
 © 2016, IJCSE All Rights Reserved 78

 International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-4, Issue-6 E-ISSN: 2347-2693

Optimization of Map Reduce Using Maximum Cost Performance Strategy

A. Saran Kumar
1
, V. Vanitha Devi

2

1,2
Dept. of CSE, Kumaraguru College of Technology, Coimbatore, India

www.ijcseonline.org

Received: Jun/02/2016 Revised: Jun/10/2016 Accepted: Jun/24 /2016 Published: Jun/30 / 2016

Abstract – Big data is a buzzword, used to describe a massive volume of both structured and unstructured data that is so

large that it's difficult to process using traditional database and software techniques. In most enterprise scenarios the data is

too big or it moves too fast or it exceeds current processing capacity. Big data has the potential to help companies improve

operations and make faster, more intelligent decisions.Parallel computing is a frequently used method for large scale data

processing. Many computing tasks involve heavy mathematical calculations, or analysing large amounts of data. These

operations can take a long time to complete using only one computer. Map Reduce is one of the most commonly used

parallel computing frameworks. The execution time of the tasks and the throughput are the two important parameters of

Map Reduce. Speculative execution is a method of backing up of slowly running tasks on alternate machines. Multiple

speculative execution strategies have been proposed, but they have some pitfalls: (i) Use average progress rate to identify

slow tasks while in reality the progress rate can be unstable and misleading, (ii) Do not consider whether backup tasks can

finish earlier when choosing backup worker nodes. This project aims to improve the effectiveness of speculation execution

significantly. To accurately and promptly identify the appropriate tasks, the following methods are employed: (i) Use both

the progress rate and the process bandwidth within a phase to select slow tasks, (ii) Use exponentially weighted moving

average (EWMA) to predict process speed and calculate a task’s remaining time, (iii) Determine which task to backup

based on the load of a cluster using a cost-benefit model.

Keywords: Map reduce, Cost Performance strategy, Big Data, Stragglers, Speculation

1. INTRODUCTION

1.1 MAP REDUCE FRAMEWORK
Big data is high-volume, high-velocity and high-

variety information assets which grow exponentially. It is

the ocean of information in which vast zeta bytes of data

are flowing from multiple sources. It demands cost-

effective and innovative forms of information processing

for enhanced insight and decision making. With big data

solutions, organizations can dive into all data and gain

valuable insights that were previously unimaginable. Big

data is difficult to work with using most relational database

management systems and visualization packages and hence

requires parallel processing. Map Reduce is a parallel

computing framework for large scale data processing.

Users specify a map function that processes a key/value

pair to generate a set of intermediate key/value pairs, and a

reduce function that merges all intermediate values

associated with the same intermediate key. It was originally

developed by google which replaced their original web

indexing algorithm in 2004. A variant of Map Reduce

namely Hadoop is currently being used by yahoo,

facebook, amazon and so on. Google processes 20 PB/day,

Jet engine produces 10 TB of data every 30 minutes of

flight time and Facebook executes 3000 jobs per day. This

shows that the smallest increase in performance will have a

significant impact.Map Reduce is useful for large, long-

running jobs that cannot be handled within the scope of a

single request [1]. It can be used for tasks like

• Analyzing application logs

• Aggregating related data from external

sources

• Transforming data from one format to another

• Exporting data for external analysis and so on

The key features of Map Reduce are:

• Scale-out Architecture - Add servers to increase

processing power

• Security & Authentication - Makes sure that only

approved users can operate against the data in the

system

• Resource Manager - Employs data locality and server

resources to determine optimal computing operations

• Optimized Scheduling - Completes jobs according to

prioritization

• Flexibility - Procedures can be written in virtually any

programming language

• Resiliency & High Availability - Multiple job and

task trackers ensure that jobs fail independently and

restart automatically

Map and Reduce are higher-order functions in the Map

reduce framework. Map function applies an operation to all

elements in a list and Reduce function is like “fold” which

aggregate elements of a list. The input file is divided into

blocks and to each block a map function is applied which

parses the input and generates intermediate key/value pairs.

The reduce function aggregates the intermediate result by

combining the values associated with the same key. The

 International Journal of Computer Sciences and Engineering Vol.-4(6), PP(78-87) Jun 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 79

final output of the reduce function is written to a file or a

file system [2].

