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Abstract— In principle, a multi-objective optimization problem (MOOP) provides a group of non-dominated solutions 

(popularly known as Pareto-optimal solutions) for the decision maker (DM). A DM is undecidable to claim one of these 

solutions to be better than another in the absence of any further information. Due to this reason, a DM needs as many Pareto-

optimal solutions as possible. Classical optimization methods are unable to produce multiple solutions at a time because of 

converting the MOOP to a single-objective optimization problem (SOOP). In the past decades, multi-objective evolutionary 

algorithms (MOEAs) have been developed to be powerful techniques of identifying a complete picture of the Pareto-optimal 

solutions space, where a DM can select one out of these solutions according to his/her preference. Moreover, a more efficient 

MOEA can exploit the search in a better position if the DM provides some general views or ideas about the solution in terms of 

reference points or weights. Reference point based NSGA-II (R-NSGA-II) is such type of an MOEA where DM’s assigned 

reference points are used to search the solutions and its diversity is controlled efficiently. This paper presents the applicability 

of the R-NSGA-II algorithm to the system reliability design problem. The simulation results show the advantage of R-NSGA-II 

over NSGA-II. 

Keywords— Multi-objective optimization problem (MOOP), Multi-objective evolutionary algorithms (MOEAs), Reference 

points, System reliability, Pareto-optimal front (POF) 

I.  INTRODUCTION  

In designing phase of a system, we often need to increase the 

system reliability and reduce its cost simultaneously. Multi-

objective formulation of a system design is a better way to 

represent such problems. Weighted sum method [1] is 

applied to solve such types of problem. But this method is 

not a right way and has some demerits such as producing one 

solution at a time, time-consuming, difficulty in assigning the 

weights, inability to get the solution in the non-convex region 

etc. These issues are generally found in most of the classical 

optimization methods. So, an alternative way is to search for 

the POF. In the past decades, many MOEAs like PAES [2], 

NSGA [3], NPGA [4], SPEA [5], NSGA-II [6] etc. have 

been developed to cope up such issues. Moreover, if the DM 

provides some views or general idea about the solution, then 

that information can be exploited by the algorithm in the 

right direction. R-NSGA-II [7] is such type of algorithm 

where DM selects a focused solutions space according to 

his/her preferences. This helps a DM to cover a more 

convergent part (small part) of the POF. In this way, a DM 

avoids finding a solution set covering the whole POF [7]. 

Sometimes a DM gives more than one clue in terms of 

reference points then multiple regions are obtained. In this 

case, the search of the solution becomes parallel and gives 

more effective results. R-NSGA-II also takes care of biased 

nature of the DM by assigning the weight of one objective 

more than other. Here, a system design problem is taken into 

consideration in the framework of R-NSGA-II. The problem 

is straightforward. In the broadest sense, reliability is defined 

as a measure of performance of the system. Reliability 

enhancement is a key feature of the system design. The other 

features may be conflicting such as cost, weight, volume etc. 

These are natural resource consumptions where a designer 

engineer always tries to reduce it from the system with 

enhancement of reliability simultaneously.  

 

In this paper, reliability and cost are taken as main objectives 

of system design. The mathematical model of the problem is 

presented. A numerical example is given to show the 

performance of R-NSGA-II over NSGA-II. The remaining 

Sections of the paper are organized as follows: Section II 

describes the background of the MOOP with some 

fundamental definitions as well as its optimization algorithm 

NSGA-II. Section III gives a short description of its related 

work. Section IV presents a description of the R-NSGA-II 

algorithm. Section V presents the mathematical model of the 

problem with an illustrative example. In Section VI, 

simulation results are shown graphically with its discussion. 

Section VII gives the conclusion of this paper. 
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II. BACKGROUND 

A. Multi-objective optimization 

The MOOP tackles more than one objective function 

simultaneously. It is also known as multi-criteria 

optimization, multi-performance or vector optimization 

problem. Mathematically, we can define an MOOP as 

follows [1]. 

