
 © 2015, IJCSE All Rights Reserved 89

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
 Review Paper Volume-3, Issue-6 E-ISSN: 2347-2693

Role of Suffix Array in String Matching: A Comparative Analysis

Nagendra Singh

Maulana Azad National institute of technology, Bhopal, India

nagendra11manit@gmail.com

www.ijcseonline.org

Received: Jun/02/2015 Revised: Jun/08/2015 Accepted: Jun/17/2015 Published: Jun/30/2015

Abstract— Text search is a classical problem in Computer Science, which reside in many data-intensive applications. For this

problem, suffix arrays are the most widely known and used data structures, which enabling fast searches for phrases, terms,

substrings and regular expressions in large texts. Potential application domains of this method includes large-scale search

services, such as Web search engines, plagiarism checker where it is necessary to efficiently process intensive traffic streams of

on-line queries. Suffix array is an effective way to construct the index of the full text i.e. sorted array of all suffix of string

which is important for different kind of applications, perhaps most notably string matching, string discovery and block-sorting

data compression. This paper elucidates intensive research toward efficient construction of suffix arrays with algorithms

striving not only to be fast, but also “lightweight” (in the idea that they use small working memory).

Keywords—Suffix sorting, Suffix array, fm index, trie structure.

I. INTRODUCTION

String search is a well known problem: given a text

S[0...n−1] over some alphabet Σ of size σ =|Σ|, and a pattern

P[0 . . .m − 1], locate the occurrences of P in S. Several

different query modes are possible: asking whether or not P

occurs (existence queries); asking how many times P occurs

(count queries); asking for the byte locations in T at which

P occurs (locate queries); and asking for a set of extracted

contexts of S that includes each occurrence of P (context

queries) [3].

When T and P are provided on a one-off basis, sequential

pattern search methods take O(n + m) time. When T is

fixed, and many patterns are to be processed, it is liable to

be more efficient to pre-process T and construct an index.

Suffix tree is trie like indexed data structure which

computed and stored in O(n) time and space [13], where n =

|S|. Once constructed, it allows one to answer queries of the

type “Is P a substring of S?” in O(m) time, where m = |P|.

Moreover, all z occurrences of a pattern P can be found in

O(m+n) time, totally independent of the size of S. Still, in

large scale applications such as genome analysis, the space

requirements of the suffix tree are a severe minus. The

suffix array is a more space economical index structure. The

suffix array [1] is one such index, permitting locate queries

to be answered in O(m+logn+k) time when there are k

occurrences of P in S, using O(nlogn)bits of space in

addition to S. Using it and an additional table, Manber and

Myers (1993) showed that decision queries and enumeration

queries can be answered in O(|P|+log |S|) and O(|P|+log

|S|+z) time, respectively .

This paper is organized as follows. Our data structure is

described in section 2. Various practical implementation

that show the advantages of our method are given in next

section which contains a description of the construction

algorithm for our index and shows how pattern matching

queries are implemented. We are currently working on

further optimizations.

II. SUFFIX ARRAY

A suffix array is a data structure for efficiently answering

queries on large strings. As a data structure, it is widely

used in areas such as string matching, bio-informatics [6]

and, in general, any region that deals with strings and string

matching problems, so, as you can see, it is of great

significance to know efficient algorithms to construct a

suffix array for a given string. The suffix array of a string S

is an array giving pointers to the suffixes of S sorted in

lexicographical order of the suffixes. For concreteness, let

suffix (S) denote the suffix of S starting at position i.

Figure I: Example

As an example, consider the string S is “attcatg” which

results in the following suffix array:

 International Journal of Computer Sciences and Engineering Vol.-3(6), PP(89-93) June 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 90

Table I. Resultant Suffix Index

i 1 2 3 4 5 6 7 8

S[i] 8 5 1 4 7 3 6 2

 in this example, the suffix array indicates that suff8 <

suff5 < suff61< suff4 < suff7 < . . . , where < denotes the

lexicographical ordering.

III. CONSTRUCTION ALGORITHM

A naive approach to construct a suffix array is to use

a comparison-based sorting algorithm. These algorithms

need O(nlogn) in suffix comparisons, but a suffix

comparison runs in O(n) time, so the whole runtime of this

approach is . More advanced algorithms take

advantage of the fact that the suffixes to be sorted are not

arbitrary strings but related to each other. These algorithms

strive to achieve the following goals:

• Minimal asymptotic complexity O(n).

• Lightweight in space, means small or no

working memory alongside the text and the suffix array

itself is needed.

