

 © 2020, IJCSE All Rights Reserved 11

 International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol.8, Issue.9, September 2020 E-ISSN: 2347-2693

Compressing Graphs Using Quadtrees for Efficient Computation on

GPUS

Amlan Chatterjee

Dept. of Computer Science, California State University Dominguez Hills, Carson CA, USA

Author’s Mail: achatterjee@csudh.edu, Tel: +001 310-243-3240

DOI: https://doi.org/10.26438/ijcse/v8i9.1118 | Available online at: www.ijcseonline.org

Received: 05/Sept/2020, Accepted: 15/Sept/2020, Published: 30/Sept/2020

Abstract— Exploiting the computation potential of multi-core Graphics Processing Units (GPUs) requires reducing

memory access latency and memory transfer overheads. Although the GPUs provide fast processing capabilities, the

memory on such devices is significantly less. Though the memory hierarchy of GPUs provide certain fast levels, these are

limited in terms of storage. Also, in order to use the GPUs for computation, the data must be transferred into the memory

of the same; hence, in order to reduce the memory latency for large volume of data transfer, efficient techniques are

required. Analysis of graph data on GPUs have many practical applications, and has been studied by both academia and

industry. The graph data must be stored on the GPU memory to perform computation and analysis on the same. There are

different data structures that can be used to store graphs in the GPU memory. Employing compression techniques to reduce

the size required by the data is useful; however, the computation must be performed on the compressed data itself since

decompressing the data would not be feasible. In addition to saving space on the device, using compressed data structures

also reduces the memory transfer overheads both between the CPU & GPU, and between the various levels in the memory

hierarchy of the GPU, thereby compensating for some of the additional time to retrieve information from the compressed

data. Storing data using efficient compression techniques and operating on the compressed data is therefore useful.

Quadtree data structures are generally used for storing and representing images for various applications. However, graphs

when represented as adjacency matrix are comparable to images; hence, using recursive partitioning techniques, the data

can be effectively compressed. In this paper, we show techniques based on quadtrees to efficiently compress graph data for

storing and computation on GPUs. Additional techniques are also introduced which result in hybrid data structures that

perform better for specific cases. Empirical results show 80-90% decrease in the space requirements to store graphs with

real-world properties.

Keywords—Compression, Quadtree, Graph Compression, GPUs

I. INTRODUCTION

Graphs represent data from a wide domain of applications.

In general, the graph data is stored using either an

adjacency matrix or an adjacency list. Based on the

sparsity of the graph and special characteristics, the choice

varies between the two. For sparse graphs, where there are

significant number of 0 values, storing the data in an

adjacency list is efficient. For denser graphs, where storing

each element i.e., edge information separately would result

in a lot more memory usage, using an adjacency matrix is

effective. In any case, reducing the memory requirement

overhead for computation is required and is a challenge

that needs to be addressed using advanced techniques.

Solving graph problems on GPUs have many applications

[1] [2] [3] [4]. Nvidia GPUs with Compute Unified Device

Architecture (CUDA) can be employed for solving many

general purpose real-world problems. For the purpose of

computation using GPUs, the required data must be copied

from the CPU and stored on the GPU memory; the

objective is to store the data in the level of memory in the

hierarchy which has the least memory access overhead

latency [5]. Also, since copying data from the CPU to the

GPU adds a significant overhead, being able to reduce the

total data required to be transferred between the host and

the device increases the performance gained by

transferring the computation to the device. There are

different techniques that can be employed to perform

computation on large graphs [6] [7][8]. But even with

dividing the graph data using vertical or horizontal

splitting, the resulting components of data that is required

for any computation might not fit in the memory level with

least access latency, or in the worst case might not fit on

the device at all. Therefore, efficient techniques need to be

designed to compress the data and store it in the given

memory.

The compressed data should fit on the memory; however,

some techniques require decompressing the data before it

can be used for computation. Such techniques would be

limited in applications in the case of limited memory.