The following sequences of steps take place when a

Map Reduce operation is performed. The number of map

tasks is denoted as M, the number of reduce tasks by R, and

the number of computers as C.

� The Map Reduce library of the user program splits

the input file into M pieces. It also starts several

copies of the program on the C machines.

� One of the copies of the program is the master

and the rest are the slaves. The master selects idle

slaves and assigns a map or reduce task to each

one of them.

� The slave with an assignment of a map task reads

the contents of the associated pieces of input

assigned to it. It parses the input data to form the

key-value pairs. It passes each key-value pair to a

user-defined map function. The map function

emits intermediate key-value pairs which are

buffered in memory.

� The key-value pairs buffered in memory are saved

to the node's local disk and partitioned into R

pieces by the partitioning function. The locations

of the pairs are sent to the master.

� The master notifies the reduce slaves about the

locations of the pairs, and the reducers retrieve the

buffered pairs from the local disks of the map

slaves. Then the pairs are sorted according to their

keys, and the pairs with the same keys are grouped

together.

� Each reduce slave passes the intermediate key and

the associated values to the reduce function. The

output produced by the reduce function is returned

to the output file specified by the user.

� After completions of all map and reduce tasks, the

master notifies the user program.

� The final outputs of the reduce functions are

available as partitioned files inside the R

partitions. These partition files can be used as

input for another Map Reduce process or be fed to

programs that are designed to handle partitioned

input files, in order to combine them.

� Input and final outputs are stored on a distributed

file system. Scheduler tries to schedule map tasks

“close” to physical storage location of input data.

Intermediate results are stored on local FS of map

and reduce workers. Output is often input to

another map reduce task.

1.2 CHALLENGES IN MAP REDUCE

FRAMEWORK

� Lack of performance and scalability

� Lack of flexible resource management

� Lack of application deployment support

� Lack of quality of service assurance

� Lack of multiple data source support

1.3 SPECULATIVE EXECUTION

Map Reduce can automatically handle failures. If

a node is available but is performing poorly, then the task

running on it will take a long time to finish and is called a

straggler, Map Reduce runs a speculative copy of its task

also called a “backup task” on another machine with the

expectation to finish the computation faster. Speculative

execution is a common approach for dealing with the

straggler problem by simply backing up those slow running

tasks on alternative machines. Without this mechanism of

speculative execution, a job would be as slow as the

misbehaving task. The scheduler schedules backup

executions of the remaining in-progress tasks. The task is

marked as completed whenever either the primary or the

backup execution completes. Slow nodes/stragglers are the

main bottleneck for jobs not finishing in time. So to reduce

response time, stragglers are speculatively executed on

other free machines [3].

1.4 CHALLENGES IN SPECULATIVE EXECUTION

Speculative execution involves the following challenges

� Identifying free resource for the speculative tasks

to be executed

� Choosing proper worker nodes to run speculative

tasks

� A means to distinguish “stragglers” from nodes

that are slightly slower.

� Finding stragglers at the earliest.

2. LITERATURE SURVEY

2.1 RAFTing MAP REDUCE

RAFT focuses on simplicity and also non-

intrusiveness, in order to be implementation independent.

To efficiently recover from task failures, RAFT exploits the

fact that Map Reduce produces and persists intermediate

results at several points in time. RAFT piggy-backs

checkpoints on the task progress computation. To deal with

multiple node failures, query metadata check pointing is

used. Therefore the mapping between input key-value pairs

and intermediate data are tracked. Thereby, RAFT does not

need to re-execute completed map tasks entirely. Instead

RAFT only recomputed intermediate data that were

processed by local reducers and hence not shipped to

another node for processing. A scheduling strategy taking

full advantage of these recovery algorithms is introduced.

On implementing RAFT on top of Hadoop and evaluating

it on a 45-node cluster using three common analytical tasks,

the results showed that RAFT outperforms Hadoop

runtimes by 23% on average under task and node

failures[4].The disadvantages are:

• Not sufficient switching, due to more delay in

switching.

• Delay in finding a less workload node.

The techniques used are:

• Local Check pointing (RAFT-LC).

• Remote Check pointing (RAFT-RC).

