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Abstract— Exploiting the computation potential of multi-core Graphics Processing Units (GPUs) requires reducing 

memory access latency and memory transfer overheads. Although the GPUs provide fast processing capabilities, the 

memory on such devices is significantly less. Though the memory hierarchy of GPUs provide certain fast levels, these are 

limited in terms of storage. Also, in order to use the GPUs for computation, the data must be transferred into the memory 

of the same; hence, in order to reduce the memory latency for large volume of data transfer, efficient techniques are 

required. Analysis of graph data on GPUs have many practical applications, and has been studied by both academia and 

industry. The graph data must be stored on the GPU memory to perform computation and analysis on the same. There are 

different data structures that can be used to store graphs in the GPU memory. Employing compression techniques to reduce 

the size required by the data is useful; however, the computation must be performed on the compressed data itself since 

decompressing the data would not be feasible. In addition to saving space on the device, using compressed data structures 

also reduces the memory transfer overheads both between the CPU & GPU, and between the various levels in the memory 

hierarchy of the GPU, thereby compensating for some of the additional time to retrieve information from the compressed 

data. Storing data using efficient compression techniques and operating on the compressed data is therefore useful. 

Quadtree data structures are generally used for storing and representing images for various applications. However, graphs 

when represented as adjacency matrix are comparable to images; hence, using recursive partitioning techniques, the data 

can be effectively compressed. In this paper, we show techniques based on quadtrees to efficiently compress graph data for 

storing and computation on GPUs. Additional techniques are also introduced which result in hybrid data structures that 

perform better for specific cases. Empirical results show 80-90% decrease in the space requirements to store graphs with 

real-world properties.  

 

Keywords—Compression, Quadtree, Graph Compression, GPUs 

 

I.  INTRODUCTION  

 

Graphs represent data from a wide domain of applications. 

In general, the graph data is stored using either an 

adjacency matrix or an adjacency list. Based on the 

sparsity of the graph and special characteristics, the choice 

varies between the two. For sparse graphs, where there are 

significant number of 0 values, storing the data in an 

adjacency list is efficient. For denser graphs, where storing 

each element i.e., edge information separately would result 

in a lot more memory usage, using an adjacency matrix is 

effective. In any case, reducing the memory requirement 

overhead for computation is required and is a challenge 

that needs to be addressed using advanced techniques. 

 

Solving graph problems on GPUs have many applications 

[1] [2] [3] [4]. Nvidia GPUs with Compute Unified Device 

Architecture (CUDA) can be employed for solving many 

general purpose real-world problems. For the purpose of 

computation using GPUs, the required data must be copied 

from the CPU and stored on the GPU memory; the 

objective is to store the data in the level of memory in the 

hierarchy which has the least memory access overhead 

latency [5].  Also, since copying data from the CPU to the 

GPU adds a significant overhead, being able to reduce the 

total data required to be transferred between the host and 

the device increases the performance gained by 

transferring the computation to the device. There are 

different techniques that can be employed to perform 

computation on large graphs [6] [7][8]. But even with 

dividing the graph data using vertical or horizontal 

splitting, the resulting components of data that is required 

for any computation might not fit in the memory level with 

least access latency, or in the worst case might not fit on 

the device at all. Therefore, efficient techniques need to be 

designed to compress the data and store it in the given 

memory. 

 

The compressed data should fit on the memory; however, 

some techniques require decompressing the data before it 

can be used for computation. Such techniques would be 

limited in applications in the case of limited memory. 

Therefore, it is essential for computations to be performed 

on the compressed data rather than decompressing it. In 
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addition, there would be added complexity for retrieving 

adjacency information from compressed data, which needs 

to be taken into account when designing the algorithms for 

compression. 

 

In this paper, we propose using quadtree based 

compression techniques to effectively reduce the storage 

requirements for graphs to be computed using GPUs. 

Following is the outline of the paper. Related work on 

graph compression is presented in Section II. This Section 

also discusses methods related to compression of data 

irrespective of the domain it belongs to. In Section III, we 

provide an algorithm to generate quadtree for a given 

graph from its adjacency matrix. In Section IV, we provide 

an algorithm that introduces a hybrid approach that 

modifies pure quadtree and combines it with other data 

structures to improve space requirements. Implementation 

results are discussed in Section V. Conclusion is presented 

in Section VI. 