Therefore, it is essential for computations to be performed

on the compressed data rather than decompressing it. In

 International Journal of Computer Sciences and Engineering Vol.8(9), Sept 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 12

addition, there would be added complexity for retrieving

adjacency information from compressed data, which needs

to be taken into account when designing the algorithms for

compression.

In this paper, we propose using quadtree based

compression techniques to effectively reduce the storage

requirements for graphs to be computed using GPUs.

Following is the outline of the paper. Related work on

graph compression is presented in Section II. This Section

also discusses methods related to compression of data

irrespective of the domain it belongs to. In Section III, we

provide an algorithm to generate quadtree for a given

graph from its adjacency matrix. In Section IV, we provide

an algorithm that introduces a hybrid approach that

modifies pure quadtree and combines it with other data

structures to improve space requirements. Implementation

results are discussed in Section V. Conclusion is presented

in Section VI.

II. RELATED WORK

Graph compression techniques like other methods for

compression can be broadly classified into either lossy or

lossless compression. For lossy compression techniques,

the data in the original form cannot be fully recovered. In

case of lossless techniques, after decompression or when

accessing the compressed data, the adjacency information

in the original form can be fully recovered. For sensitive

data, lossless techniques are favored; while lossy

techniques can be used for storing or transmitting data that

has a higher threshold for errors. In this paper, we focus

our techniques on graphs that store data which are sensitive

and therefore required lossless compression.

A. Classification of techniques

In general, the majority of compression algorithms for

graph data can be broadly classified into the following

groups.

• Identifying and Replacing common structures: Graphs

can have certain structures in them which can be easily

identified and replaced with something that takes a smaller

memory. For example, if a graph contains a clique, which

is a completely connected subgraph, then instead of storing

the adjacency information with all the nodes and edges, an

identifier in the form of a special node can be stored to

represent the specific structure.

• Similar Adjacency Information: Graphs can contain

nodes that share similar adjacency information with certain

other nodes. Instead of storing the same information for a

set of nodes, an identifier can be stored instead which

indicates the presence of certain common adjacency

information. Even differential techniques can be employed,

where minor differences can be encoded instead of storing

the entire information for neighborhoods that differ in the

adjacency information within certain predefined threshold.

Based on the above mentioned principles, various

techniques have been proposed and studied. Some

techniques work well for graphs with specific properties.

However, the initial overhead of processing the graph data

to aide in the compression should also be taken into

account while calculating the overall effectiveness of any

method.

B. Graph Compression Related work

Techniques to address graph compression has been

developed over long time and there are many that have

been studied. Finding and replacing common structures

with an identifier that requires less space is one such

method. In a complete bipartite graph Km,n the m×n edges

need not be stored separately and can be replaced using a

special node and additional m+n edges [9] [10].

A graph can be used to model the web, where the nodes are

the different addresses and the edges are the links between

the same. In this case, there are many subgraphs that share

the same adjacency information. Hence, using pointers to

similar adjacency information and differential techniques

for the additions and deletions help gain significant

compression [11].

Exploiting locality information and using common

neighborhoods can be an effective technique that

specifically works well for power law graphs and can be

used to compress the same [12].

For graphs that exhibit a natural order, leveraging

lexicographic ordering along with adjacency information is

an efficient technique in compressing graphs [13]. Using

separators, i.e., a subset of vertices whose removal does

not disconnect the graph, is also an efficient technique

[14]. Even for separators that disconnect the graph, using a

recursive framework on the resulting components can

achieve compression of the graph data.

Graph compression techniques are also employed to study

biological networks. Since it is difficult to compare large

biological networks with one another, using data

compression to reduce the size of the data helps in

comparative study [15].

In our previous work we discuss solving graph problems

on GPUs. We have earlier introduced a number of

algorithms and data structures for efficient computation on

graph data [16]. In this paper, we extend our work to

increase the amount of data that can be stored on the GPUs

for computation by introducing quadtree based graph

compression.