2.2 DELAY SCHEDULING

 International Journal of Computer Sciences and Engineering Vol.-4(6), PP(78-87) Jun 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 80

Fair scheduler is developed to allocate fair share

of capacity to all the users. Two locality problems

identified when fair sharing is followed are–head-of-line

scheduling and sticky slots. The first locality problem

occurs in small jobs (jobs that have small input files and

hence have a small number of data blocks to read). The

problem is that whenever a job reaches the head of the

sorted list for scheduling, one of its tasks is launched on the

next slot that becomes free irrespective of which node this

slot is on. If the head-of-line job is small, it is unlikely to

have data locally on the node that is given to it. Head-of-

line scheduling problem was observed at Facebook in a

version of HFS without delay scheduling. The other

locality problem, sticky slots, is that there is a tendency for

a job to be assigned the same slot repeatedly. The problems

aroused because following a strict queuing order forces a

job with no local data to be scheduled [5].

 To overcome the Head of line problem, scheduler

launches a task from a job on a node without local data to

maintain fairness, but violates the main objective of Map

Reduce that schedule tasks near their input data. Running

on a node that contains the data (node locality) is most

efficient, but when this is not possible, running on a node

on the same rack (rack locality) is faster than running off-

rack. Delay scheduling is a solution that temporarily

relaxes fairness to improve locality by asking jobs to wait

for a scheduling opportunity on a node with local data.

When a node requests a task, if the head-of-line job cannot

launch a local task, it is skipped and looked at subsequent

jobs. However, if a job has been skipped long enough, non-

local tasks are allowed to launch to avoid starvation. The

key insight behind delay scheduling is that although the

first slot we consider giving to a job is unlikely to have data

for it, tasks finish so quickly that some slot with data for it

will free up in the next few seconds. The techniques used

are:

• Naive Fair Sharing Algorithm.

• Delay Scheduling in HFS.

2.3 SCARLETT

Scarlett, a system that replicates blocks based on their

popularity. By accurately predicting the popularity and

working within hard bounds on additional storage, Scarlett

causes minimal interference to running jobs. Scarlett

improves data locality by 45%, which results in a 20.2%

reduction of the job completion times of Hadoop jobs. In

addition, by using extensive simulations, Scarlett reduces

the number of evictions in the Dryad cluster by 83% and

speeds up the jobs by 12.8%.Finally, Scarlett incurs low

overhead, as it is able to achieve near-ideal performance by

altering replication factors, using less than 10% extra

storage space. Scarlett captures the popularity of files and

uses that to increase the replication factor of non-accessed

files, while avoiding hotspots in the cluster and causing

minimal interference to the cross-rack network traffic. To

do so, Scarlett computes a replication factor for each file

that is proportional to its popularity while remaining within

a budget on extra storage due to additional replicas. Scarlett

smooth’s out placement of replicas across machines in the

cluster so that the expected load on each machine (and

rack) is uniform. Finally, Scarlett uses compression to

reduce the cost of creating replicas [6].The disadvantage is

that it mainly focuses on copying the popularity content

and fails to schedule them [7].

The techniques used are:

• Computing File Replication Factor

• Smooth Placement of Replicas

2.4 MOON

Specifically, the data and task replication scheme

adopted by existing Map Reduce implementations is

woefully inadequate for resources with high unavailability.

MOON extends Hadoop, an open-source implementation of

Map Reduce, with adaptive task and data scheduling

algorithms in order to offer reliable Map Reduce services

on a hybrid resource architecture, where volunteer

computing systems are supplemented by a small set of

dedicated nodes. The adaptive task and data scheduling

algorithms in MOON distinguish between (1) different

types of Map Reduce data and (2) different types of node

outages in order to strategically place tasks and data on

both volatile and dedicated nodes. When a large number of

volatile nodes are supplemented with a much smaller

number of dedicated nodes, providing scalable data access

is challenging. As such, MOON prioritizes the I/O requests

on the different resources. Specifically, for files with

replicas on both volatile and dedicated Data Nodes, read

requests from clients on volatile Data Nodes will always try

to fetch data from volatile replicas first. By doing so, the

read request from clients on the volatile Data Nodes will

only reach dedicated Data Nodes when none of the volatile

replicas are available. The disadvantage is that it doesn’t

support multiple scheduling when some tasks fail. The

technique used is I/O throttling on dedicated Data Nodes.

