

 © 2017, IJCSE All Rights Reserved 8

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-2 E-ISSN: 2347-2693

OTP Generation Algorithm: A Rubik’s Cube Principle Implementation

Bose S.

1*
, and Roy Chowdhury D.

2

1*

Department of Computer Science & Application, Salesian College, University of North Bengal, Siliguri, INDIA
2
Department of Computer Science & Application, University of North Bengal, Siliguri, INDIA

*Corresponding Author: bosesubhajit87@gmail.com, Tel.: +91-9832356650

Available online at: www.ijcseonline.org

Received: 03/Jan/2017 Revised: 10/Jan/2017 Accepted: 04/Feb/2017 Published: 28/Feb/2017

Abstract— A One-Time Password (OTP) is an auto - generated, string of characters (password) that validates the user

to carry out a single transaction or session on digital devices like a Computer, Smartphone, Tablet etc. Various unique

techniques underwent implementation time and again for producing an optimal and efficient OTP. In most of the

techniques, the OTP generated is of a shorter length and comprised of only letters of English alphabet (a – z, A - Z),

digits (0 – 9) and characters like @ etc. In this paper a novel approach for generating One-Time Password (OTP) has

been proposed using Rubik’s cube principle based on a 4 × 4 cube in which each box of the cube is labeled with

characters present on the keyboard such that when the layers of the cube are scrambled in various ways, it creates a 16

character OTP. This technique using Rubik’s cube have never been applied before to generate an OTP.

Keywords- One TimePassword(OTP); Hash Function; Random Function; Replay Attacks.

I. INTRODUCTION

Security on the Internet is an issue of major concern. The

Internet is an unsafe medium where exchanging information

might lead to intrusion or fraudulent activities by web

mechanisms such as phishing.

Different techniques had been

implemented to protect information which passes through

this insecure channel, one of them being Cryptography .

Consequently, the digital lock and keys (user ids and

passwords) that users keep with them are no longer

completely safe as their user ids and passwords can easily get

stolen through programs such as spyware or through

phishing. This is the reason for which, while doing online

financial transaction, we are being asked to generate an OTP

which is being sent to the user’s cell phone to validate the

person who is doing this transaction to be the authentic user

of the debit/credit card that is being used in the transaction

and not somebody else who is impersonating the actual user.

Hence, a 2-Step Verification procedure, which is being

provided by well-known websites such as Google, should be

implemented by every user to add one more layer of security

to their account.

First, through something they have (their account password)

and second, through something they receive (an OTP that is

being sent to their cell phone). The reason is that if a

password is compromised, the OTP would still have to be

broken as well to gain access.

OTPs cater to the numerous flaws that are related with the

traditional password oriented verification system. To

implement the OTP, a user must have a phone apart from the

user id and password or pin that is known to the user, as the

OTP will be sent to the phone.

The best thing about OTPs is, compared to static passwords;

they are not defenceless against replay attacks. Another

important feature that an OTP provides is, if a person

maintains the same password on multiple systems or

accounts then that person is not defenceless on all of them, if

the password is stolen by a hacker.

OTP generation algorithms basically employ randomness and

hash functions so that it becomes difficult for an attacker to

predict consecutive successor OTPs by observing previous

ones.

The various ways by which OTPs can be generated are given

below:

 Using a time-synchronization mechanism between the

authentication server and the client providing the

password

 Using a mathematical algorithm to create an OTP based

on the previous OTP
 Using a mathematical algorithm where the new

password is based on a challenge and/or a counter.

The remaining portion of the paper is organized as follows:

In the next section (Section - II) some of the contemporary

algorithms which had been developed as related research are

described briefly. In Section – III the steps that are to be taken

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 9

before carrying out the proposed method are described. In

Section – IV, terminologies related to the proposed method

have been detailed. Section – V covers the OTP generation

algorithm based on Rubik’s cube principle. Experimental

results based on the proposed method are presented in Section

- VI. Finally, the paper concludes in Section – VII.

II. RELATED RESEARCH WORK

Till now, there have been quite a lot of research activities in

the field of Internet Security through OTP generation. Many

algorithms had been developed, some completely new while

the others are based on existing ones. Several algorithms are

available in literature.

Tamanna Saini [1] proposed an OTP creation method by

using Genetic Algorithm with Elliptic Curve Cryptography

wherein when a user logs in using his/her username and

password, the Server after validating the user encrypts the

username and password and then sends both the username

and password as input to an OTP generator which selects two

alphabets from the encrypted data and then using genetic

algorithm and elliptic curve cryptography generates the

required OTP.