III. QUADTREE REPRESENTATION

Quadtrees are generally used to represent images in two

dimensional space. The basic idea is to limit the number of

significant values in any region. For example, in the most

common form of quadtree, which is a point-region

quadtree of in short PR quadtree, the target is to limit the

number of significant values to 1 in any region. This is

 International Journal of Computer Sciences and Engineering Vol.8(9), Sept 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 13

done by recursively sub-dividing the regions into

quadrants, until there is an acceptable number of

significant values in each. Once a region or quadrant

reaches the target, further sub-division is not required; for

other regions, the process continues. The regions are

represented as nodes in the quadtree, and each internal

node has exactly 4 children [17].

Specifically, for the PR-quadtree, the target number of

significant values in a region is limited to 1. Therefore, the

regions are recursively sub-divided until the number of

points in each region is 1 or less. The equivalent quadtree

for the sample points shown in Fig. 1 is given in Fig. 2.

A. Graphs as Quadtree

Graphs can be stored using Quadtree representation. Con

sidering the adjacency matrix, the neighborhood

information is stored as 0’s and 1’s. Now, using certain

identifiers, the adjacency matrix can be represented as

quadrants of data. A quadrant can be represented as a leaf

in the quadtree representation if it matches with the data

corresponding to the identifier.

Fig. 1. Sample data points for a 2-D region

Fig. 2. The PR-Quadtree for the region shown in Fig. 1

In other cases, further sub-divisions are required. Hence,

using such a method, the adjacency information of the

graph is represented as a Quadtree which is a bit array. The

bit array consists of the following data for each of the

quadrants:

• 0: all 0’s

• 1: all 1’s

• 2: 0’s in diagonal, and rest 1’s

• 3: sub-division required

Because this technique considers only 4 types of values, 2

bits can be used to represent each quadrant in the bit array.

As an example, consider the graph shown in Fig. 3.

Fig. 3. A sample graph

The adjacency matrix of the graph is taken into

consideration for converting the graph data into an

equivalent quadtree. The adjacency matrix for the graph in

Fig. 3 is given in Fig. 4.

Fig. 4. Adjacency matrix of graph shown in Fig. 3

The quadtree representation of the given graph is shown as

Follows in Fig. 5.

Fig. 5. Quadtree representation of graph shown in Fig. 3

 International Journal of Computer Sciences and Engineering Vol.8(9), Sept 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 14

The quadtree contains 4 nodes in the representation. The

first node indicates there is no match, so a corresponding

value of 3 is added to the bit array and further sub-division

is done. For the resultant quadrants, each matches with one

of the identifiers. Finally, the quadtree byte stream is given

by Q = {3,0,1,1,0}. The values of 0, 1, 1 and 0 represents

the data after the division and corresponds to respectively

the top-left, top-right, bottom-left and bottom-right

quadrants.

The method for quadtree generation is given in Algorithm

1. The input is the adjacency matrix representation of the

graph. The method CheckUniformity checks whether the

given adjacency matrix data matches any of the pre-

defined uniform data values i.e., all 0’s or all 1’s etc. Based

on the provided data, the checking is done and the

identifier corresponding to the matching pattern is

returned. For example, a 0 is returned for all 0’s, a 1 is

returned for all 1’s, a 2 is returned for diagonal 0 values

and remaining 1’s and a 3 is returned if no match is found.

If a value of 0, 1 or 2 is returned from the method,

then it is added to the bit representation of the quadtree; for

a returned value of 3, the Algorithm 1 is called recursively

for each of the resulting quadrants of the matrix that are

generated by using the method DivideIntoQuadrants. In

this case, the algorithm loops over total of n 2 elements in

each of the levels of the quadtree, where |V | = n for the

given graph G = (V,E). For the worst case scenario, there

are log2n levels in the quadtree; hence for the algorithm to

traverse through the levels and generate the quadtree, the

time complexity is given by O(n
2
log2n).