 1 2Minimize ( ) ( ), ( ),..., ( )
T

kF X f X f X f X   

( ) ( )

subject to ( ) 0, 1,2,..., ;

( ) 0, 1, 2,..., ;

; 1,2,..., ,

i e

i e e

L U

j j j

g X i m

g X i m m m

x x x j n

 

   

  

                       (1) 

where 2k   is the number of objectives; m is the total 

number of constraints; 
em  is the number of equality 

constraints;  1 2, ,...,
T

nX x x x  is n  dimensional decision 

vector from the feasible region n  (Euclidean n -

space); objective functions ( ), 1,2,..., ,pf X p k  where 

:pf   and the constrained functions ( )ig X , where 

:ig  ; ( )F X  is called a multi-objective vector  or 

criterion vector; ( )L

jx  and ( )U

jx  are the lower and upper 

bounds of the decision variable jx  respectively.  

 

If all 
pf ’s and 

ig ’s are linear then the problem is called a 

multi-objective linear programming problem (MOLPP), 

otherwise, it is called a multi-objective nonlinear 

programming problem (MONLPP). Two Euclidean spaces 

are considered in an MOOP as Decision space and Objective 

space. For every point X  in the decision space, there exists a 

point  1 2( ) ( ), ( ),..., ( )
T

kF X f X f X f X in the objective 

space. Therefore, there is a mapping between n-dimensional 

solution vector and k-dimensional objective vector. It is 

obvious that the approach of the SOOP is not directly 

applicable to MOOP. Due to this reason, a classification of 

solutions is given in terms of Pareto optimality. From MOOP 

given in (1), we can define the following definitions as 

follows: 

 

Definition 1 (Pareto dominance). A solution vector 1X  

Pareto-dominates another solution vector 2X  denoted as 
1 2X X  iff   [1] 

 
1 2( ) ( ) 1,2,..., ,p pf X f X p k     

 
1 2( ) ( )q qf X f X  for at least one  1,2,...,q k , 

p q .  

If there does not exist such solutions which Pareto-dominate 

to 1X  then solution vector 1X  is called a non-dominated 

solution. 

Definition 2 (Pareto-optimal set). A set of non-dominated 

solutions  * *| . .P X X s t X X   is called a Pareto-

optimal set [8]. 

 

Definition 3 (Pareto-optimal solution). A point *X   is 

called a Pareto-optimal solution if there does not exist 

another point X   such that    
*( ) ( ) 1,2,...,p pf X f X p k    and *( ) ( )q qf X f X  for at 

least one  1,2,...,q k , p q [8]. 

 

Definition 4 (Pareto-optimal front). The set of vectors in the 

objective space that is mapped to elements from a Pareto-

optimal set under F ,  

i.e.,  * *( ) | . .POF F X X s t X X   [8]. 

Two important goals in a multi-objective optimization [1]: 

First goal: To find a set of solutions as close as possible to 

the POF. 

Second goal: To find a set of solutions as diverse 

homogeneous as possible. 

 

The first goal indicates the convergence of solutions near the 

POF while the second goal refers to get a uniformly spaced 

set of solutions indicating an adequate exploration of the 

search space and not losing valuable information.  

 

 
Figure 1. A schematic representation of Pareto-optimal front 

B. Non-dominated Sorting Genetic Algorithm-II (NSGA-II) 

Non-dominated sorting genetic algorithm (NSGA) was 

initially suggested by Srinivas and Deb [3]. It uses 

Goldberg’s domination criterion [9] to assign ranks for the 

solutions and utilization of fitness sharing for maintaining the 

diversity in the solution set. It has some difficulty in 

regarding computational complexity, non-elitist approach 

and highly dependent on the parameters of fitness sharing. 

Deb et al. [6] extended this algorithm in form of NSGA-II by 

giving some new features like fast non-dominated sorting, 

crowding distance, and comparison operator.  
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NSGA-II assigns a rank for solutions employing non-

dominated sorting procedure (see Fig. 2) and emphasizes 

good solutions throughout this algorithm. The overall 

complexity governed by this process is O(kN
2
), where k and 

N denote the no. of objectives and population size 

respectively [6]. 

 

For maintaining the diversity in the solution set, NSGA-II 

calculates the crowding distance (see Fig. 3) of each solution. 

It is basically defined as those solutions that contain the same 

rank. A partial order comparison operator is applied to 

determine a better solution between two solutions. According 

to this operator, if both the solutions belong to the same rank 

then preference is given to the solution that contains a higher 

crowding distance value. A higher crowding distance value 

gives the lesser crowded region and vice versa [6]. The 

NSGA-II procedure is given in Fig. 4. 