Yun Huang, Zheng Huang and Haoran Zhao [2] proposed

TSOTP: a new effective simple OTP method that generates a

unique passcode for each use. The calculation uses both time

stamps and sequence numbers. In their OTP prototype, they

first calculate an OTP based on time stamps to avoid high

computation cost on the claimant side and to detect forced

delay attacks. Due to message transit time, processing time

and clock drift, an acceptance window is used by the verifier.

Himika Parmar, Nancy Nainan and Sumaiya Thaseen [3]

proposed an authentication service that is image based and

which eliminates the need for text passwords. Using the

instant messaging service available in internet, users will

obtain the One-Time Password (OTP) after image

authentication. This OTP then can be used by users to access

their personal accounts. The image based authentication

method relies on the user’s ability to recognize pre-chosen

categories from a grid of pictures. This paper integrates

Image based authentication and HMAC (Hash Message

Authentication Code) based one-time password to achieve

high level of security in authenticating the user over the

internet. These algorithms are very economical to implement

provided they are time synchronized with the user.

Sonal Fatangare and Archana Lomte [4] proposed a system

in which an OTP user authentication protocol leverages a

user’s cell phone and short message service to resist

password stealing and password reuse attacks. Through their

system, users will have to only remember a long term

password for login on all websites. It uses one time password

strategy. Their Protocol is efficient and affordable compared

to the conventional web authentication mechanism. Their

design principle is to remove the negative influence of

human factor as much as possible. It only requires each

participating website possess a unique phone number and

involves a registration and a recovery phase.

Neha Vishwakarma and Kopal Gangrade [5] proposed an

image based time synchronized OTP generation method

system that uses random image and text based OTP

generation with SHA-512 algorithm and encryption by ECC

method to produce a secured two factor, one time password.

III. PREREQUISITE TO THE PROPOSED METHOD

To implement the proposed method we need a 4 × 4 Rubik’s

cube which has to be tagged with printable characters present

on a keyboard on each of its side faces.

The printable characters include the following:

10 Digits: 0123456789

26 Lower case letters: abcdefghijklmnopqrstuvwxyz

26 Upper case letters: ABCDEFGHIJKLMNOPQRSTUV

 WXYZ

34 special characters: `~!@#$%^&*()-_=+[]\{}|;‘’: “”,./<>?

The following diagrams explain the tagging process:

1. We can start tagging with any side of the cube. Let us

choose the side having green stickers on it and name it as

Side - G. We begin tagging with the uppercase letters by

allotting ABCD in the 1
st
 row, EFGH in the 2

nd
 row, IJKL

in the 3
rd

 row and so on, as depicted in Fig. 1.

A B C D

E F G H

I J K L

M N O P

Figure 1. Side – G

2. As all the 26 uppercase letters cannot be accommodated

on one side face, we continue the tagging process by

allotting the remaining uppercase letters on the side on its

right edge, that is, the side having red stickers on it. We

name this side as Side – R. After allotting the remaining

uppercase letters, we are still left with 6 untagged boxes.

To fill these boxes, we now begin tagging with the

lowercase letters as depicted in Fig. 2.

Q R S T

U V W X

Y Z a b

c d e f

Figure 2. Side – R

3. Again, as all the 26 lowercase letters cannot be

accommodated on Side - R, we continue the tagging

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 10

process by allotting the remaining lowercase letters on

the side on its right edge, that is, the side having blue

stickers on it. We name this side as Side – B as depicted

in Fig. 3.

g h i j

k l m n

o p q r

s t u v

Figure 3. Side – B

4. After tagging Side – B with the remaining lowercase

letters, we found that the last 4 letters – w, x, y and z

could not be tagged on Side – B. So, we continued the

tagging process by allotting the remaining 4 lowercase

letters on the side on its right edge, that is, the side having

orange stickers on it. We name this side as Side – O.

After allotting the remaining lowercase letters, we are

still left with 12 untagged boxes. To fill these boxes, we

now begin tagging with the digits 0 to 9, followed by the

special characters as depicted in Fig. 4.

w x y z

0 1 2 3

4 5 6 7

8 9 ` ~

Figure 4. Side - O

5. Again, as all the special characters cannot be

accommodated on Side - O, we continue the tagging

process by allotting the remaining special characters on

the side on its upper edge, that is, the side having white

stickers on it. We name this side as Side – W as depicted

in Fig. 5.