• Fast in practice.

 Now we consider better approach to construct the suffix

array. The idea is to use the fact that strings that are to be

sorted are suffixes of a single string. first sort all suffixes

according to first character, then sort according to first 2

characters, then first 4 characters and so on even though the

number of characters to be considered is less than 2n. The

main point is, if we have sorted suffixes according to first 2
i

characters, then we can sort suffixes according to first 2
i+1

characters in O(nlogn) time using sorting algorithm like

Merge Sort which takes nlogn. This is possible as two

suffixes can be compared in O(1) time. The sort function is

called O(logn) times (Note that we increase number of

characters to be considered in powers of 2). Therefore

overall time complexity becomes O(nlognlogn). Here we

can use here radix sort to reduce time complexity to

O(nlogn). Third approach to build suffix array uses indirect

method to form. Ukkonen’s Suffix Tree [13] Construction

takes O(n) time and space to build suffix tree for a string of

length N and traversal of tree take O(n) to form suffix array.

So overall, it’s linear in time and space. Can you see why

traversal is O(n) ? Since a suffix tree of string of length N

will have at most N-1 internal nodes and N leaves.

Traversal of these nodes can be done in O(n).

 Algorithm I. Psuedo code for construct Suffix array

for(int i = 0; i < s. size();i++){

m[s. substr(i,s.size()-i)] = i;

v.push back (s.substr (i,s.size()-i));}

sort(v.begin(),v.end());

for(int i = 0; i < v.size();i++{

cout << m[v[i]] << endl }

return 0;}

IV. RELATED WORK

3.1 Q-gram Based Database searching Using Suffix Array

With the increasing amount of DNA sequence data

dumped in databases, examining for similarity to a query

sequence has become an elementary operation in molecular

biology. But even today’s fast algorithms reach their limits

when applied to all-versus-all comparisons of large

databases. Here we discuss a new Database searching

algorithm called QUASAR [5] (Q-gram Alignment based

on Suffix Arrays) which was designed to quickly detect

sequences with strong similarity to the query in a context

where many searches are conducted on one database. Our

algorithm a plies a modification of q-tuple filtering

implemented on top of a suffix array.

Disadvantage is its requires large amounts of internal

memory and takes rather more absolute time. Furthermore,

for large data sets internal memory is likely to be

insufficient for the construction and secondary memory

versions are required to keep its running time within

reasonable limits. This is an area of future research.

3.2 Search result clustering based Suffix array and VSM

With the rapid growth of big data such as web

pages, search engines will usually present a long ranked list

of documents. The users must sift through the list with

“title” and “snippet” to find the required document. This

manner may be good for some simple and specific tasks but

less effective and efficient for ambiguous queries such as

“apple” or “jaguar”. To improve the effect and efficiency of

information retrieval, an another method is to automatically

organize string retrieval results into clusters. This paper

proposed an improved Lingo algorithm called Suffix Array

Similarity Clustering (SASC) for clustering search results.

This method builds the clusters using improved suffix array,

which disregards the redundant suffixes, and computing

document similarity based on the title and short document

snippets returned by Web search engines. Here we show

that the SASC algorithm has not only a better performance

in time-consuming than Lingo but also in cluster description

 International Journal of Computer Sciences and Engineering Vol.-3(6), PP(89-93) June 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 91

quality and precision than Suffix Tree Clustering.

The algorithm is based on four principles mentioned by the

section 1. Firstly, the key terms discovered by suffix array

can be taken as candidates for cluster labels. Then we can

measure similarity between term and document vectors. So

all the cluster labels can be separated from key terms (the

candidates for cluster labels) and similarity documents are

organized into groups according to the hierarchical

relationship.

The whole process of clustering algorithm is composed of

the four steps:

• Document parsing.

• Key terms extraction.

• Organizing into clusters and extracting cluster labels.

• Analyzing the hierarchy relation of clusters.

The efficiency of suffix array is improved by ignoring the

redundant suffixes. This method takes far less time than

Lingo. Furthermore, SASC supports hierarchical structure.

In the future, we intend to further improve the time

efficiency and the accuracy as well as consider other

information such as the user’s interaction with the

clustering results for adaptive clustering.