 

The pseudo code of NSGA-II algorithm is given as follows: 

 

Step 1. Initializing randomly a parent population 0P   of size 

N. Setting k = 0. 

 

Step 2. Assigning fitness (rank) according to non-domination 

level and crowded-comparison operator. 

 

Step 3. while k  < number of maximum generation do 

(i) Creating an offspring population kQ of size N 

applying reproduction, crossover, and mutation.   

(ii) Combining via k k kR P Q  . 

(iii) Sorting on kR and classifying them into non-

dominated fronts (Pareto-front) , 1,2,...,iPF i   etc. 

(iv) Setting a new population 1kP    and 1i  .  

while the parent population size  

1k iP PF N    do 

(i) Calculating the crowding distance of iPF   

(ii) Adding the thi  non-dominated front iPF  to the 

parent population 1kP  . 

(iii) 1i i  . 

end while 

(iv) Sorting the iPF  using the crowding distance based 

comparison operator. 

(v) Filling the parent population 1kP   with the first 

1kN P   solutions of iPF . 

(vi) Generating the offspring population 1kQ  . 

(vii) Setting  1k k   . 
end while 

 

Step 4.  Collecting the non-dominated solutions in the vector 

P. 

 

Figure 2. Non-dominated sorting of a population 

 

 

Figure 3. Crowding distance evaluation of a solution 
 

 
Figure 4. Evaluation cycle of NSGA-II 

 

III. RELATED WORK  

The second generation MOEA, NSGA-II was applied to 

multi-objective reliability optimization problems by Salazar 

et al. [10]. The competency of NSGA-II to solve 

unconstrained and constrained reliability optimization 
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problems over the existing approaches have been 

demonstrated. 

Kishore et al. [11] show the applicability of NSGA-II in a 

series system reliability problem. Kishore et al. [12] also 

proposed an interactive approach for fuzzy multi-objective 

reliability optimization problem based on NSGA-II. 

Wang et al. [13] solved the redundancy allocation problem 

(RAP) in parallel series under a number of constraints using 

NGSA-II and compared with existing heuristic methods for 

single objective optimization problems.  

Safari [14] proposed a variant of NSGA-II in solving a multi-

objective RAP.  

Khalili-Damghani et al. [15] proposed a decision-support 

system for multi-objective RAPs.  

Taboada et al. [16] proposed practical solutions of system 

reliability design problems by combining NSGA algorithm 

with k-mean clustering technique. 

IV. REFERENCE POINT-BASED NSGA-II (R-NSGA-II) 

The R-NSGA-II [7] is an MOEA. This is an extension of the 

NSGA-II algorithm with some specified preferences of the 

DM in terms of reference points. NSGA-II algorithm has 

difficulty in producing a preferred or smaller set of Pareto-

optimal solutions. In the practical point of view, a DM 

should allow in concentrating those regions of the POF 

which are of his/her interest. This type of MOEA has an 

advantage over interactive classical optimization methods 

where we get only a single solution based on the preferences 

assigned by the DM. Getting a single solution near the 

desired region of the front [7] is not an ideal property. A DM 

is interested in knowing the characteristics of optimum and 

near-optimum solutions with help of given clue rather than 

looking for a single solution. Therefore, a number of 

solutions near the reference point are more reliable over a 

single solution in making a better decision. Moreover, if a 

DM provides multiple regions of such interests 

simultaneously then search becomes more effective and 

parallel towards a preferred solution. These characteristics 

are well handled by the R-NSGA-II algorithm. Here, a DM is 

allowed to give one or more reference points in order to 

attract the search for new solutions. In Fig. 5, the flowchart 

of the R-NSGA-II algorithm is presented. The selection 

procedure of R-NSGA-II in the flow chart (marked as sub-

process) is different from original NSGA-II. The updates of 

NSGA-II are given in the following steps [7]. 

Step 1. R-NSGA-II applies non-dominated sorting process of 

solutions slightly different from NSGA-II.  Firstly, the 

normalized Euclidean distance of every solution is calculated 

with respect to each reference point. The normalized 

Euclidean distance XRD  from solution X to the reference 

point R is defined as  

 

2

max min
1

( )k
i i

XR

i i i

f X R
D

f f

 
  

 
                            (2) 

This distance is called the preference distance.  