2.5 SPECULATIVE EXECUTION IN GOOGLE
In this method, Google used Map Reduce as a

programming model and an associated implementation for

processing and generating large data sets. The Map

invocations are distributed across multiple machines by

automatically partitioning the input data into a set of M

splits. The input splits can be processed in parallel by

different machines. Reduce invocations are distributed by

partitioning the intermediate key space into R pieces using

a partitioning function (e.g., hash(key) mod R). The

number of partitions (R) and the partitioning function are

specified by the user.

Speculative execution was first introduced in

Google in which the last few running map and reduce tasks

are simply backed up which showed a performance

improvement of around 44% in job response time [8].

2.6 SPECULATIVE EXECUTION IN HADOOP

When a node has an empty task slot, Hadoop

chooses a task for it from one of three categories. First, any

failed tasks are given highest priority. This is done to detect

when a task fails repeatedly due to a bug and stop the job.

 International Journal of Computer Sciences and Engineering Vol.-4(6), PP(78-87) Jun 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 81

Second, non-running tasks are considered. For maps, tasks

with data local to the node are chosen first. Finally, Hadoop

looks for a task to execute speculatively. To select

speculative tasks, Hadoop monitors task progress using

a progress score between 0 and 1. For a map, the progress

score is the fraction of input data read. For a reduce task,

the execution is divided into three phases, each of which

accounts for 1/3 of the score:

• The copy phase, when the task fetches map

outputs.

• The sort phase, when map outputs are sorted by

key.

• The reduce phase, when a user-defined function is

applied to the list of map outputs with each key.

 Hadoop looks at the average progress score of each

category of tasks (maps and reduces) to define

a threshold for speculative execution. When a task's

progress score is less than the average for its category

minus 0.2, and the task has run for at least one minute, it is

marked as a straggler. All tasks beyond the threshold are

considered "equally slow," and ties between them are

broken by data locality. The scheduler also ensures that at

most one speculative copy of each task is running at a time.

Finally, when running multiple jobs, Hadoop uses a FIFO

discipline where the earliest submitted job is asked for a

task to run, then the second, etc. There is also a priority

system for putting jobs into higher-priority queues [9].

2.6.1 ASSUMPTIONS IN HADOOP'S SCHEDULER

Hadoop's scheduler makes several implicit assumptions:

� Nodes can perform work at roughly the same rate.

� Tasks progress at a constant rate throughout time.

� There is no cost to launching a speculative task on

a node that would otherwise have an idle slot.

� A task's progress score is representative of fraction

of its total work that it has done. Specifically, in a

reduce task, the copy, sort and reduce phases each

take about 1/3 of the total time.

� Tasks in the same category (map or reduce)

require roughly the same amount of work.

2.6.2 HETEROGENEITY
The first two assumptions are about homogeneity.

Hadoop assumes that any detectably slow node is faulty.

However, nodes can be slow for other reasons.

Heterogeneity seriously impacts Hadoop's scheduler.

Because the scheduler uses a fixed threshold for selecting

tasks to speculate, too many speculative tasks may be

launched taking away resources from useful tasks

(assumption 3 is also untrue). Also, because the scheduler

ranks candidates by locality, the wrong tasks may be

chosen for speculation first. For example, if the average

progress was 70% and there was a 2x slower task at 35%

progress and a 10x slower task at 7% progress, then the 2x

slower task might be speculated before the 10x slower task

if its input data was available on an idle node.

2.6.3 OTHER ASSUMPTIONS

Assumptions 3, 4 and 5 are broken on both

homogeneous and heterogeneous clusters, and can lead to a

variety of failure modes.

Assumption 3, that speculating tasks on idle nodes

costs nothing, breaks down when resources are shared. For

example, the network is a bottleneck shared resource in

large Map Reduce jobs. Also, speculative tasks may

compete for disk I/O in I/O-bound jobs. Finally, when

multiple jobs are submitted, needless speculation reduces

throughput without improving response time by occupying

nodes that could be running the next job.

