
 © 2019, IJCSE All Rights Reserved 7

International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol.-7, Issue-12, Dec 2019 E-ISSN: 2347-2693

Deadline Sensitive Lease Scheduling Using Hungarian Genetic Algorithm

in Cloud Computing Environment

Duraksha Ali
1*

, Manoj Kumar Gupta
2

1,2

School of Computer Science and engineering, Shri Mata Vaishno Devi University, Katra, India

*Corresponding Author: 17mms003@smvdu.ac.in, Tel.: +91-9149443328

DOI: https://doi.org/10.26438/ijcse/v7i12.715 | Available online at: www.ijcseonline.org

Accepted: 29/Nov/2019, Published: 31/Dec/2019

Abstract: OpenNebula, a cloud platform handles a variety of leases employing scheduler, Haizea and majority of them are

deadline-sensitive in real time. As existing Backfilling AHP model for deadline-sensitive lease scheduling suffers from lease

rejection and do not scrutinize the estimations for waiting leases. In our proposed work, to overcome this pitfall we have

devised Hungarian-Genetic Algorithm (HGA). Time Estimations for leases are performed using optimized Hungarian

Algorithm to optimally render resources to available leases but it executes boundlessly. Thus, it’s blended with Genetic

Algorithm to set bounds to it by utilizing fitness function. Output of HGA is a scheduling structure with optimal lease

combination which consumes minimum time. Finally HGA is compared with Backfilling AHP model and HGA schedules

greater quota of leases and minimizes lease ostracism comparatively. Also proposed model works fine on increasing number of

leases as computational time is not directly proportional to number of leases scheduled.

Keywords: Deadline sensitive, Resource allocation, Leases, Lease scheduling, Cloud computing

I. INTRODUCTION

Cloud computing presents a most promising, low capital

distributed computing technology and eScience

infrastructure on which the research association has recently

ventured into [1]. It renders numerous types of services and

information with a contemporary vision of Telcos and

Infotech in elastic “pay-as-you-go” model which is in full

swing nowadays [2].

One of the most critical issues in cloud computing is

scheduling as plethora of virtualized assets are being utilized

per task and Service provider needs to deliver cloud

resources in best possible manner for its efficient

performance i.e productive resource utilization, minimizing

cost and queue waiting time [3], [4]. So the main motive of

scheduling is the mapping of tasks to the suitable resources

which optimizes the objective [5], [6].

The deadline is the time before which a lease, task or service

must be delivered or must terminate its execution. Varied

cloud resources render varied intensities of performance on

the basis of various pricing models. Usually high-speed

resources are costly comparatively thus there is a tradeoff

between resource cost and execution time [7].

A lease is a kind of agreement in which one party concurs to

deliver a collection of computational resources to other

party. OpenNebula is an open source platform for cloud

computing that handle and manage virtual machines, data

centers and cloud resources (both local infrastructures and

external pool of public cloud resources) by employing the

lease scheduler, Haizea to amplify its scheduling capabilities

while managing various kinds of leases including deadline

sensitive leases [8], [9].From Haizea, hardware and software

resources are requested by cloud user as a lease.

II. RELATED WORK

Deadline sensitive scheduling

A variety of algorithms have been enhanced to achieve the

requirements of cloud computing. An advanced work

performed in scheduling deadline based approaches is as

follows:

Scientific workflows with task replication [10] make use of

task replication to diminish the effects of performance

fluctuations rendered in cloud computing environment by

utilizing the budget plethora and idle resources. Motive of

task replication is hiking of contingency policies to rectify

obstructions arising due to the performance variabilities and

incorrect assessment of task execution time so improves the

cloud performance rather than fault tolerance [11].

Resource provisioning for Data-intensive applications

approach [12] is pertinent to prodigious amounts of

computing power so surplus cloud resources are added to the

pool of private cloud infrastructure from public cloud

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 8

especially on requirement of QoS when single private

organization has restricted computational capacity. It

employs a hybrid cloud middleware viz. Aneka to handle the

cloud bursting model to gather and deliver resources from

external and local infrastructure seamlessly [13], [14].