 

II. RELATED WORK  

 

Graph compression techniques like other methods for 

compression can be broadly classified into either lossy or 

lossless compression. For lossy compression techniques, 

the data in the original form cannot be fully recovered. In 

case of lossless techniques, after decompression or when 

accessing the compressed data, the adjacency information 

in the original form can be fully recovered. For sensitive 

data, lossless techniques are favored; while lossy 

techniques can be used for storing or transmitting data that 

has a higher threshold for errors. In this paper, we focus 

our techniques on graphs that store data which are sensitive 

and therefore required lossless compression. 

 

A. Classification of techniques 

In general, the majority of compression algorithms for 

graph data can be broadly classified into the following 

groups. 

 

• Identifying and Replacing common structures: Graphs 

can have certain structures in them which can be easily 

identified and replaced with something that takes a smaller 

memory. For example, if a graph contains a clique, which 

is a completely connected subgraph, then instead of storing 

the adjacency information with all the nodes and edges, an 

identifier in the form of a special node can be stored to 

represent the specific structure. 

• Similar Adjacency Information: Graphs can contain 

nodes that share similar adjacency information with certain 

other nodes. Instead of storing the same information for a 

set of nodes, an identifier can be stored instead which 

indicates the presence of certain common adjacency 

information. Even differential techniques can be employed, 

where minor differences can be encoded instead of storing 

the entire information for neighborhoods that differ in the 

adjacency information within certain predefined threshold. 

Based on the above mentioned principles, various 

techniques have been proposed and studied. Some 

techniques work well for graphs with specific properties. 

However, the initial overhead of processing the graph data 

to aide in the compression should also be taken into 

account while calculating the overall effectiveness of any 

method. 

 

B. Graph Compression Related work 

Techniques to address graph compression has been 

developed over long time and there are many that have 

been studied. Finding and replacing common structures 

with an identifier that requires less space is one such 

method. In a complete bipartite graph Km,n the m×n edges 

need not be stored separately and can be replaced using a 

special node and additional m+n edges [9] [10]. 

 

A graph can be used to model the web, where the nodes are 

the different addresses and the edges are the links between 

the same. In this case, there are many subgraphs that share 

the same adjacency information. Hence, using pointers to 

similar adjacency information and differential techniques 

for the additions and deletions help gain significant 

compression [11]. 

 

Exploiting locality information and using common 

neighborhoods can be an effective technique that 

specifically works well for power law graphs and can be 

used to compress the same [12]. 

 

For graphs that exhibit a natural order, leveraging 

lexicographic ordering along with adjacency information is 

an efficient technique in compressing graphs [13]. Using 

separators, i.e., a subset of vertices whose removal does 

not disconnect the graph, is also an efficient technique 

[14]. Even for separators that disconnect the graph, using a 

recursive framework on the resulting components can 

achieve compression of the graph data. 

 

Graph compression techniques are also employed to study 

biological networks. Since it is difficult to compare large 

biological networks with one another, using data 

compression to reduce the size of the data helps in 

comparative study [15]. 

 

In our previous work we discuss solving graph problems 

on GPUs. We have earlier introduced a number of 

algorithms and data structures for efficient computation on 

graph data [16]. In this paper, we extend our work to 

increase the amount of data that can be stored on the GPUs 

for computation by introducing quadtree based graph 

compression. 

 

III. QUADTREE REPRESENTATION 

 

Quadtrees are generally used to represent images in two 

dimensional space. The basic idea is to limit the number of 

significant values in any region. For example, in the most 

common form of quadtree, which is a point-region 

quadtree of in short PR quadtree, the target is to limit the 

number of significant values to 1 in any region. This is 
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done by recursively sub-dividing the regions into 

quadrants, until there is an acceptable number of 

significant values in each. Once a region or quadrant 

reaches the target, further sub-division is not required; for 

other regions, the process continues. The regions are 

represented as nodes in the quadtree, and each internal 

node has exactly 4 children [17]. 

 

Specifically, for the PR-quadtree, the target number of 

significant values in a region is limited to 1. Therefore, the 

regions are recursively sub-divided until the number of 

points in each region is 1 or less. The equivalent quadtree 

for the sample points shown in Fig. 1 is given in Fig. 2. 

 

A. Graphs as Quadtree 

Graphs can be stored using Quadtree representation. Con 

sidering the adjacency matrix, the neighborhood 

information is stored as 0’s and 1’s. Now, using certain 

identifiers, the adjacency matrix can be represented as 

quadrants of data. A quadrant can be represented as a leaf 

in the quadtree representation if it matches with the data 

corresponding to the identifier. 