3.3 Cloud based parallel suffix array construction based on

MPI

Next Generation Sequencing machines are

producing massive amount of genomics data currently. for

indexing genomics data The suffix array is presently the

best choice because of its efficiency and large number of

applications. In this paper, they address the problem of

constructing the suffix array on cluster in the cloud. We

shows a solution that automates the formation of a computer

cluster in a cloud and automatically constructs the suffix

array in a distributed fashion over the cluster nodes. This

has the advantage of summarizing all set-up details and

Execution of the algorithm. Due to distributed nature of the

techniques we use overcomes the problem that arises when

the user wishes, because of cost or low memory machines in

the cloud.

Our experiments show that our implementation scales well

with the increasing number of processors. The cloud cost is

affordable and it provides cost effective solution. The

creation of the cluster involves creation of a master node

and worker nodes from a certain machine image which

includes pre-installed middleware and programs. After

creating the nodes, the storage (virtual hard-disks) are

created and associated to them. In this step, the MPICH2 is

installed with all necessary configuration steps to enable

parallel programming. Once the cluster is created, the user

starts the suffix array construction by invoking the

respective programs.

The cloud SACA system developed which is a solution that

automates the establishment of a computer cluster in the

cloud and automatically constructs the suffix array in a

distributed fashion on the computer cluster.

IV. STRING MATCHING USING SUFFIX ARRAY

String search is a well known problem: given a text

S[0...n−1] over some alphabet of size σ and a pattern P[0 . .

. m − 1], locate the occurrences of P in S. Given a text string

‘S’, the problem of string matching deals with finding

whether a pattern ‘P’ of size m occurs in text ‘S’ of size n.

If ‘P’ does occur then returning position in ‘S’ where ‘P’

occurs. Suffix array [1,6,7,8] based pattern matching based

in preprocessing text rather than preprocess pattern (in

classical methods).

Remember that we wanted to find occurrences of a pattern

P in S. It is not hard to see that the pattern P occurs at

position i of S if and only if P is a prefix of the suffix (S).

This means

The occurrences of P in S = all suffixes of S having P as a

prefix.

 This observation allows us to transform the String

matching problem into a prefix matching problem on all the

suffixes.

But we haven’t actually made any progress. To proceed, we

will make use of the sorted property of suffix arrays. Since

suffix arrays are sorted, we could perform a binary search to

locate an occurrence of the pattern.

The number of comparisons required by a binary search is

logarithmic in the size of the domain (i.e., the length of the

suffix array, which has |S| entries). Each comparison is

made between P and a suffix of S, which we know can be

done in O (|P|) work. Therefore, for a total of O (|P| log |S|)

work, we can locate an occurrence of P, or report that none

exist.

Observation: For any prefix A, all suffixes of S that have

prefix A are contiguous entries in the suffix array.

Pseudo code for indexed text searching using suffix array:

def search(P):

l = 0; r = n

while l < r:

mid = (l+r) /2

if P > suffixAt(A[mid]):

l = mid +1

 International Journal of Computer Sciences and Engineering Vol.-3(6), PP(89-93) June 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 92

else:

r = mid

s = l; r = n

while l < r:

mid = (l+r) /2

if P < suffixAt(A[mid]):

r = mid

else:

l = mid +1

return (s, r)

 Algorithm II. Querying with Suffix array(binary

search).

Finding the substring pattern P of length m in the string S of

length n takes O(mlogn) time, given that a single suffix

comparison needs to compare m characters. Manber &

Myers (1990)[1] describe how this bound can be improved

to O(m+logn) time using LCP information. The idea is that

a pattern comparison does not need to re-compare certain

characters, when it is already known that these are part of

the longest common prefix of the pattern and the current

search interval. Abouelhoda, Kurtz & Ohlebusch (2004)[2]

improve the bound even further and achieve a search time

of O(m).

We saw three ways to query (Binary search) the suffix

array:

• Typical binary search. Ignore LCP, O(mlogn).

• Binary search using some skipping and LCP array, near

to O(m+logn).

• Binary search with skipping using all LCPs among

suffixes.

VI. COMPARISON AND ANALYSIS

This work categorizes the algorithms into various categories

to emphasize the data structure that drives the matching.

These categories are online queries processing based and

offline queries processing based.

Online algorithms are those where pattern can be preprocess

before searching phase but cannot allow to preprocess text.

Online technique do searching pattern without index. A

string matching is called offline if we allowed to preprocess

the text and make an index data structure. Although very

fast online techniques are exist but their performance on

large data set is unacceptable. Some offline methods are

Trie structure, suffix tree, suffix array. Based on all the data

represented in the paper, a comparative analysis of all the

searching algorithms is presented in Table II.

