pattern from

only indices that exist in last value of first dimension of two

dimensional array dsubstringind[][].

The array avoids comparing pattern again with text from

scratch when a mismatch occurs and it uses knowledge of

previously performed comparisons that exists in the

dsubstringind[][]. The name dynamic is given because of the

reason that searching doesn‘t begin from starting of the text

but from indices in first dimension last value only. If the

pattern matched in many places in the text, the starting

indexes of all those matched regions in the text.

The following is the pseudo procedure of D-PM(String

pattern, String tac, int dsubstringind[][]):

Procedure D-PM(String pattern, String tac,int

dsubstringind[][])

1. take dsubstringind[][] first dimension last value.

2. find first dimension last value size i.e

dsubstrinind[lastvalue].length

3. compare every index in first dimension plus pattern size -

1 location element with pattern last element

 3.1 if it is a match, assign dsubstringind[lastvalue][i] to int

array index[] where I from first index to last index.

 3.2 if not match, return -1

 3.3 repeat step3 until last index in first dimension last value

is encountered.

4. display index[]

The time consumed to do this type of pattern Matching is

O(1) for each time pattern was found in text.

The proposed methodology initially checks up the given

dataset using data preprocessing which eliminate any

inconsistencies exists in the text. Later, the refinement

pattern matching approach using onetime look indexing

method finds the pattern in the text in O(1) while starting the

actual pattern matching. This proposed approach not only

searches the pattern in one time but also maintains indices

for the substrings of the pattern. This will help the end user

in future to know the indices of the certain substrings.

Start

Read pattern, declare two dimensional array dsubstringind[][],

declare temp which is a copy of tac - output of DP_Dataclean()

take substrings of pattern

from patternsize/2+1 until

patternsize-1 is reached

take s as substring of pattern [0 to patternsize/2+i]

check with temp for

a substring

place its index in dsubstringind[j][z]=p where first index

j is 0, z-=0 initially, p is starting index of substring

 z=z+1

 p==-1

 take next substring of pattern, increment j inorder to

store next substring indexes.

for each first dimension,temp is [0 to tac.length()] for first

time and for second time should be from

tac[dsubstringind[j][z] to tac.length()]

 display dsubstrinind[][]

 End

FLOWCHART III: DP_OnetimelookIndexing(String tac)

Method

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 104

The work of D-PM is depicted in and is as follows:

IV. Results with Examples

 In this, different types of text can be assumed and a

pattern is read. Then, examine the number of comparisons

that different pattern Matching algorithms took. Also,

examine the proposed D-PM incurred comparisons.

Type I: The text contains characters in normal way in which

pattern appears in one or more places.

Assume text having pattern in only one place and

 text= abacaabaccabacabaabb, and pattern read is abacab.

The following table tells the number of comparisons that the

existing different Pattern Matching algorithms consist:

Pattern Matching Algorithm No. of comparisons

Brute force 28

Boyer Moore 13

KMP 19

Robin Karp 20

D-PM 1

Type II: Text has partial patterns at many places and has

pattern at only two or three places.

text= abacaabacababacababac , and pattern read is abacab.

The following table tells the number of comparisons that the

existing different Pattern Matching algorithms consist:

Pattern Matching

Algorithm

No. of

comparisons

for first time

No. of

comparisons for

Second time

Brute force 17 Unable to process

for second time Boyer Moore 12

KMP 13

Robin Karp 21 21

D-PM 1 1

Type III: Text have characters along with several places at

some portions and have balanced symbols.

Assume text=‖hello how are you. What are you

doing(reply) ― and pattern= ―you‖. The following table tells

the number of comparisons that the existing different Pattern

Matching algorithms consist:

Pattern Matching

Algorithm

No. of

comparisons

for first time

No. of

comparisons for

Second time

Brute force 21 Unable to process

for second time Boyer Moore 10

KMP 20

Robin Karp 21 21

D-PM 1 1

The Brute Force, Boyer Moore, KMP are static and are

restricted to search for a pattern in text once and failed to

search the same pattern again for further time. The Robin

Karp takes given text and pattern in decimal digits and

perform comparisons using modular Arithmetic and find

multiple patterns in the text. Although it is efficient using

Horners Rule, It won‘t return starting index of pattern in less

time.

Start

find dsubstringind first dimension last value array length

and store it in r

find dsubstringind[][] first dimension last value array length

and store it in c

find pattern length and store in len, take k=0, j=0 where k is

index array index, and j is dsubstringind second dimension index

compare tac[dsubstringind

[r-1][j]+len-1] with

pattern[len-1]

match

 assign dsubstring[r-1][j] to index[k]

 increment j, increment k

 return index array

End

 ++j

 j<c

F

F

FLOWCHART IV : D- PM Flowchart

DO

DO

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 105

Type IV: Text have several spaces at some portions and

have symbols which are unbalanced.

Assume text=‖hello how are you. what are you doing

(dude (reply)‖ and pattern = ―you‖.

The following table tells the number of comparisons that the

existing different Pattern Matching algorithms consist:

PM

Algorithm

Type

No. of

comparisons

difficulty / advantage

Brute force 21 Unable to preprocess text

BM 10

KMP 20

Robin Karp
21

Search multiple patterns

and it search in all the text.