Assumption 4, that a task's progress score is

approximately equal to its percent completion, can cause

incorrect speculation of reducers. In a typical Map Reduce

job, the copy phase of reduce tasks is the slowest, because

it involves all-pairs communication over the network.

Tasks quickly complete the other two phases once they

have all map outputs. However, the copy phase counts for

only 1/3 of the progress score. Thus, soon after the first few

reducers in a job finish the copy phase, their progress goes

from 1/3 to 1, greatly increasing the average progress. As

soon as about 30% of reducers finish, the average progress

is roughly 0.3·1 + 0.7 ·1/3 = 53%, and now all reducers still

in the copy phase will be 20% behind the average, and an

arbitrary set will be speculatively executed. Task slots will

fill up, and true stragglers may never be speculated

executed, while the network will be overloaded with

unnecessary copying.

Assumption 5, that progress score is a good proxy

for progress rate because tasks begin at roughly the same

time, can also be wrong. The number of reducers in a

Hadoop job is typically chosen small enough so that they

they can all start running right away, to copy data while

maps run. However, there are potentially tens of mappers

per node, one for each data chunk. The mappers tend to run

in waves. Even in a homogeneous environment, these

waves get more spread out over time due to variance

adding up, so in a long enough job, tasks from different

generations will be running concurrently. In this case,

Hadoop will speculatively execute new, fast tasks instead

of old, slow tasks that have more total progress.

Finally, the 20% progress difference threshold

used by Hadoop's scheduler means that tasks with more

than 80% progress can never be speculatively executed,

because average progress can never exceed 100%.

2.6.4 ISSUES IN SPECULATIVE EXECTION

• Too many backups, thrashing shared resources

like network bandwidth

• Wrong tasks backed up

• Backups may be placed on slow nodes

 International Journal of Computer Sciences and Engineering Vol.-4(6), PP(78-87) Jun 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 82

2.7 LONGEST APPROXIMATE TIME TO END

(LATE) SCHEDULER

In this method proposed by Zaharia, a new

speculative task scheduler is proposed which starts from

principles and adding features needed to behave well in a

real environment. The task that will finish farthest into the

future will be selected for speculative execution, because

this task provides the greatest opportunity for a speculative

copy to overtake the original and reduce the job's response

time. A simple heuristic is used to estimate time left which

finds the progress rate of each task as Progress Score / T,

where T is the amount of time the task has been running

for, and then estimate the time to completion as (1 –

 Progress Score) / Progress Rate. This assumes that tasks

make progress at a roughly constant rate. There are cases

where this heuristic can fail but it is effective in typical

Hadoop jobs [10].

Speculative tasks are launched only on fast nodes -

not stragglers. This is achieved by not launchinga

speculative task on nodes that are below some

threshold, slow node threshold, of total work performed

(sum of progress scores for all succeeded and in-progress

tasks on the node). This heuristic leads to better

performance than assigning a speculative task to the first

available node. Another option would be to allow more

than one speculative copy of each task, but this wastes

resources needlessly.

 Finally, to handle the fact that speculative tasks

cost resources, the following two heuristics are augmented.

• Speculative cap which indicates the number of

speculative tasks that can be running at once

• A Slow task Threshold that a task's progress rate is

compared with to determine whether it is "slow

enough" to be speculated upon. This prevents

needless speculation when only fast tasks are

running.

LATE algorithm works as follows:

• If a node asks for a new task and there are fewer

than Speculative Cap speculative tasks running:

o Ignore the request if the node's total

progress is below Slow Node Threshold.

o Rank currently running tasks that are not

currently being speculated by estimated

time left.

o Launch a copy of the highest-ranked task

with progress rate below Slow Task

Threshold.

Like Hadoop's scheduler, a task has to run atleast for 1

minute before evaluating it for speculation. In practice, a

good choice for the three parameters to LATE is

– Speculative Cap - 10% of available task

slots and

– Slow Node Threshold - 25th percentile of

node progress

– Slow Task Threshold - 25th percentile

task progress rates

LATE does not take into account data locality for

launching speculative map tasks, although this is a potential

extension.

The LATE algorithm has several advantages:

� LATE takes into account node heterogeneity when

deciding where to run speculative tasks.

� It focuses on estimated time left rather than

progress rate. LATE speculatively executes only

tasks that will improve job response time, rather

than any slow tasks.