VI. CONCLUSION

Performing query processing using suffix arrays. This

research reviews and profiles some typical string search

suffix array algorithms to observe their performance under

various conditions and gives an insight into choosing the

efficient algorithms. Classical method processes online

queries which is used methods like Brute force, KMP,

Boyer-Moore. We have studied how to process large streams

of offline queries by indexing approaches like suffix array.

We draw the final conclusion that the suffix arrays are a very

useful data structure, extremely easy to implement. Thus it’s

not strange that during the last years many problems that

were using it appeared in programming contests.

ALGORITHMS TIME
COMPLEXITY

SPACE
COMPLEXITY

ONLINE/OFFINE
PROCESSING

 KEY IDEA APPROACH

Brute Force O(n*n) O(1) Online Searching one by one Linear searching

 Robin Karp O(mn) O(m) Online Compare with hash function
both text and pattern

Hashing based

 KMP O(m+n) O(m) Online Construct an automation from
pattern

Heuristic based

 Boyer Moore O(mn) O(kn) Online Bad character and suffix rule Heuristic based

Suffix Array O(m) O(nlogn) Offline Construct suffix index Indexing based

Table II: Comparative Analysis Between Different Algorithms

 International Journal of Computer Sciences and Engineering Vol.-3(6), PP(89-93) June 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 93

REFERENCES

[1] Member, Ubi;Myers, Geene. “Suffix arrays:a new method

for online string search” First annual ACM-SIAM Journel

on Computing 22, (1993).

[2] Abouelhoda, Mohamed Ibrahim; Kurtz, Stefan; Ohlebusch,

Enno "Replacing suffix trees with enhanced suffix arrays".

Journal of Discrete Algorithms 2: 53, (2004).

[3] Gog, Simon, Alistair Moffat, J. Culpepper, Andrew Turpin,

and Anthony Wirth. "Large-scale pattern search using

reduced-space on-disk suffix arrays." IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, VOL. 26, NO. 8, AUGUST 2014.

[4] Ahmed Abdelhadi, A. H. Kandil1 and Mohamed

Abouelhoda. “Cloud-based Parallel Suffix Array

Construction based on MPI ” Middle East Conference on

Biomedical Engineering (MECBME) ,(2014).

[5] Stefan Burkhardt, Andreas Crauser, Eric Rivals, Hans,

martin. “q-gram based database searching using suffix

array (quasar)” ,2006.

[6] Diego Arroyuelo, Carolina Bonacic, Veronica Gil-Costa,

Mauricio Marin Gonzalo Navarro. “Distributed text search

using suffix arrays” Elsevier Journal ,28 june 2014.

[7] Maan Haj Rachid, Qutaibah Malluhi, and Mohamed

Abouelhoda. “A space-efficient solution to find the

maximum overlap using a compressed suffix array .”

Middle East Conference on Biomedical Engineering

(MECBME) , 2014.

[8] Shunlai Bai, Wenhao Zhu, Bofeng Zhang , Jianhua Ma.

“Search Results Clustering Based on Suffix Array and

VSM .” IEEE/ACM International Conference on Green

Computing and Communications & 2010 IEEE/ACM

International Conference on Cyber, Physical and Social

Computing , 2010.

[9] Juha Ka ̈rkka ̈inen , Peter Sanders , Stefan Burkhardt.

“Linear Work Suffix Array Construction .” ACM Journal,

Volume 53 Issue 6, (2006).

[10] Mohammadreza Ghodsi . “Approximate String Matching

using Backtracking over Suffix Arrays .” Computer

Science Department of University of Maryland at College

Park , 2009.

[11] Nataliya Timoshevskaya, Wu-chun. “SAIS-OPT: On the

Characterization and Optimization of the SA-IS Algorithm

for Suffix array construction” IEEE Transaction, 2014.

[12] Hongwei Huo, Longgang Chen, Jeffrey Scott Vitter and

Yakov Nekrich. “A Practical Implementation of

Compressed Suffix Arrays with Applications to Self-

Indexing.” IEEE Journel DOI 1109.2014.49, 2014.

[13] Ricardo Baeza-Yates . “Modern information retrieval.”

ACM press, 1999.

[14] Esko Ukkonen , “On–line construction of suffix

trees.”Algorithmatica , Volume 14, Issue 3, 1995, pp 249-

260.

 AUTHORS PROFILE

Nagendra singh received B.tech

degree in computer science and

engineering From Uttar Pradesh

technical university, Lucknow, India.

He is now a research scholar at

Maulana Azad national institute of

technology, bhoapal. His current

research interest includes space

efficient data structure, data

compression and information retrieval.