Deadline sensitive lease scheduling using AHP [15]

schedules greater number of leases within the deadline

restrictions and puts a stop to lease ostracism by

implementing Backfilling Algorithm incorporated with a

Multi Criteria Decision Maker (MCDM) viz. AHP

(Analytical Hierarchy Process). Apart from AHP, other

MCDM’s can also be employed like TOPSIS,

PROMETHEE, VIKOR, ELECTRE, WSM, OWA etc. [16],

[17], [18] present the outranking and selection methods for

choosing the optimal solution among various candidates in

multiple criteria analysis using PROMETHEE. AHP

employs DHT (Decision Hierarchy Tree) to optimize the

objective which is to schedule a lease based on the

alternatives (similar leases) and criterions (parameters).

Grouped task scheduling [19] classifies tasks into a set of

clusters based on several task attributes such as task size,

task type, user type and task latency with the motive to

minimize latency and execution time while meeting

deadlines too. It works in two stages, one is to determine

which cluster to be scheduled initially and other is to

determine which task inside a chosen cluster to be scheduled

initially.

Pair-based task scheduling [20] pairs tasks hailing from two

different categories prior to task scheduling to minimize

total layover time. Task mapping is performed primarily to

several clouds and ultimately assigned to the most

convenient cloud. It evaluates column opportunity matrix

(COM) and row opportunity matrix (ROW) and utilizes

lease time and converse lease time for task scheduling.

CEDA scheduling for workflow applications [21] estimates

upward rank of tasks in the workflow, prefers the task of

highest rank and allots to the cheapest VM instance while

pondering the VM acquisition period. CEDA aims to

minimize total economic cost and execution time for

workflows while fulfilling deadlines and favors an already

active VM instance with unconsumed period of its charge

time interval sufficient to implement the task prior to its

latest finish time to avoid launching new VM instances and

extra cost overhead. Resource scheduling and provisioning

involve the selection and provisioning of resources for

scientific workflows while organizing tasks into a schedule

to map them to the optimal resources within deadlines [22].

It is based on PSO (particle swarm optimization) algorithm

and involves encoding of problem (solution representation)

which is meant to evaluate the dimension of a particle

(workflows) and fitness function is optimized based on the

objective.

For Multi-tenant cloud environment, an approach of

Workflow scheduling is proposed [1] that presents CWSA

(Cloud-based Workflow Scheduling Algorithm) to cater the

complex issue of resource management in Multi-tenancy. It

maximizes resource utilization by taking advantage of idle

slots thus schedules greater number of tasks within deadline

restrictions leading to reduced makespan and also minimizes

the tardiness, execution time of workflows and cost of

workflows.

III. PRELIMINARIES

A. Introduction to Hungarian Algorithm

Hungarian algorithm (also named as Reduced Matrix

method or Flood’s technique) devised by Kuhn [23]

provides the first effective mode of obtaining an optimum

solution without comparing directly or indirectly every

single option. However, the basic work of this algorithm was

originally obtained from the works of König and Egerváry

(Two Hungarian mathematicians) [23], [24]. It employs the

concept of Matrix Reduction in which we subtract and add

the suitable numbers to the cost matrix to reduce it to the

opportunity cost matrix indicating corresponding penalties

related to allocating any lease to a scheduler. If we are

capable of turning the matrix down to a level of having not

less than one element, zero in every column and row, then

there is the probability of achieving optimal assignments

[25], [26], [27].

B. Introduction to Genetic Algorithm

Genetic Algorithm (GA) is a category of metaheuristic

technique employed to solve complex space search problems

because of its capability of recognizing the global optimum

[28]. GA possesses an initial population and begins with a

set of feasible solutions. Every chromosome has a gene

string encoding a particular solution. In GA, fittest

chromosomes are chosen, amalgamating them to generate a

new final robust solution. In general, the effectiveness of GA

is determined by the selection of genetic operators

(Selection, Crossover and Mutation) and related criterions

[29]. First step is Selection operator whose main motive is to

select chromosomes to generate upcoming population and

the commonly applied selection method is roulette wheel in

which a section of the wheel is assigned to each

chromosome based on its fitness function. Then in

Crossover, genes are split and amalgamated between two

chosen chromosomes based on the predetermined

probability. The third step, Mutation changes the values of

randomly chosen genes from a chromosome based on

another predetermined probability. Furthermore, the fittest

chromosomes are duplicated and sent directly to next

population. When GA fulfills the selected goal, it finally

terminates [30], [31], [32].