B. Compression leveraging quadtree

Consider a sample graph of 8 nodes as shown in Fig. 3.

The adjacency matrix information for the corresponding

graph is given in Fig. 4. Assuming each of the values in the

adjacency matrix can be stored in a single bit, the number

of bits required to store the adjacency matrix information is

64 bits. Now, considering the quadtree representation of

the same graph, it can be seen in Fig. 5, there are only 5

elements in the tree. Taking into account our

representation, where each value takes 2 bits, the total

number of bits required is 10. Therefore, from this example

it is evident that efficient compression can be achieved by

leveraging the quadtree representation of graphs.

C. Numbering matters

In this sub-section we discuss how even with the same

structure of the graph, the numbering of the nodes can play

a significant role in the achieved compression using

quadtrees. Considering the graph shown in Fig. 6 and the

corresponding adjacency matrix and quadtree

representation. The structure of the graph is same as the

one considered before as shown in Fig. 3.

However, due to the difference in numbering and the

corresponding change in the adjacency matrix structure,

this quadtree has 21 elements instead of the 5 before, and

therefore requires 42 bits instead of the 10. In the case of

the renumbered graph,

Fig. 6. Sample graph with nodes numbered in a specific way

Fig. 7. Adjacency matrix for the sample graph shown in Fig. 6

since the adjacency matrix changed, the corresponding

quadtree also changed resulting in having 21 elements

compared to just 5 elements. Now, for the quadtree

representation, the size of the resultant structure is directly

proportional to the number of matching quadrants. Since

the structure of the adjacency matrix is dependent on the

 International Journal of Computer Sciences and Engineering Vol.8(9), Sept 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 15

node numbering, even with the same structure, the

adjacency matrix for some cases might have a better match

with the patterns as compared to others. Therefore, the

numbering of the nodes in the graphs have a significant

effect in the overall compression achieved by using the

quadtree representation.

IV. HYBRID APPROACH

The quadtree representation requires uniformity in the

quadrants or specifically in the case of PR-Quadtrees, a

single point in a region for the recursive sub-division to

stop. However, it can be noted that when recursive sub-

division occurs for quadrants containing smaller number of

bits, the memory required to store the quadtree

representation is more than what is needed to store the raw

data itself. Hence, the quadtree representation is effective

when large quadrants of data can be replaced using

identifiers; however, is inefficient for smaller sized

quadrants that require sub-division. So, we propose a

hybrid approach, where the larger quadrants are

represented as nodes in the quadtree; but once the size of

the quadrants reach a pre-defined threshold, instead of

further sub-division, the raw data is stored. Although this

adds an overhead identifier required to differentiate

between the quadtree data representation and raw bits, the

overall memory requirements are decreased. The result of

this hybrid approach is verified by the performed

experiments and reported in the results section.

Fig. 8. Quadtree representation for the sample graph shown in

Fig. 6

V. EXPERIMENTAL RESULTS

We study the characteristics of real-world graphs to identify

properties that might be suitable for compression using

quadtrees. We refer to real world data sets for the graphs to

be considered [18]. The Stanford Network Analysis Project

(SNAP) contains the Stanford Large Network Dataset

Collection framework, which provides a large collection of

real- world graphs [19]. Out of the various data sets

available, to study the properties of the graphs, for this

paper we consider the following three types of networks:

1. Road Networks: We consider 3 different road networks

from the dataset. The Texas Road Network (TRN),

Pennsylvania Road Network (PSN) and California Road

Network (CRN). Each of these graphs represent the road

networks of the respective states. The actual data includes

information about the road intersections and connections.

For the graph, the intersections are represented as nodes,

and the connecting roads as edges. All the edges are

assumed to be undirected.

2. Email Network: To represent interactions and

communication, the Enron Email Network (EEN) is

considered. The graph consists of the email communication

between the employees of Enron; each employee email

address is a node in the graph, and information exchange is

represented by the edges. The size of the dataset that

consists of the communication emails is about half million.