! @ # $

% ^ & *

() - _

+ = []

Figure 5. Side – W

6. After tagging Side – W with the remaining special

characters we found that all could not be accommodated

there. So we continued the tagging process by allotting

the remaining special characters on its opposite side, that

is, the side having yellow stickers on it. We name this

side as Side – Y as depicted in Fig. 6.

\ { } |

; : , .

“ ” ‘ ’

< > / ?

Figure 6. Side - Y

A very important point to be noted from the above tagging

process is, we can begin tagging from any side of a Rubik’s

cube as mentioned earlier and that also with any set of

characters (uppercase letters or lowercase letters or digits or

special characters). Once we finish off tagging characters on

one side, it is up to us to decide as to which side we should

continue with, that is, the side on the left, right, top or bottom

edge of the current side face of the cube, for tagging the

remaining characters of a particular character set.

Also, once we finish off tagging characters of a particular

character set and we are left with untagged boxes on that side

face of the cube, it is again up to us to decide which character

set, next, we should begin with tagging again. For instance,

when we completed tagging the uppercase letters we found

that there were 6 untagged boxes on Side – R, that time we

had the option of taking up either lowercase letters or digits or

special characters. We took up lowercase letters for tagging

those boxes.

IV. TERMINOLOGIES FOR PROPOSED METHOD

Layers: Each row or column on any side face of a Rubik’s

cube represents a layer.

Boxes: We will designate each and every square on all the

side faces of a Rubik’s cube as boxes. The figure below

illustrates it.

Figure 6. A side view of a Rubik’s Cube

V. PROPOSED METHOD

The study will need several random functions to be

implemented on various parameters to determine how to

scramble a Rubik’s cube to produce a 16 character OTP

which will then be sent to users so that they can login to their

accounts.

The parameters are:

Layers

L
a
y
e
r
s

Box

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 11

Side Face: There are six side faces in a Rubik’s cube. We

need to determine the base side on which the scrambling will

be done to produce the 16 character OTP.

Let RSF be a random function which will determine the base

side face by generating randomly an integer value, in the

range from 1 to 6, where SF stands for Side Face. The values

and the corresponding side faces they represent are given

below:

 1: Side – G (Green)

 2: Side – R (Red)

 3: Side – B (Blue)

 4: Side – O (Orange)

 5: Side – W (White)

 6: Side – Y (Yellow)

Layers: Once the base side face is selected, we have to find

out how many layers have to be rotated considering both the

horizontal and the vertical layers. Again, for those layers that

will rotate, we also have to find out, how many times each of

these layers will rotate and in which direction.

For this to happen ,we must first label the layers as HL1,

HL2, HL3, HL4 for the horizontal layers and VL1, VL2,

VL3, VL4 for the vertical layers as depicted in Fig. 7.

Figure 7. Labelling of layers of base side face

As there are 4 layers in each direction, we will iterate a

random function, say RLM, inside a loop 4 times with the

layer position to generate an integer value, in the range from

0 to 1 where 1 denotes that the layer will rotate and 0 denotes

that the layer will not rotate and also, a counter to keep count

of how many layers will rotate. If at the end of the 3
rd

iteration, the counter has value 3, we will come out of the

loop else continue with the iteration. This is done so that, the

counter value never exceeds 3 as we would like to retain

some of the characters of base side face before the

scrambling took place. This process will repeat twice once

for the horizontal layers and once for the vertical layers.

Now, a situation arises where we have to decide which loop

to start with, the loop for the horizontal layers or the loop for

the vertical layers. So, we will use a random function RHV to

determine the layer direction by generating an integer value,

in the range from 1 to 2 where 1 denotes horizontal layer and

2 denotes vertical layer. After the iterations with either of the

horizontal or the vertical layer is over, we will reset the

counter value to 0 for the next set of iterations with the other

direction layers.

Also, inside the loop whenever RLM generates 1 for a

particular layer in a particular direction we should know

which way it will rotate and how many times it will rotate.

For instance, if the layer is a horizontal layer and RLM

generates 1 for it then, we have to find out which way it will

rotate, that is, left to right or right to left and that also how

many times. Similarly, if the layer is a vertical layer and RLM

generates 1 for it then, we have to find out which way it will

rotate, that is, top to bottom or bottom to top and that also

how many times.