� It is robust to node heterogeneity.

LATE scheduler has following demerits:

� As the end time for a task is calculated using the

averaged out progress rate against the current

progress rate, the end time predicted is likely to be

incorrect.

� Initial evaluation time required by the LATE

scheduler is high (1 minute) before a task can be

marked a straggler. This essentially leads to longer

response times.

3. SYSTEM REQUIREMENTS

3.1 HARDWARE REQUIREMENTS

Processor : Intel Pentium CPU B950

2.10 GHZ

RAM : 51MB

Hard Disk Drive : 80 GB

Keyboard : 101 Keys

Mouse : Optical Mouse

Monitor : SVGA/color

3.2 SOFTWARE REQUIREMENTS

Operating System : Windows7

IDE used : Net Beans

Database used : MySql

Platform : Hadoop 0.18.0

Language Used : Java

3.2.1 JAVA

Java is an object-oriented language similar to C++,

but simplified to eliminate language features that cause

common programming errors. Java source code files (files

with a .java extension) are compiled into a format called

byte code (files with a .class extension), which can then be

executed by a Java interpreter. Compiled Java code can run

on most computers because Java interpreters and runtime

environments, known as Java Virtual Machines (VMs),

exist for most operating systems, including UNIX, the

Macintosh OS, and Windows. Byte code can also be

converted directly into machine language instructions by a

just-in-time compiler (JIT).

 International Journal of Computer Sciences and Engineering Vol.-4(6), PP(78-87) Jun 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 83

3.2.2 JAVA PLATFORM

One characteristic of Java is portability, which

means that computer programs written in the Java language

must run similarly on any hardware/operating-system

platform. This is achieved by compiling the Java language

code to an intermediate representation called Java byte

code, instead of directly to platform-specific machine code.

Java byte code instructions are analogous to machine code,

but are intended to be interpreted by a virtual machine

(VM) written specifically for the host hardware. End-users

commonly use a Java Runtime Environment (JRE) installed

on their own machine for standalone Java applications, or

in a Web browser for Java applets. Standardized libraries

provide a generic way to access host-specific features such

as graphics, threading, and networking.

3.2.3 NET BEANS

The Net Beans Platform is a

reusable framework for simplifying the development

of Java Swing desktop applications. The Net Beans IDE

bundle for Java SE contains what is needed to start

developing Net Beans plug-in and Net Beans Platform

based applications; no additional SDK is required.

The features of the platform are:

� User interface management (e.g. menus and toolbars)

� User settings management

� Storage management (saving and loading any kind of

data)

� Window management

� Wizard framework (supports step-by-step dialogs)

� Net Beans Visual Library

� Integrated Development Tools

3.2.4 J2EE

A Java EE application or a Java Platform,

Enterprise Edition application is any deployable unit of

Java EE functionality. This can be a single Java EE module

or a group of modules packaged into an EAR file along

with a Java EE application deployment descriptor. Java EE

applications are typically engineered to be distributed

across multiple computing tiers.

3.2.5 WAMP SERVER

WAMPs are packages of independently-created

programs installed on computers that use a Microsoft

Windows operating system. WAMP is an acronym formed

from the initials of the operating system Microsoft

Windows and the principal components of the package:

Apache, MySQL and one of PHP, Perl or Python.

3.2.6 MySQL

The MySQL development project has made its

source code available under the terms of the GNU General

Public License, as well as under a variety of proprietary

agreements. MySQL was owned and sponsored by a single

for-profit firm, the Swedish company MySQL AB, now

owned by Oracle Corporation.

3.2.7 HADOOP:

Apache Hadoop is an open-source software

framework that supports data-intensive distributed

applications licensed under the Apache v2 license. It

supports parallel running of applications on large clusters

of commodity hardware [2]. The Hadoop framework

transparently provides both reliability and data motion to

applications. Hadoop implements a computational

paradigm named Map Reduce, where the application is

divided into many small fragments of work, each of which

can execute or re-execute on any node in the cluster. In

addition, it provides a distributed file system that stores

data on the compute nodes, providing very high aggregate

bandwidth across the cluster. Both map/reduce and the

distributed file system are designed so that node failures are

automatically handled by the framework. It enables

applications to work with thousands of computation-

independent computers and petabytes of data. The entire

Apache Hadoop “platform” is now commonly considered

to consist of the Hadoop kernel, Map Reduce and Hadoop

Distributed File System (HDFS).