D-PM 1

Asks the user with

balanced symbols text.

Then, Preprocess the given

text and dynamically finds

pattern.

By observing several examples, Dynamic Pattern Matching

(D-PM) using DP with the help of One time look Indexing

method always take O(1) time for each time pattern is found

in the cleaned text of given text.

The following graph illustrate the efficiency of the D-PM

using DP with the help of One time Look Indexing method

when compared with others. Sometimes, the efficiency of

Pattern Matching algorithms look more or less depending on

pattern and text types. Most of cases, the following

efficiency works.

V. Conclusion

 The proposed D-PM using DP with the help of One

time look Indexing search the pattern at different portions in

the text dynamically using output of

DP_OnetimelookIndexing method such as dsubstringind[][]

first dimension last value array. The D-PM start searching

the pattern in text from only the indexes exists in

dsubstringind[lastvalue] array and this avoids unnecessary

comparisons between pattern and text and produces starting

indexes of the pattern that matched in the text in less no. of

comparisons. The data Mining technique called Data

preprocessing removes any noise exists in given text and

applies Onetime look Indexing method on cleaned text. This

also supports multiple patterns to search in a text but D-PM

is called every time new pattern to search in the text. The

future extension may take all the patterns at a time which are

required to search and return all patterns starting indexes

although they occurred in text multiple times.

References

[1] Michael T.Good Rich and Roberto Tamassia,‖ Data Structures

and Algorithms in java‖,6th edition,2014.

[2] Akepogu Ananda Rao,Radhika Raju Palagiri, ‖ Data Structures

and Algorithms using C++‖,Pearson,2010.

[3] Donald Adjeroh, Timothy Bell and Amar

Mukharjee,‖TheBurrows Wheeler Transform‖,Springer,

 ISBN-13: 978-0387789088.

[4] Machael McMillan,‖ Data Structures and Algorithms using

Visual Basic.NET‖,Cambridge, ISBN-13: 978-0521547659.

[5] Svetlana, Eden,‖ Introduction to String Matching and

modification in R using Regular expressions‖, march,2007.

[6] Jeffrey.E.F.Fredl,‖ Mastering Regular Expression‖ 3rd Edition,

O,reilly publications, ISBN-13: 978-0596528126.

[7] ―Regular expressions and Matching‖,

http://modernperlbooks.com/books/modern_perl/chapter_06.ht

ml, Modern Perl 2011-12 edition.

[8] S. S. Sheik,Sumit K. Aggarwal,Anindya Poddar, N.

Balakrishnan,and K. Sekar,‖A FAST Pattern Matching

Algorithm‖,http://www.ijcta.com/documents/volumes/vol2iss

ue6/ijcta2011020624.pdf, J. Chem. Inf. Comput. Sci. 2004,

44, 1251-1256.

[9] Micheline Kamber and Jiawei Han,‖Data Mining Concepts and

Techniques‖,Second Edtion,Morgan Kaufmann Publishers,

ISBN 13: 978-1-55860-901-3 .

[10] Dorian Pyle,‖Data preparation for Data Mining‖, Morgan

Kaufmann Publishers, Inc,1999.

[11] Pang-Ning Tan, Vipin Kumar, Michael Steenbach,

―Introduction to Data Mining‖, Pearson,2006.

[12] Jonathan M. Elchison, Dr. Shompe,” The Rabin Karp

Algorithm:String Matching‖, people.cedarville. edu/Employee

/...web/.../rabin_karp_matching.ppt,2004

[13] Dynamic Pattern Matching: Efficient Pattern Matching using

Data Preprocessing with help of One time look indexing

method,csnotes.upm.edu.my/...nsf/.../StringMatching%20-

%20Part%201.ppt, ISSN:2278–132.

[14] Katey Cruz,‖String Matching using Rabin Karp Algorithm‖,

cs.smith.edu/~streinu/Teaching/Courses/252

/...af/CSC_252.PPT,2000.

[15]Pattern Matching, Algorithms in C, gauss.ececs.uc.edu/

Courses /c472/lectures/.../21PatternMatching.pdf, pp.No 1- 15

and pp.no 26-pp.no-36.

[16] Lecture Notes on Pattern Matching Algorithms,

www.cosc.canterbury.ac.nz /tad.takaoka /cosc229 /

patgeo.pdf, pp.no 48 – pp.no 54.

 N

o
.
o

f
C

o
m

p
a

ri
so

n
s

 PM Algorithm Type

GRAPH I: Efficiency of PM algorithms over No. of

Comparisons

Brute Force

Robin Karp

BM

KMP

D-PM using DP

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 106

About Authors:

Mr. S. HrushiKesava Raju, working as a

Professor in the Dept. of CSE, SIETK,

Narayanavanam Road, Puttur. He is

pursuing Ph.D from Rayalaseema

University. His areas of interest are Data

Mining, Data Structures, and Networks.

Dr. M.Nagabhushana Rao, working as

Professor in the Dept. of CSE, K L

University, Vijayawada,A.P. He had

completed Ph.D from S.V. University in

the area of Data mining. He is presently

guiding many scholars in various

disciplines.