GA constitutes of two key modules viz. algorithmic flows

(iterative approach to produce and choose chromosomes for

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 9

achieving superior quality solutions) and chromosome

representation (designing a solution). Various research

studies are focusing on the growth of latest complete

chromosome representation based algorithmic flows. All the

solutions and the decisions pertaining to the development of

a solution are modeled comprehensively and there is

invertible and one-to-one mapping between solution space

and chromosome space but leading to an inefficient search

because of production of prodigious poor quality load

imbalanced solutions. In case of incomplete chromosome

representation, the mapping is not invertible thus it gives rise

to a new way of producing new chromosomes from solutions

called shadowing method [28].

IV. PROPOSED WORK

A. Problem Statement

For scheduling deadline-sensitive leases in Cloud

Computing environment, an existing Backfilling Algorithm

is employed to backfill the smaller leases to the idle time

slots to schedule greater number of leases but this algorithm

does not work well when similar kind of leases occur in

cloud environment and this pitfall was removed by

incorporating Backfilling Algorithm with a Multi Criteria

Decision Maker (MCDM) namely AHP (Analytical

Hierarchy Process). Still Backfilling Algorithm does not

consider the evaluations for the leases in waiting. Thus to

overcome this issue we apply Hungarian algorithm which

considers the time estimations of the waiting leases as well

but it operates endlessly without any bounds.

Therefore the challenge here is to devise an approach that

can overcome above problem. For this we developed an

algorithm called Hungarian-Genetic Algorithm (HGA) by

incorporating Optimized Hungarian Algorithm with Genetic

Algorithm to keep it within limits by utilizing Fitness

Function.

B. Proposed Scheme (Hungarian-Genetic Algorithm)

In this section, we have proposed an approach called

Hungarian-Genetic Algorithm (HGA) to enhance existing

Backfilling Algorithm for scheduling deadline-sensitive

leases in optimal time. Our proposed work, HGA

(Hungarian-Genetic Algorithm) can be better explained in

the following steps:

Step1- Initialization:

When several deadline- sensitive leases arrive in Cloud

Computing environment for the purpose of scheduling then

an equal number of scheduler threads are created.

Step2- Matrix Formulation:

Initially lease data is preprocessed i.e we extract the lease

parameter (Execution Time) of all the leases on each

scheduler thread and set the values in the form of a square

matrix. We begin with providing the Square Matrix as an

input to the Genetic Algorithm and set it as Initial

Population.

Step3- Implementation of Optimized Hungarian

Algorithm:

We implement Optimized Hungarian Algorithm (OHA) to

the Initial Population for computing the Time Estimations of

all the leases on the Scheduler threads and at the end of this

algorithm we obtain Total Time of execution of the optimum

lease combination. The working of this algorithm is

explained in the section 4.5.

Step4- Set Fitness Function:

After obtaining the Total Time of execution of all the leases,

set the Total Time as Fitness Function to to determine how

“suitable” and “fit” a particular solution is with respect to

the set objective or the problem in consideration.

Step5- Permutations:

After acquiring the Fitness Function, we perform Crossover

in which we calculate the total possible Permutations of all

the leases on each scheduling thread as the potential

combinations for next generations. For the next generation,

again we compute Time Evaluations of the Square Matrix

using Optimized Hungarian Algorithm and Total Time of

execution is obtained.

Step6- Comparison and Decision Making:

Now we compare this current value of Total time with that

of the Fitness Function. We perform Decision Making here

for the optimized solution. If current value is better than the

Fitness Function (i.e if current value <= Fitness Function)

then set the current value of Execution Time as new Fitness

Function, otherwise discard the current value and resume the

value of Fitness function. After obtaining new Fitness

Function, repeat again with taking next combination as

crossover for next generation, calculating Time Estimations

and then comparing until 10 Generations. After 10

generations we come up with an optimized output having

feasible combination with least Execution Time of all the

leases, thus we can schedule greater number of deadline

sensitive leases and that too within the deadline constraints.

Step7- Computation of Number of Leases Scheduled

within a Deadline Generation:

For the rigid deadlines, after getting the optimized

scheduling structure we can compare the optimized output

(after 10 generations) with that of a set deadline generation

by comparing the average number of tasks to be scheduled

by which we can determine the number of leases scheduled

within a set deadline generation in case if the deadlines are

hard ones.