For effective scheduling of work, every Hadoop-

compatible file system should provide location awareness:

the name of the rack (network switch) where a worker node

is. Hadoop applications can use this information to run

work on the node where the data is, and, failing that, on the

same rack/switch, reducing backbone traffic. HDFS uses

this method when replicating data to try to keep different

copies of the data on different racks. The goal is to reduce

the impact of a rack power outage or switch failure, so that

even if these events occur, the data may still be readable. A

small Hadoop cluster includes a single master and multiple

worker nodes. The master node consists of a Job Tracker,

Task Tracker, Name Node and Data Node. A slave

or worker node acts as both a Data Node and Task Tracker,

though it is possible to have data-only worker nodes and

compute-only worker nodes.

In a larger cluster, the HDFS is managed through a

dedicated Name Node server to host the file system index,

and a secondary Name Node that can generate snapshots of

the name node's memory structures, thus preventing file-

system corruption and reducing loss of data. Similarly, a

standalone Job Tracker server can manage job scheduling.

In clusters where the Hadoop Map Reduce engine is

deployed against an alternate file system, the Name Node,

secondary Name Node and Data Node architecture of

HDFS is replaced by the file-system-specific equivalent.

 International Journal of Computer Sciences and Engineering Vol.-4(6), PP(78-87) Jun 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 84

 Figure 3.1 Hadoop architecture

4. SYSTEM DESIGN

A new speculative execution strategy named MCP for

maximum cost performance is used. The cost is considered

to be the computing resources occupied by tasks, while the

performance is considered to be the shortening of job

execution time and the increase of the cluster throughput.

MCP aims at selecting straggler tasks accurately and

promptly and backing them up on proper worker nodes. To

ensure fairness, we assign task slots in the order the jobs

are submitted. Just like other speculative execution

strategies, MCP gives new tasks a higher priority than

backup tasks. In other words, MCP will not start backing

up straggler map/reduce tasks until all new map/reduce

tasks of this job have been assigned. MCP chooses backup

candidates based on a prompt prediction of the tasks’

process speed and an accurate estimation of their remaining

time. Then, these backup candidates will be selectively

backed up on proper worker nodes to achieve max cost

performance according to the cluster load. The modules

used are:

� Exponentially Weighted Moving Average

(EWMA)

� Maximizing Cost Performance

� Schedule Job

� Map reduce

4.1 EWMA

The task’s process speed in the near future is

predicted instead of simply using the past average rate.

There are many prediction algorithms in the literature, such

as EWMA (Exponentially Weighted Moving Average).

EWMA scheme which can be expressed as follows:

Z(t) = α* Y (t) + (1-α)* Z(t-1); 0 <α< 1

Where Z(t) and Y(t) are the estimated and the

observed process speed at time t, respectively and reflects a

tradeoff between stability and responsiveness. The value of

α is set to be 0.5 according to the evaluation result. To

assure the accuracy of prediction, tasks process speed is not

calculated until it has executed for a certain amount of time

(speculative lag).

4.2 MAXIMIZING COST PERFORMANCE

Speculative execution has not only benefits, but

also costs. In a Hadoop cluster, the cost of speculative

execution is task slots, while the benefit is the shortening of

the job execution time. A cost-benefit model is established

to analyze the tradeoff. In this model, the cost is

represented as the time that the computing resources are

occupied while the benefit is represented as the time saved

by speculative execution.

4.3 SCHEDULE JOBS

In order to achieve better performance, backup

tasks should be assigned to fast worker nodes. This requires

an appropriate metric to measure the performance of

worker nodes which varies a lot from time to time. To

tackle this problem, the moving average process bandwidth

of data-local map tasks completed is used on a worker node

to represent the node’s performance. The data-locality of

map tasks is considered when making the backup decisions.

The process speed of data-local map tasks can be three

times that of non-local map tasks. As a result, if data-

locality is not considered, backing up a map task may gain

no benefit.