 
Fig. 1. Sample data points for a 2-D region 

 

 
Fig. 2. The PR-Quadtree for the region shown in Fig. 1 

 

In other cases, further sub-divisions are required. Hence, 

using such a method, the adjacency information of the 

graph is represented as a Quadtree which is a bit array. The 

bit array consists of the following data for each of the 

quadrants: 

• 0: all 0’s 

• 1: all 1’s 

• 2: 0’s in diagonal, and rest 1’s 

• 3: sub-division required 

Because this technique considers only 4 types of values, 2 

bits can be used to represent each quadrant in the bit array. 

As an example, consider the graph shown in Fig. 3. 

 

 
Fig. 3. A sample graph 

 

The adjacency matrix of the graph is taken into 

consideration for converting the graph data into an 

equivalent quadtree. The adjacency matrix for the graph in 

Fig. 3 is given in Fig. 4. 

 

 
Fig. 4. Adjacency matrix of graph shown in Fig. 3 

 

The quadtree representation of the given graph is shown as 

Follows in Fig. 5. 

 

 
Fig. 5. Quadtree representation of graph shown in Fig. 3 
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The quadtree contains 4 nodes in the representation. The 

first node indicates there is no match, so a corresponding 

value of 3 is added to the bit array and further sub-division 

is done. For the resultant quadrants, each matches with one 

of the identifiers. Finally, the quadtree byte stream is given 

by Q = {3,0,1,1,0}. The values of 0, 1, 1 and 0 represents 

the data after the division and corresponds to respectively 

the top-left, top-right, bottom-left and bottom-right 

quadrants. 

 

The method for quadtree generation is given in Algorithm 

1. The input is the adjacency matrix representation of the 

graph. The method CheckUniformity checks whether the 

given adjacency matrix data matches any of the pre-

defined uniform data values i.e., all 0’s or all 1’s etc. Based 

on the provided data, the checking is done and the 

identifier corresponding to the matching pattern is 

returned. For example, a 0 is returned for all 0’s, a 1 is 

returned for all 1’s, a 2 is returned for diagonal 0 values 

and remaining 1’s and a 3 is returned if no match is found. 

If a value of 0, 1 or 2 is returned from the method, 

 

 
 

then it is added to the bit representation of the quadtree; for 

a returned value of 3, the Algorithm 1 is called recursively 

for each of the resulting quadrants of the matrix that are 

generated by using the method DivideIntoQuadrants. In 

this case, the algorithm loops over total of n 2 elements in 

each of the levels of the quadtree, where |V | = n for the 

given graph G = (V,E). For the worst case scenario, there 

are log2n levels in the quadtree; hence for the algorithm to 

traverse through the levels and generate the quadtree, the 

time complexity is given by O(n
2
log2n). 

 

B. Compression leveraging quadtree 

Consider a sample graph of 8 nodes as shown in Fig. 3. 

The adjacency matrix information for the corresponding 

graph is given in Fig. 4. Assuming each of the values in the 

adjacency matrix can be stored in a single bit, the number 

of bits required to store the adjacency matrix information is 

64 bits. Now, considering the quadtree representation of 

the same graph, it can be seen in Fig. 5, there are only 5 

elements in the tree. Taking into account our 

representation, where each value takes 2 bits, the total 

number of bits required is 10. Therefore, from this example 

it is evident that efficient compression can be achieved by 

leveraging the quadtree representation of graphs. 

 

C. Numbering matters 

In this sub-section we discuss how even with the same 

structure of the graph, the numbering of the nodes can play 

a significant role in the achieved compression using 

quadtrees. Considering the graph shown in Fig. 6 and the 

corresponding adjacency matrix and quadtree 

representation. The structure of the graph is same as the 

one considered before as shown in Fig. 3.  

 

However, due to the difference in numbering and the 

corresponding change in the adjacency matrix structure, 

this quadtree has 21 elements instead of the 5 before, and 

therefore requires 42 bits instead of the 10. In the case of 

the renumbered graph, 

 

 
Fig. 6. Sample graph with nodes numbered in a specific way 

 

 
Fig. 7. Adjacency matrix for the sample graph shown in Fig. 6 

 

since the adjacency matrix changed, the corresponding 

quadtree also changed resulting in having 21 elements 

compared to just 5 elements. Now, for the quadtree 

representation, the size of the resultant structure is directly 

proportional to the number of matching quadrants. Since 

the structure of the adjacency matrix is dependent on the 
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node numbering, even with the same structure, the 

adjacency matrix for some cases might have a better match 

with the patterns as compared to others. Therefore, the 

numbering of the nodes in the graphs have a significant 

effect in the overall compression achieved by using the 

quadtree representation. 