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 10

Figure 1.Flowchart of HGA

C. Flowchart

The Flowchart of the proposed approach is shown in the

figure1. The algorithm begins with initializing the Number

of leases say “n” and an equal number of Scheduler Threads

are created say “n”. Using a Random Number Generator,

execution time of all the leases on all the scheduler threads is

randomly set. These random numbers are placed at each

matrix element constructing a Square Matrix of size n×n.

Genetic Algorithm (GA) begins with setting square matrix

as Initial Population. In next step, Optimized Hungarian

Algorithm is applied to find the Time Estimations of all the

leases over all the scheduler threads and we obtain total

Time of execution of the leases over all the Thread. In next

step, set Total Time as Fitness Function as a single figure of

merit to determine how close a particular design solution is

to accomplishing the set goals. Further in Crossover,

compute the Permutations of the number of leases available

to act as a combination for the next Generations. For next

Generation calculate the Time Evaluations using Optimized

Hungarian Algorithm and Total Time of execution is

obtained. This Current Value is compared with the Fitness

Function. If Current Value is less than Fitness Function then

set Current value as new Fitness Function, else discard the

current value. It will now draw next possible Combination

for Crossover to obtain next Generation and this process will

repeatedly loop around upto ten generations. Finally an

optimized solution is achieved in the form the lease

combination having least Execution Time.

D. Illustration

In this section, we will explain the HGA (Hungarian-Genetic

Algorithm) with the help of an example. We will begin with

the number of leases ‘n’ say n=3 and automatically n=3

scheduler threads will be generated, constructing an n×n

Square Matrix. By employing a Random Number Generator,

we will randomly assign random numbers to each Matrix

Element. Every entry in the Matrix will indicate the time of

execution of a lease on a particular scheduler. Suppose we

generate the following 3×3 matrix shown in figure2:

Figure2. Matrix (Initial Population)

Here the lease combination initially is: [1, 2, 3] and to

further obtain the combinations of Time Estimations for

Leases (L1, L2, L3) over the Scheduler Threads (ST1, ST2,

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 11

ST3) we apply Optimized Hungarian Algorithm. In above

figure, L1 requires 4 seconds to complete its Execution on

ST1, 5 seconds of Execution Time on ST2 and an Execution

Time of 4 seconds on ST3 and similarly for lease2 and

lease3. In Optimized Hungarian Algorithm, initially

Scheduler Thread, ST1 executes its lease then ST2 executes

and finally ST3 executes its lease.

Figure3. Time Estimation of Optimized Hungarian

Algorithm

Figure3. shows the Time Evaluations of leases. For lease1

(L1) to be scheduled on Scheduler Thread1 (ST1), it needs

to wait for no other lease or thread thus completes its

execution in just 4 seconds. For L1 to be scheduled on ST2,

it has to wait for scheduler1’s lease1 (ST1’s L1) i.e. for 4

seconds of Waiting time shown by underlined value in

figure, thus it will complete its execution in total of 9

seconds. For L1 to be scheduled over ST3, it has to wait for

9 seconds and completes execution after 13 seconds.

Similarly for L2 to be scheduled over ST1, it will have to

wait for L1 to complete its execution thus it will complete its

execution after 8 seconds. For L2 to be scheduled over ST2,

it can start its execution only after 9 seconds (Execution time

of L1 over ST2) but will have to check if ST1 completed its

execution or not, if ST1 already done, then it has zero

Waiting time else some Waiting time. Similarly Time is

estimated for all the elements using same method. Scheduled

time for all the scheduler threads is: ST1 = 15, ST2 = 22,

ST3 = 29 and Total Time is 66.

In case of rigid deadlines, we compare optimized scheduling

output that is obtained after 10 generations with that of a set

deadline generation by comparing the average number of

tasks to be scheduled to determine the number of leases

scheduled within a set deadline generation.

V. RESULT AND DISCUSSIONS

The proposed methodology of deadline-sensitive Lease

scheduling using HGA (Hungarian Genetic Algorithm) in

the cloud computing environment is deployed using the Java

programming language by using NetBeans 8.0 as IDE.

Proposed model uses the windows machine with a processor

of Core i3 and primary memory of 4GB. Some experiments

are being conducted to measure the impact of the proposed

mode with the other existed technologies.