The data is also represented as an undirected graph.

3. Social Circles: To represent social interactions, the

Facebook Social Circles (FSC) graph is considered. The

data consists of interactions between people on the online

social network platform, and the circles represent the group

of people or “Friends” in the context. This graph is

undirected and the data is gathered using a specific

application from survey participants.

The data for the different types of graphs considered in this

paper are shown in Table I. The total number of nodes,

number of edges and the number of nodes in the largest

connected component for each of the networks are

presented in the table.

In our earlier work, we have used breadth-first search (BFS)

based techniques to perform analysis on real-world data

[16]. We have shown earlier, that BFS tree properties can

be leveraged to reduce the space requirements. For solving

problems on graphs, on a portion of the data that is of

interest is required for computation. Therefore, the entire

graph can be divided using BFS tree levels, and the space

required for storing each of the sets of levels is what needs

to be focused on. However, further investigation reveals

that even within the sets of data in the BFS tree, there might

be more than one single connected component. For most

graph problems being solved, having connections between

nodes is a pre-requisite. Therefore, if there are disjoint sets

of nodes within the graph as indicated by the number of

connected components that do not share any connections

with each other, then the computations can leverage this

data. Since nodes belonging to different connected

components are not part of most calculations, the adjacency

data for such connected components are not required on the

memory together. Using the BFS tree data, even further

 International Journal of Computer Sciences and Engineering Vol.8(9), Sept 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 16

analysis can be done on the number of connected

components with 2 or 3 levels of the BFS tree [16]. The

size of the largest components with the 2 or 3 levels of the

BFS tree provides the memory required for computation on

various graph problems, and is given in the Table II for the

graphs being considered in this paper.

As discussed earlier, the characteristics of graphs are

dependent on many factors, with the density being one of

the most significant. Therefore, it is imperative to consider

the density of the graph while deciding on the appropriate

data structure to store and represent the same. Hence,

analysis of the graph storage requirements for varying

densities is required and provides valuable insights.

Different sizes of graphs in the powers of 2 are considered

for the experimental analysis. The number of nodes are

varied from 1024 to 8192, with the number being doubled

for each separate case. These sizes of 1024, 2048, 4096 and

8192 are directly related to the actual graphs being

considered. As evident from the discussion regarding size

of connected components, these sizes relate directly to the

largest connected component size of the graphs under

consideration for this paper. For the given graphs, the

density of the same is given by e/p ×100, where e denotes

the number of edges, and p is the number of edges possible

in the graph. In the experimental analysis, the densities are

varied and the following percentages are considered 5, 10,

25, 50, 65 and 80.

Fig. 9 plots the sizes of the graph representations for

adjacency matrix, quadtree (pure quadtree or PQT) and

hybrid quadtree (HQT). The number of nodes are varied

along with the density. It is evident from the graphs that the

HQT requires less memory than the adjacency matrix or

pure quadtree for all the densities and sizes, except for the

50% density; at this specific density the adjacency matrix

representation is better. However, for smaller and larger

densities, say below 25% and above 75%, the HQT

outperforms the other representations. The outputs are as

anticipated. Since the size depends on the uniformity of the

quadrants, in case of graphs with low and high density, the

adjacency matrix structure has more uniform quadrants or

those that match the patterns then those graphs that have a

density near 50%.

Fig. 9. Data representation comparison for high densities

In case of most real-world graphs, the data is sparse which

is evident from the number of possible edges and the actual

number of edges in the social networks or road networks

under consideration [20] [21]. Hence, the proposed hybrid

quadtree technique is also verified in cases of such data,

where the density of the graph is low. For experimental

purposes, the density of the graphs is varied from 0.10 to

1.20. The resulting quadtree sizes are plotted in Fig. 10, and

the data shows that the quadtree representation actually

performs better than the HQT or the adjacency matrix. The

 International Journal of Computer Sciences and Engineering Vol.8(9), Sept 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 17