Considering the above situation, we need 3 random functions

to solve the problem. Let the random functions be denoted by

RDLR, RDTB and RLMF where, DLR stands for Direction Left

Right, DTB stands for Direction Top Bottom and LMF

stands for Layer Movement Frequency. When we will work

with the horizontal layers, the random functions RDLR and

RLMF will be used where RDLR will determine whether a layer

will rotate from left to right or right to left and RLMF will

determine, how many times a layer will rotate in a particular

direction. Similarly, when we will work with the vertical

layers, the random functions RDTB and RLMF will be used

where RDTB will determine whether a layer will rotate from

top to bottom or bottom to top and RLMF will determine, how

many times a layer will rotate in a particular direction.

The values and the directions represented by the random

functions RDLR and RDTB are as given below:

For RDLR ,

 1: Left to Right

 2: Right to Left

For RDTB ,

 1: Top to Bottom

 2: Bottom to Top

As far as, the function RLMF is concerned, it will randomly

generate integer values in the range from 1 to 3 to determine,

how many times a layer will rotate in a particular direction.

The algorithm for the above proposed method is as follows:

Step 1: START

Step 2: Select a side face of a Rubik’s cube to

HL1

HL2

HL3

HL4

VL1 VL2 VL3 VL4

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 12

 generate an integer value using random

 function RSF.

Step 3: Generate an integer value using random

 function RHV and store it in RHV.

Step 4: Initialize count with 0.

Step 5: If RHV = 1, then:

 Step 5a: Repeat Steps i, ii, iii for I = 1 to 4 by 1:

 Step i: Generate an integer value using random function

 RLM for Layer I and assign it to RLM.

 Step ii: If RLM = 1, then:

 Generating an integer value using random

 function RDLR and assign it to RDLR.

 If RDLR = 1, then:

 Generate an integer value using random

 function RLMF and assign it to RLMF.

 Rotate the Layer I RLMF times from left

 to right.

 Else

 Generate an integer value using random

 function RLMF and assign it to RLMF.

 Rotate the Layer I RLMF times from

 right to left.

 End If

 Increment count by 1.

 End If

 Step iii: If count = 3, then:

 Break out of the Loop

 End If

 End For

 Step 5b: Reset count to 0

 Step 5c: Repeat Steps i, ii, iii for J = 1 to 4 by 1:

 Step i: Generate an integer value using random function

 RLM for Layer J and assign it to RLM.

 Step ii: If RLM = 1, then:

 Generating an integer value using random

 function RDLR and assign it to RDTB.

 If RDTB = 1, then:

 Generate an integer value using random

 function RLMF and assign it to RLMF.

 Rotate the Layer J RLMF times from top

 to bottom.

 Else

 Generate an integer value using random

 function RLMF and assign it to RLMF.

 Rotate the Layer J RLMF times from

 bottom to top.

 End If

 Increment count by 1.

 End If

 Step iii: If count = 3, then:

 Break out of the Loop

 End If

 End For

Else If

 Step 5a: Repeat Steps i, ii, iii for J = 1 to 4 by 1:

 Step i: Generate an integer value using random function

 RLM for Layer J and assign it to RLM.

 Step ii: If RLM = 1, then:

 Generate an integer value using random

 function RDLR and assign it to RDTB.

 If RDTB = 1, then:

 Generate an integer value using random

 function RLMF and assign it to RLMF.

 Rotate the Layer J RLMF times from top

 to bottom.

 Else

 Generate an integer value using random

 function RLMF and assign it to RLMF.

 Rotate the Layer J RLMF times from

 bottom to top.

 End If

 Increment count by 1.

 End If

 Step iii: If count = 3, then:

 Break out of the Loop

 End If

 End For

 Step 5b: Reset count to 0

 Step 5c: Repeat Steps i, ii, iii for I = 1 to 4 by 1:

 Step i: Generate an integer value using random function

 RLM for Layer I and assign it to RLM.

 Step ii: If RLM = 1, then:

 Generate an integer value using random

 function RDLR and assign it to RDLR.

 If RDLR = 1, then:

 Generate an integer value using random

 function RLMF and assign it to RLMF.

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 13

 Rotate the Layer I RLMF times from left

 to right.

 Else

 Generate an integer value using random

 function RLMF and assign it to RLMF.

 Rotate the Layer I RLMF times from

 right to left.