 

IV. HYBRID APPROACH 

 

The quadtree representation requires uniformity in the 

quadrants or specifically in the case of PR-Quadtrees, a 

single point in a region for the recursive sub-division to 

stop. However, it can be noted that when recursive sub-

division occurs for quadrants containing smaller number of 

bits, the memory required to store the quadtree 

representation is more than what is needed to store the raw 

data itself. Hence, the quadtree representation is effective 

when large quadrants of data can be replaced using 

identifiers; however, is inefficient for smaller sized 

quadrants that require sub-division. So, we propose a 

hybrid approach, where the larger quadrants are 

represented as nodes in the quadtree; but once the size of 

the quadrants reach a pre-defined threshold, instead of 

further sub-division, the raw data is stored. Although this 

adds an overhead identifier required to differentiate 

between the quadtree data representation and raw bits, the 

overall memory requirements are decreased. The result of 

this hybrid approach is verified by the performed 

experiments and reported in the results section. 

 

 
Fig. 8. Quadtree representation for the sample graph shown in 

Fig. 6 

 

V. EXPERIMENTAL RESULTS 

 

We study the characteristics of real-world graphs to identify 

properties that might be suitable for compression using 

quadtrees. We refer to real world data sets for the graphs to 

be considered [18]. The Stanford Network Analysis Project 

(SNAP) contains the Stanford Large Network Dataset 

Collection framework, which provides a large collection of 

real- world graphs [19]. Out of the various data sets 

available, to study the properties of the graphs, for this 

paper we consider the following three types of networks: 

 

1. Road Networks: We consider 3 different road networks 

from the dataset. The Texas Road Network (TRN), 

Pennsylvania Road Network (PSN) and California Road 

Network (CRN). Each of these graphs represent the road 

networks of the respective states. The actual data includes 

information about the road intersections and connections. 

For the graph, the intersections are represented as nodes, 

and the connecting roads as edges. All the edges are 

assumed to be undirected. 

 

2. Email Network: To represent interactions and 

communication, the Enron Email Network (EEN) is 

considered. The graph consists of the email communication 

between the employees of Enron; each employee email 

address is a node in the graph, and information exchange is 

represented by the edges. The size of the dataset that 

consists of the communication emails is about half million. 

The data is also represented as an undirected graph. 

 

3. Social Circles: To represent social interactions, the 

Facebook Social Circles (FSC) graph is considered. The 

data consists of interactions between people on the online 

social network platform, and the circles represent the group 

of people or “Friends” in the context. This graph is 

undirected and the data is gathered using a specific 

application from survey participants. 

 

The data for the different types of graphs considered in this 

paper are shown in Table I. The total number of nodes, 

number of edges and the number of nodes in the largest 

connected component for each of the networks are 

presented in the table. 

 

 
 

In our earlier work, we have used breadth-first search (BFS) 

based techniques to perform analysis on real-world data 

[16]. We have shown earlier, that BFS tree properties can 

be leveraged to reduce the space requirements. For solving 

problems on graphs, on a portion of the data that is of 

interest is required for computation. Therefore, the entire 

graph can be divided using BFS tree levels, and the space 

required for storing each of the sets of levels is what needs 

to be focused on. However, further investigation reveals 

that even within the sets of data in the BFS tree, there might 

be more than one single connected component. For most 

graph problems being solved, having connections between 

nodes is a pre-requisite. Therefore, if there are disjoint sets 

of nodes within the graph as indicated by the number of 

connected components that do not share any connections 

with each other, then the computations can leverage this 

data. Since nodes belonging to different connected 

components are not part of most calculations, the adjacency 

data for such connected components are not required on the 

memory together. Using the BFS tree data, even further 
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analysis can be done on the number of connected 

components with 2 or 3 levels of the BFS tree [16]. The 

size of the largest components with the 2 or 3 levels of the 

BFS tree provides the memory required for computation on 

various graph problems, and is given in the Table II for the 

graphs being considered in this paper. 