HQT size requirements are similar to the pure quadtree for

smaller size graphs of 1024 or 2048 nodes; however, for

larger graphs of size 2048 or 8192 nodes, it performs worse

than the pure quadtree. This can be attributed to the fact that

the HQT requires the use of an extra identifier to indicate

quadtree data or raw data. For all the graph sizes and low

densities, the adjacency matrix performs worse as compared

to the quadtree or HQT. In graphs of size 8192 nodes, for a

density value of 1.20, the space required is almost 80% less

than as compared to the adjacency matrix; for similar size

graph, when the density is 0.10, the reduction in space

requirement is 97%. Therefore, from the experimental

results it can be concluded that using quadtree based

compression techniques reduces the space required to store

graph data by a significant amount. Hence, using such

methods, storing and transferring graph data on the GPU

memory and between the CPU and the GPU respectively, is

highly efficient.

VI. CONCLUSION

In this paper we study graph compression techniques for

efficient storage and computation using GPUs. We

introduce quadtree based compression techniques and

modifications of the same. A hybrid data structure

composed of partly quadtree and partly adjacency matrix is

also proposed. We study various special graphs, and

analyze and identify methods for effective compression.

Since the adjacency matrix and quadrant data dictates the

structure of the quadtree and in essence the compression

efficiency, it is also shown how numbering of the nodes in

graphs influence the space required for the same. We focus

on real-world graph properties by using breadth-first search

tree based analysis results on the same. Different size

graphs are chosen over varying densities and sizes, and are

compared by performing empirical analysis on the same.

Fig. 10. Data representation comparison for low densities

From the results it can be concluded that the proposed

techniques using quadtree is indeed an effective

compression technique for storing graphs specifically on

memory constrained devices.

As part of future work, we would like to study compression

techniques on streaming graphs for performing analysis

using GPUs. Also, applying the proposed compression

methods to data belonging to other domains like biological

networks can be explored.

REFERENCES

[1] A. Chatterjee, S. Radhakrishnan, and John K. Antonio.

Counting Problems on Graphs: GPU Storage and Parallel

Computing Techniques. In Parallel and Distributed Processing

Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE

26th International, pages 804–812. IEEE, 2012.

[2] P. Harish and P. J. Narayanan. Accelerating Large Graph

Algorithms on the GPU Using CUDA. In Proc. of the IEEE Intl

Conf. on High Performance Computing, LNCS 4873, pages

197–208, 2007.

[3] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman.

SybilGuard: Defending Against Sybil Attacks via Social

Networks. In Proceedings of the 2006 conference on

Applications, technologies, architectures, and protocols for

computer communications, SIGCOMM ’06, pages 267– 278,

New York, NY, USA, 2006. ACM.

[4] Amin Rezaeipanah, Mousa Mojarad, Link Prediction in Social

Networks Using the Extraction of Graph Topological Features,

International Journal of Scientific Research in Network Security

and Communication, Vol.7, Issue.5, pp.1-7, 2019

[5] A. Chatterjee, S. Radhakrishnan, and J. K. Antonio. Data

Structures and Algorithms for Counting Problems on Graphs

using GPU. International Journal of Networking and Computing

(IJNC), Vol. 3(2):pages 264–288, 2013.

[6] A. Chatterjee, S. Radhakrishnan, and J. K. Antonio. On

Analyzing Large Graphs Using GPUs. In Parallel and

 International Journal of Computer Sciences and Engineering Vol.8(9), Sept 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 18

Distributed Processing Symposium Workshops & PhD Forum

(IPDPSW), 2013 IEEE 27th International, pages 751–760.

IEEE, 2013.

[7] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient

semi-streaming algorithms for local triangle counting in massive

graphs. In Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining, KDD ’08,

pages 16–24, New York, NY, USA, 2008. ACM.