A. Experiment Number 1: Number of Leases Scheduled

and rejected (when deadline is adjusted)

The proposed model uses the Hungarian and genetic

algorithm to schedule the leases based on the fact of one

lease assigned per single scheduler. Here the proposed

system improves the Hungarian model by blending it with

the traditional genetic algorithm. When the proposed model

of HGA is compared with that of the basic Backfilling

algorithm for scheduling the leases the results are totally

above the Backfilling algorithm and we found our approach

outperforming it.

Figure4 and table1 show the number of leases scheduled and

rejected by Backfilling algorithm, Backfilling AHP approach

and proposed HGA when deadlines are adjusted.

Comparatively our proposed approach, HGA schedules all

the leases when deadlines are adjusted.

Table1. Number of Leases scheduled by Existing Approaches [15] and Proposed technique HGA

Number of leases scheduled and rejected when deadline is adjusted (Soft Deadlines)

Experiment

No.

Number

of

 Leases

Backfilling Algorithm Backfilling AHP Approach Proposed HGA

No. of

Leases

Scheduled

No. of

Leases

Rejected

No. of Leases

Scheduled

No. of

Leases

Rejected

No. of

Leases

Scheduled

No. of Leases

Rejected

1 5 4 1 5 0 5 0

2 7 6 1 7 0 7 0

3 10 8 2 10 0 10 0

4 15 12 3 15 0 15 0

5 20 16 4 20 0 20 0

6 30 26 4 30 0 30 0

7 50 43 7 50 0 50 0

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 12

Figure4. Number of Leases scheduled by Backfilling Algorithm, Backfilling AHP approach [15] and Proposed HGA

B. Experiment Number 2: Number of Leases Scheduled

and rejected (when deadline is not adjusted i.e. Rigid

Deadlines)

When we compare our proposed approach of HGA with that

of the basic Backfilling algorithm and Backfilling AHP

model for scheduling the leases, the results are totally above

them and we found our approach outperforming them in

terms of number of leases scheduled when the set deadline is

not adjusted.

Figure5 and table2 show the number of leases scheduled and

rejected by Backfilling algorithm, Backfilling AHP approach

and proposed HGA when the set deadlines are not adjusted

(Rigid Deadlines).

As AHP model uses the backfilling technique where

scheduling process always seek to the available resources of

the past to be released, Whereas the proposed model uses the

Improved Hungarian model which uses the resources

systematically without colliding with the given scenario.

C. Experiment Number 3: Time Taken for Scheduling

When computation time in milliseconds is measured with

that of increasing number of leases, the experiments show

that the number of leases scheduled is not directly

proportional to the measured computation time as shown in

the figure6 and table3. This indicates that proposed model

works fine on increasing of the number of leases.

Table2.Number of Leases scheduled by Backfilling Algorithm, Backfilling AHP approach [15] and Proposed HGA

Number of leases scheduled and rejected when deadline is not adjusted (Rigid Deadlines)

Experiment

No.

Number

of

 Leases

Deadline

Generation

Backfilling Algorithm Backfilling AHP

Approach

Proposed HGA

No. of

Leases

Scheduled

No. of

Leases

Rejected

No. of

Leases

Scheduled

No. of

Leases

Rejected

No. of

Leases

Scheduled

No. of

Leases

Rejected

1 12 6 8 4 11 1 11 1

2 20 7 8 12 10 10 13 7

3 25 7 10 15 12 13 16 9

4 30 8 11 19 13 17 17 13

5 40 6 17 23 19 21 24 16

6 44 7 23 21 27 17 31 13

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 13

Figure5. Number of Leases scheduled by Backfilling Algorithm, Backfilling AHP approach [15] and Proposed HGA

Table3. Measured Time for Scheduling Leases

Figure6. Measured Time for the Scheduling Leases in milliseconds

VI. CONCLUSIONS AND FUTURE WORK

In this proposed work, we have devised HGA (Hungarian-

Genetic Algorithm) with the key motive to lessen the

execution time of deadline sensitive leases in cloud

computing environment. HGA blends the Hungarian

algorithm with Genetic algorithm to produce an optimal and

robust approach. This approach chooses such a lease

Number of Leases Time Taken for Scheduling (in Milliseconds)

2 40

4 45

6 117

8 293

10 802

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 14

combination which consumes least time of execution among

various permutations of Lease-Scheduler mappings

available. To find out the optimal lease combination, we

have carried out decision making and comparison with the

fitness function. The proposed HGA schedules greater

number of leases as compared to the existing technologies

(Backfilling AHP model and basic Backfilling Algorithm) in

case of rigid deadlines.