 

 
 

As discussed earlier, the characteristics of graphs are 

dependent on many factors, with the density being one of 

the most significant. Therefore, it is imperative to consider 

the density of the graph while deciding on the appropriate 

data structure to store and represent the same. Hence, 

analysis of the graph storage requirements for varying 

densities is required and provides valuable insights. 

 

Different sizes of graphs in the powers of 2 are considered 

for the experimental analysis. The number of nodes are 

varied from 1024 to 8192, with the number being doubled 

for each separate case. These sizes of 1024, 2048, 4096 and 

8192 are directly related to the actual graphs being 

considered. As evident from the discussion regarding size 

of connected components, these sizes relate directly to the 

largest connected component size of the graphs under 

consideration for this paper. For the given graphs, the 

density of the same is given by e/p ×100, where e denotes 

the number of edges, and p is the number of edges possible 

in the graph. In the experimental analysis, the densities are 

varied and the following percentages are considered 5, 10, 

25, 50, 65 and 80. 

 

Fig. 9 plots the sizes of the graph representations for 

adjacency matrix, quadtree (pure quadtree or PQT) and 

hybrid quadtree (HQT). The number of nodes are varied 

along with the density. It is evident from the graphs that the 

HQT requires less memory than the adjacency matrix or 

pure quadtree for all the densities and sizes, except for the 

50% density; at this specific density the adjacency matrix 

representation is better. However, for smaller and larger 

densities, say below 25% and above 75%, the HQT 

outperforms the other representations. The outputs are as 

anticipated. Since the size depends on the uniformity of the 

quadrants, in case of graphs with low and high density, the 

adjacency matrix structure has more uniform quadrants or 

those that match the patterns then those graphs that have a 

density near 50%. 

 

 
Fig. 9. Data representation comparison for high densities 

 
 

In case of most real-world graphs, the data is sparse which 

is evident from the number of possible edges and the actual 

number of edges in the social networks or road networks 

under consideration [20] [21]. Hence, the proposed hybrid 

quadtree technique is also verified in cases of such data, 

where the density of the graph is low. For experimental 

purposes, the density of the graphs is varied from 0.10 to 

1.20. The resulting quadtree sizes are plotted in Fig. 10, and 

the data shows that the quadtree representation actually 

performs better than the HQT or the adjacency matrix. The 
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HQT size requirements are similar to the pure quadtree for 

smaller size graphs of 1024 or 2048 nodes; however, for 

larger graphs of size 2048 or 8192 nodes, it performs worse 

than the pure quadtree. This can be attributed to the fact that 

the HQT requires the use of an extra identifier to indicate 

quadtree data or raw data. For all the graph sizes and low 

densities, the adjacency matrix performs worse as compared 

to the quadtree or HQT. In graphs of size 8192 nodes, for a 

density value of 1.20, the space required is almost 80% less 

than as compared to the adjacency matrix; for similar size 

graph, when the density is 0.10, the reduction in space 

requirement is 97%. Therefore, from the experimental 

results it can be concluded that using quadtree based 

compression techniques reduces the space required to store 

graph data by a significant amount. Hence, using such 

methods, storing and transferring graph data on the GPU 

memory and between the CPU and the GPU respectively, is 

highly efficient. 

VI. CONCLUSION 

 

In this paper we study graph compression techniques for 

efficient storage and computation using GPUs. We 

introduce quadtree based compression techniques and 

modifications of the same. A hybrid data structure 

composed of partly quadtree and partly adjacency matrix is 

also proposed. We study various special graphs, and 

analyze and identify methods for effective compression. 

Since the adjacency matrix and quadrant data dictates the 

structure of the quadtree and in essence the compression 

efficiency, it is also shown how numbering of the nodes in 

graphs influence the space required for the same. We focus 

on real-world graph properties by using breadth-first search 

tree based analysis results on the same. Different size 

graphs are chosen over varying densities and sizes, and are 

compared by performing empirical analysis on the same. 

 

 
Fig. 10. Data representation comparison for low densities 

 

From the results it can be concluded that the proposed 

techniques using quadtree is indeed an effective 

compression technique for storing graphs specifically on 

memory constrained devices.  

 

As part of future work, we would like to study compression 

techniques on streaming graphs for performing analysis 

using GPUs. Also, applying the proposed compression 

methods to data belonging to other domains like biological 

networks can be explored. 
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