Step 2. After performing such computations in Step 1, the 
minimum preference distance of the solutions is assigned a 
rank one. Similarly, next minimum preference distance is 
assigned a rank of two and so on. In this way, all solutions are 
sorted in ascending order of distance. Then, solutions having 
smaller rank are preferred in the tournament selection to form 
new population from a combined population of parent and 
offspring. 

Step 3. To control the diversity of the solutions, R-NSGA-II 

applies the ϵ-clearing idea to the niching operator in replace 

of crowding distance. ϵ-clearing idea (value gap) is 

responsible to maintain the diversification among all 

solutions. The ϵ-value is known as the tolerance or precision 

for the objective values specified by the DM. The tolerance or 

precision is decided by the DM according to the given 

conditions. 

Firstly, a solution is randomly chosen from the non-

dominated solution set. By considering the selected solution 

as a central point, R-NSGA-II calculates the distance of 

adjacent solutions to this point until the radius of ϵ. In other 

words, it calculates the sum of the normalized difference in 

objective values of ϵ or less from the chosen solution [7]. At 

this point, in order to discard the solutions in ϵ -vicinity of the 

selected solutions, R-NSGA-II assigns them a large distance 

value. In this way, only one solution (central solution) is 

selected and other solutions are discarded. Thereafter, the 

algorithm selects another unconsidered solution from the 

remaining solutions in the non-dominated set. The process is 

repeated and continues until reaching all solutions. 

The procedure described above gives equal importance of 

solutions nearest to each reference point and finds multiple 

regions of interest simultaneously in a single simulation run. 

Moreover, ϵ-based selection strategy (also known as ϵ-

dominance strategies) makes sure a spread of solutions near 

the preferred regions. In other words, reference point 

approach is equivalent to a weight vector emphasizing each 

objective function equally as 1/iw k . 

In order to make biasedness towards some objectives more 

than others, an appropriate weight vector is supplied by the 

DM to each reference point rather than giving priority in 

emphasizing solutions with the shortest Euclidean distance 

from a reference point. For this purpose, a shortest weighted 
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Euclidean distance from the reference point is calculated as 

follows [7].  

2

max min
1

( )k
w i i
XR i

i i i

f X R
D w

f f

 
  

 
                         (3)       

 

where min
if  and max

if  are the minimum and maximum 

values of thi  the objective. This distance is also used to get a 

set of preferred solutions in the non-convex region. 

 

 

Figure 5. Flowchart of R-NSGA-II algorithm 

V. MATHEMATICAL MODEL OF THE PROBLEM 

In practical situations, the problem of system reliability is 

constructed as a typical non-linear programming problem 

with nonlinear cost. A design engineer wants to increase the 

system reliability and decrease its cost simultaneously. The 

cost of reliability is a monotonically increasing function of 

reliability [17].  Therefore, an MOOP is modeled by taking 

system reliability
sR and system cost

sC  simultaneously as 

objectives given by  

 

or

Maximize , ,...,
1 2

for seriessystem
1

1 (1 ) for parallelsystem
1

or

combination of series and parallelsystem

s

i

i

R r r rn

n
r

i

n
r

i






















 


                              (4) 

   Minimize , ,...,
1 2

1
i i

n
C r r r C rs n

i
 


                                     (5) 

,minsubject to 1, for 1,2,..., ,i ir r i n                                  (6) 

where n is the total number of components in the system and 

,minir  is a minimum value for the thi  component. 

A. An illustrative example 

 
Figure 6. Life-support system in a space capsule 

In Fig. 6, the system configuration of the complex system 

(Life-support system in a space capsule) [18] is shown. The 

system needs a single path to its success, possesses two 

redundant subsystems, each subsystem connects with two 

redundant components 1 and 4. Each of the redundant 

subsystems connects in series with component 2 and the 

resultant pair of series-parallel arrangement forms two equal 

paths. In order to back up for the pair, component 3 enters as 

a third path. This problem forms a continuous nonlinear 

optimization problem and consists of four components, each 

having component reliability , 1,2,3,4r ii  . 