 It schedules all the leases without any lease rejection in case

when deadlines are soft and found to be outperforming the

basic Backfilling Algorithm by using the optimal lease

combinations which consume minimum time. Also

increasing the number of leases is not directly proportional

to the computation time so performs well on increasing the

number of leases.

For the future work, our algorithm can also work in real time

in Haizea for OpenNebula. Since, in our approach we have

worked only on Execution time so the future directions also

include considering other parameters for further refinement.

REFERENCES

[1] Rimal, Bhaskar Prasad, and Martin Maier. "Workflow scheduling

in multi-tenant cloud computing environments." IEEE Transactions

on parallel and distributed systems 28.1 (2017): 290-304.

[2] Nayak, SuvenduChandan, and ChitaranjanTripathy. "Deadline

based task scheduling using multi-criteria decision-making in cloud

environment." Ain Shams Engineering Journal9.4 (2018): 3315-

3324.

[3] Arunarani, A. R., D. Manjula, and VijayanSugumaran. "Task

scheduling techniques in cloud computing: A literature

survey." Future Generation Computer Systems 91 (2019): 407-415.

[4] Srinivasan, Sriramkrishnan. Cloud computing basics. Springer,

2014.

[5] Kalra, Mala, and Sarbjeet Singh. "A review of metaheuristic

scheduling techniques in cloud computing." Egyptian informatics

journal 16.3 (2015): 275-295.

[6] Wu, Xiaonian, et al. "A task scheduling algorithm based on QoS-

driven in cloud computing." Procedia Computer Science17 (2013):

1162-1169.

[7] Arabnejad, Vahid, Kris Bubendorfer, and Bryan Ng. "Scheduling

deadline constrained scientific workflows on dynamically

provisioned cloud resources." Future Generation Computer

Systems 75 (2017): 348-364.

[8] Sotomayor, Borja, et al. "Virtual infrastructure management in

private and hybrid clouds." IEEE Internet computing 13.5 (2009):

14-22.

[9] http://haizea.cs.uchicago.edu/

[10] Calheiros, Rodrigo N., and RajkumarBuyya. "Meeting deadlines

of scientific workflows in public clouds with tasks

replication." IEEE Transactions on Parallel and Distributed

Systems 25.7 (2014): 1787-1796.

[11] Jackson, Keith R., et al. "Performance analysis of high

performance computing applications on the amazon web services

cloud." 2010 IEEE second international conference on cloud

computing technology and science. IEEE, 2010.

[12] Toosi, Adel Nadjaran, Richard O. Sinnott, and RajkumarBuyya.

"Resource provisioning for data-intensive applications with

deadline constraints on hybrid clouds using Aneka." Future

Generation Computer Systems 79 (2018): 765-775.

[13] Vecchiola, Christian, et al. "Deadline-driven provisioning of

resources for scientific applications in hybrid clouds with

Aneka." Future Generation Computer Systems 28.1 (2012): 58-65.

[14] Xu, Xiangqiang, and Xinghui Zhao. "A framework for privacy-

aware computing on hybrid clouds with mixed-sensitivity

data." 2015 IEEE 17th International Conference on High

Performance Computing and Communications, 2015 IEEE 7th

International Symposium on Cyberspace Safety and Security, and

2015 IEEE 12th International Conference on Embedded Software

and Systems. IEEE, 2015.

[15] Nayak, SuvenduChandan, and ChitaranjanTripathy. "Deadline

sensitive lease scheduling in cloud computing environment using

AHP." Journal of King Saud University-Computer and Information

Sciences 30.2 (2018): 152-163.

 [16] Zhao, Zhuo, Ying Jiang, and Xin Zhao. "SLA_oriented service

selection in cloud environment: a PROMETHEE_based Approach."

Computer Science and Network Technology (ICCSNT), 2015 4th

International Conference on. Vol. 1. IEEE, 2015.

[17] Kaur, Kulbir, and Harshpreet Singh. "PROMETHEE based

component evaluation and selection for Component Based

Software Engineering." 2014 IEEE Int. Conf. on Advanced

Communications, Control and Computing Technologies. IEEE,

2014.