[8] K. Parimala, G. Rajkumar, A. Ruba, S. Vijayalakshmi,

Challenges and Opportunities with Big Data, International

Journal of Scientific Research in Computer Science and

Engineering, Vol.5, Issue.5, pp.16-20, 2017

[9] Tomás Feder and Rajeev Motwani. Clique Partitions, Graph

Compression and Speeding-up Algorithms. In Proceedings of

the Twenty-third Annual ACM Symposium on Theory of

Computing, STOC ’91, pages 123–133, New York, NY, USA,

1991. ACM.

[10] Gregory Buehrer and Kumar Chellapilla. A scalable pattern

mining approach to web graph compression with communities.

In Proceedings of the 2008 International Conference on Web

Search and Data Mining, WSDM ’08, pages 95–106, New York,

NY, USA, 2008. ACM.

[11] Keith H. Randall, Raymie Stata, Janet L. Wiener, and Rajiv G.

Wickremesinghe. The link database: Fast access to graphs of the

web. In Proceedings of the Data Compression Conference, DCC

’02, pages 122– , Washington, DC, USA, 2002. IEEE Computer

Society.

[12] P. Boldi and S. Vigna. The webgraph framework i:

Compression techniques. In Proceedings of the 13th

International Conference on World Wide Web, WWW ’04,

pages 595–602, New York, NY, USA, 2004. ACM.

[13] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael

Mitzenmacher, Alessandro Panconesi, and Prabhakar Raghavan.

On compressing social networks. In Proceedings of the 15th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’09, pages 219–228, New

York, NY, USA, 2009. ACM.

[14] Narsingh Deo and Bruce Litow. A structural approach to graph

compression. In In MFCS Workshop on Communications,

pages 91– 101, 1998.

[15] Morihiro Hayashida and Tatsuya Akutsu. Comparing biological

networks via graph compression. BMC Systems Biology,

4(Suppl 2), 2010.

[16] A. Chatterjee, S. Radhakrishnan, and C. N. Sekharan.

Connecting the dots: Triangle completion and related problems

on large data sets using GPUs. In 2014 IEEE International Big

Data Workshop on High Performance Big Graph Data

Management, Analysis, and Mining, pages 1–8. IEEE, 2014.

[17] Hanan Samet. Using quadtrees to represent spatial data. In

Herbert Freeman and GoffredoG. Pieroni, editors, Computer

Architectures for Spatially Distributed Data, volume 18 of

NATO ASI Series, pages 229– 247. Springer Berlin Heidelberg,

1985.

[18] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney.

Community Structure in Large Networks: Natural Cluster Sizes

and the Absence of Large Well-Defined Clusters. Internet

Mathematics, Vol. 6(1):29–123, 2009.

[19] Leskovec, Jure, and Rok Sosič. SNAP: A General-Purpose

Network Analysis and Graph-Mining Library. ACM

Transactions on Intelligent Systems and Technology (TIST) 8.1

(2016): 1-20.

[20] Deepayan Chakrabarti and Christos Faloutsos. Graph Mining:

Laws, Generators, and Algorithms. ACM Computing Surveys,

38(1), June 2006.

[21] J.M.Kleinberg, R.Kumar, P.Raghavan, S.Rajagopalan, and

A.S.Tomkins. The web as a graph: measurements, models, and

methods. In Proceedings of the 5th annual international

conference on Computing and combinatorics, COCOON’99,

pages 1–17, Berlin, Heidelberg, 1999. Springer-Verlag.

AUTHORS PROFILE

Dr. Amlan Chatterjee received his

Masters in Computer Science from

State University of New York at

Buffalo, USA in 2009, and his Ph.D.

in Computer Science from the

University of Oklahoma, USA in

2014. Dr. Chatterjee is currently an

Assistant Professor in the

Department of Computer Science at

California State University Dominguez Hills, USA. His

research interests are in the areas of Big Data, High

Performance Computing and IoT; his recent research

focuses on graph compression and using GPUs to solve

general-purpose problems. Dr. Chatterjee is a member of

IEEE and ACM.