 

 

2

3 1 4

2

3 2 1 4

Maximize 1 (1 )(1 )

(1 ) 1 {1 (1 )(1 )}

sR r r r

r r r r

    

    

                          (7)    
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4
Minimize 2

1
r iC Ks i i

i


 


                                                (8)                                                                                      

subject to 0.5 1, 1, 2,3, 4r ii   .                                  (9)                   

In other words, the problem (7) to (9) can be written as 

Minimize( , )s sQ C , 1s sQ R                                      (10)         

subject to 0.5 1, 1,2,3,4r ii                                (11)                  

where vectors of coefficients iK and i are                                                           

{100,100,200,150}K  & {0.6,0.6,0.6,0.6}  respectively. 

VI. SIMULATION RESULTS AND DISCUSSION 

To solve the MOOP (7) to (9), the list of parameters of R-

NSGA-II is given in Table 1. We have used the Intermediate 

crossover [1] and Gaussian mutation [1] operator to generate 

offspring population. The best POF is observed on the basis 

of tuning of the parameters. The R-NSGA-II algorithm has 

been programmed in MATLAB R2010a and runs in MS 

window environment on the PC which has intel core
TM

 i3 

Duo processor with 2.40 GHz and 2GB RAM. 

 
Table 1. Parameter settings for R-NSGA-II 

Parameters Value/Type 

Population size 200 

Number of generations 500 

Number of design variables 4 

Number of objectives 2 

Lower bounds [0.5 0.5 0.5 0.5] 

Upper bounds [1 1 1 1 ] 

Population Initialization Random 

Selection strategy Binary Tournament 

Crossover probability 0.9 

Mutation probability 0.25 

 

 
Figure 7. POF with reference points as (0.90, 740), (0.95, 780) and (0.99, 

820) 

 

Figure 8. POF at 0.001 (diversity parameter) 

Fig. 7 shows the advantage of R-NSGA-II over NSGA-II. 

Three reference points are taken in keeping the view of the 

DM’s choice. The reference points are (0.90, 740), (0.95, 

780) and (0.99, 820). R-NSGA-II has the tendency to achieve 

the most favorable parts of the POF. In Figs. 8 and 9, the 

effect of epsilon in obtaining a varied spread of preferred 

solutions has been shown.  

 

Figure 9. POF at 0.0001  (diversity parameter) 

 

 
Figure 10. Biased preferred solutions (POF) with weight vector (0.8, 0.2) 

 

In Figs. 10, 11, 12, the effect of the weight vector in R-

NSGA-II at ϵ =0.001 has been shown. If the DM is excited in 

biasing one objective more than another then a suitable 

weight vector can be applied to these reference points. In 
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keeping the views of the DM, three weight vectors such as 

(0.8, 0.2), (0.5, 0.5) and (0.8, 0.2) have been considered 

between reliability and cost of the system. This is similar to 

the classical scalarization approach. 

 

 
Figure 11. Non-biased preferred solutions (POF) with weight vector (0.5, 

0.5) 

 
Figure 12. Biased preferred solutions (POF) with weight vector (0.2, 0.8) 

VII. CONCLUSION AND FUTURE SCOPE  

In this piece of work, the significance of R-NSGA-II 

algorithm is shown in reliability based system design 

problem. A mathematical model of the problem with two 

conflicting objectives reliability vs cost is presented and then 

a numerical example of a complex system is given for 

illustration. Three reference points are chosen according to 

the choice of the DM. In order to tackle the biased behavior of 

the DM of one objective more than another, three weight 

vectors (0.8, 0.2), (0.5, 0.5) and (0.2, 0.8) are taken into 

consideration. The behavior of the POF has been successfully 

demonstrated in each case. The effect of epsilon in a varied 

spread of preferred solutions has been successfully shown. 

We find that epsilon is decreased from the original value 

0.001 to 0.0001 then the creation of Pareto-optimal solutions 

gets diminished. The main advantage of using R-NSGA-II is 

that we get multiple solutions (Pareto-optimal solutions) in a 

single simulation run with each reference point. The concept 

of reference point methodology can be used in other MOEA 

approaches and implemented in many decision-making fields 

such as economics, management, engineering etc. 
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