 End If

 Increment count by 1.

 End If

 Step iii: If count = 3, then:

 Break out of the Loop

 End If

 End For

End If

Step 6: Generate OTP by writing the characters on the base

 side face of the cube in row-order format. That is,

 HL1 followed by HL2 then HL3 and finally HL4.

Step 7: STOP

VI. EXPERIMENTAL RESULTS

The proposed algorithm was tested to find out what type of

OTP it generates. The Table I given below gives a

summarized result of the testing:

TABLE I. RESULTS OF THE STUDY

R
S

F

B
A

S
E

 S
ID

E

R
H

V

L
A

Y
E

R
S

R
L

M

R
D

L
R

R
D

T
B

R
L

M
F

G
E

N
E

R
A

T
E

D

O
T

P

1

G
R

E
E

N

1

HL1 1 1

NA

2

g
h

ij
E

F
G

H
4

5
6

7
w

x
y

z HL2 0 NA NA

HL3 1 2 3

HL4 1 1 1

VL1 0

NA

NA NA

VL2 0 NA NA

VL3 0 NA NA

VL4 0 NA NA

2

R
E

D

2

VL1 1

NA

1 2

g
h

#
D

k
l&

H
o
p

-

L
st

[P
 VL2 1 2 2

VL3 1 2 3

VL4 0 NA NA

HL1 0 NA NA NA

HL2 0 NA NA

HL3 0 NA NA

HL4 0 NA NA

VII. CONCLUSION & FUTURE WORK

This paper proposes a novel approach for generating One-

Time Password (OTP) using Rubik’s cube principle on a 4×4

cube in which the layers of the cube are scrambled in various

ways to produce a 16 character OTP. This technique using

Rubik’s cube have never been applied before to generate an

OTP. Experimental results reveal that the generated 16

character OTP is quite effective.

Future improvements to the proposed method will focus on

reducing the size of the OTP and optimizing the algorithm to

increase its efficiency.

REFERENCES

[1] Saini T., “One Time Password Generator System”,

International Journal of Advanced Research in Computer

Science and Software Engineering, Vol.4(3), pp.781–785,

March 2014.

[2] Huang Y., Huang Z., Zhao H., Lai X., “A new One-time

Password Method”, In the Proceedings of 2013 International

Conference on Electronic Engineering and Computer Science

, pp.32–37, 2013.

[3] Parmar H., Nainan N. and Thaseen S., “GENERATION OF

SECURE ONE-TIME PASSWORD BASED ON IMAGE

AUTHENTICATION”, In the Proceedings of Academy &

Industrial Research Collaboration Center - Computer Science

Conference Proceedings, pp.195- 206, 2012.

[4] Fatangare S., Prof. Lomte A., “Robust OTP Generation Using

Secure Authentication Protocol”, International Journal of

COMPUTER TECHNOLOGY AND APPLICATIONS,

Vol.5(2), pp.546-552, March – April 2014.
[5] Vishwakarma N., Gangrade K., “Secure Image Based One

Time Password”, International Journal of Science and

Research, Vol.5(11), pp.680–683, November 2016.

Authors Profile

Mr. Subhajit Bose completed Bachelor of

Computer Application from Information

Technology Centre, University of North

Bengal in 2008 and Master of Computer

Application from Department of Computer

Science & Application, University of North

Bengal in 2011. He is currently working as

Assistant Professor in Department of

Computer Science & Application, Salesian College. His main

research work focuses on Artificial Intelligence, Data Mining,

Cryptography algorithms. He has 5 and half years of teaching

experience.

email: bosesubhajit87@gmail.com

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 14

Dr. Dilip Roy Chowdhury is working as

Asst. Professor in the Department of

Computer Science and Application at the

University of North Bengal. Before that, he

has served Dept. of Computer Science &

Application, Gyan Jyoti College, as HOD

and took other administrative responsibilities

along with regular teaching job. Dr. Roy

Chowdhury’s main research interests lies with the design and

implementation of Expert System Development using Artificial

Intelligence and Soft Computing techniques. Besides, he is

continuing his research in the fields of Artificial Neural

Networking, Data Mining, Rough Set Computing, Knowledgebase

Design and Information Retrieval. He has more than 40 research

publications in various national and international journals of repute.

He is associated with various national and international journals of

repute as a member of reviewing committee and editorial

committee.email: diliproychowdhury@gmail.com

.