[18] Brans, Jean-Pierre, PhVincke, and Bertrand Mareschal. "How to

select and how to rank projects: The PROMETHEE method."

European journal of operational research 24.2 (1986): 228-238.

[19] Ali, Hend Gamal El Din Hassan, Imane Aly Saroit, and Amira

Mohamed Kotb. "Grouped tasks scheduling algorithm based on

QoS in cloud computing network." Egyptian informatics

journal 18.1 (2017): 11-19.

[20] Panda, Sanjaya Kumar, ShradhaSurachita Nanda, and Sourav

Kumar Bhoi. "A pair-based task scheduling algorithm for cloud

computing environment." Journal of King Saud University-

Computer and Information Sciences (2018).

[21] Haidri, Raza Abbas, ChittaranjanPadmanabhKatti, and Prem

Chandra Saxena. "Cost effective deadline aware scheduling

strategy for workflow applications on virtual machines in cloud

computing." Journal of King Saud University-Computer and

Information Sciences (2017).

[22] Rodriguez, Maria Alejandra, and RajkumarBuyya. "Deadline

based resource provisioningand scheduling algorithm for scientific

workflows on clouds." IEEE transactions on cloud computing 2.2

(2014): 222-235.

 [23] H.W. Kuhn , The Hungarian method for the assignment problem,

Nav. Res. Logist. Q. 2 (1-2) (1955) 83–97 .

[24] Date, Ketan, and Rakesh Nagi. "GPU-accelerated Hungarian

algorithms for the Linear Assignment Problem." Parallel

Computing 57 (2016): 52-72.

[25] Suleiman Kabiru, Bello Malam Saidu, AbdullahiZubairu Abdul,

Uba Ahmad Ali. “An Optimal Assignment Schedule of Staff-

Subject Allocation ”. Journal of Mathematical Finance, 2017, 7,

805-820

[26] R R Patel, T T Desai, S J Patel. “Scheduling of Jobs based on

Hungarian Method in Cloud Computing”. International Conference

on Inventive Communication and Computational Technologies

(ICICCT 2017).

[27] Disha Patel, Ms.JasmineJha. “ Hungarian Method Based Resource

Scheduling algorithm in Cloud Computing”. IJARIIE ISSN(O)-

2395-4396

[28] Lin, Chi-Shiuan, I-Ling Lee, and Muh-Cherng Wu. "Merits of

using chromosome representations and shadow chromosomes in

genetic algorithms for solving scheduling problems." Robotics and

Computer-Integrated Manufacturing58 (2019): 196-207.

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 15

[29] Younas, Irfan, et al. "Efficient genetic algorithms for optimal

assignment of tasks to teams of agents." Neurocomputing 314

(2018): 409-428.

[30] Casas, Israel, et al. "GA-ETI: An enhanced genetic algorithm for

the scheduling of scientific workflows in cloud

environments." Journal of computational science 26 (2018): 318-

331.

[31] Agarwal, Mohit, and Gur Mauj Saran Srivastava. "A genetic

algorithm inspired task scheduling in cloud computing." 2016

International Conference on Computing, Communication and

Automation (ICCCA). IEEE, 2016.

[32] Huang, Chin-Jung. "Integrate the Hungarian method and genetic

algorithm to solve the shortest distance problem." 2012 Third

International Conference on Digital Manufacturing & Automation.

IEEE, 2012.

AUTHORS PROFILE

Miss. Duraksha Ali pursued Bachelors of

Technology (Information Technology

Engineering) from B.G.S.B University

Rajouri, India in 2016 and Masters of

Technology (Computer Science

Engineering) from S.M.V.D University
Katra, India in 2019. Her main research work focuses on

cloud computing, scheduling in cloud computing, various

MCDM (Multi Criteria Decision Makers) in cloud

computing and cloud security.

Mr. Manoj Kumar Gupta pursued

Bachelors of Engineering from CCS

University Meerat in 2001, Masters of

Technology from HBIT Kanpur in 2009

and pursued Ph.D from IIT Rorkee in

2014. He is currently working as Associate

Professor in Department of Computer Science, S.M.V.D

University Katra. He has published many research papers in

esteemed journals. His main research work focuses on Data

Mining Algorithms, Bio Informatics and Computational

Biology, Algorithms. He has teaching experience of 13

years, Research experience of 3.5 years and 5 years of

experience in Administration.

.