4.4 MAP REDUCE

Map Reduce cluster, after a job is submitted, a

master divides the input files into multiple map tasks, and

then schedules both the map tasks and the reduce tasks to

worker nodes. A worker node runs tasks on its task slots

and keeps updating the tasks progress to the master by

periodic heartbeat. Map tasks extract key-value pairs from

the input, transfer them to some user defined map function

and combine function, and finally generate the intermediate

map outputs. After that, the reduce tasks copy their input

pieces from each map task, merge these pieces to a single

ordered (key, value list) pair stream by a merge sort,

transfer the stream to some user defined reduce function,

and finally generate the result for the job. A map task is

divided into map and combine phases, while a reduce task

is divided into copy, sort and reduce phases. Reduce tasks

can start when only some map tasks complete, which

allows reduce tasks to copy map outputs earlier as they

become available and hence mitigates network congestion.

However, no reduce task can step into the sort phase until

all map tasks complete. This is because each reduce task

must finish copying outputs from all the map tasks to

prepare the input for the sort phase.

5. PERFORMANCE ANALYSIS

 International Journal of Computer Sciences and Engineering Vol.-4(6), PP(78-87) Jun 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 85

5.1 EXISTING SYSTEM

 It cannot appropriately handle the situation when

there exists data skew among the tasks. Map Reduce

cluster, after a job is submitted, a master divides the input

files into multiple map tasks, and then schedules both the

map tasks and the reduce tasks to worker nodes. Map tasks

extract key-value pairs from the input, transfer them to

some user defined map function and combine function, and

finally generate the intermediate map outputs. A map task

is divided into map and combine phases, while a reduce

task is divided into copy, sort and reduce phases. No reduce

task can step into the sort phase until all map tasks

complete. The map or the reduce tasks in Sort jobs, MCP

performs much better compared to Hadoop-LATE. The job

execution speed and the cluster throughput are improved by

37% and 44% when map skew exists, and by 17% and 19%

when reduce skew.

5.2 PROPOSED SYSTEM

Average progress rate is used to identify slow

tasks while in reality the progress rate can be unstable and

misleading. In a typical Map Reduce job, the master

divides the input files into multiple map tasks, and then

schedules both map tasks and reduce tasks to worker nodes

in a cluster to achieve parallel processing. The main

difference between LATE and Mantriis that Mantri uses the

task’s process bandwidth to calculate the task’s remaining

time. EWMA is used to predict the process speed of tasks

in order to find slow tasks or slow nodes in time. The

scenarios which affect the performance of those strategies:

data skew, tasks that start asynchronously, improper

configuration of phase percentage and abrupt resource

competitions.

 The Word Count benchmark is run first. Figure

5.1shows the performance comparison of the three

strategies. On average, MCP finishes jobs 10 percent faster

than Hadoop-LATE and 10 percent faster than Hadoop-

None. Moreover, MCP improves the throughput of the

cluster by5 percent compared with Hadoop-LATE and 6

percent compared with Hadoop-None. It shows that MCP

identifies straggler tasks more accurately and promptly than

Hadoop-LATE. In particular, MCP can improve the

precision in identifying stragglers in reduce tasks by over

90 percent compared to Hadoop-LATE.

First, an environment that exhibits data skew

among map tasks is set up. According to the split strategy

in Hadoop, those input files will be divided into two parts,

which results in data skew among map tasks. Figure5.2

shows that MCP performs much better than Hadoop-LATE

and Hadoop-None. On average MCP increases the job

execution speed by 37 percent over Hadoop-LATE and 58

percent over Hadoop-None. Mean while, it improves the

throughput of the cluster by 44 percent over Hadoop-LATE

and 57 percent over Hadoop-None.MCP can achieve a

much bigger improvement than Hadoop-LATE because

Hadoop-LATE may conduct many unnecessary backups for

the map tasks which occupies the precious slots for other

jobs. As a result, the average delay of all jobs in Hadoop-

LATE is much longer than that in MCP.

Reduce skew is likely to happen when the

distribution of keys in the input data set is skewed and the

map output is partitioned by some hash function. This kind

of skew is also known as partition skew. Figure5.3 shows

that ona verage MCP increases the job execution speed by

17 percent over Hadoop-LATE and by 53 percent over

Hadoop-None. Meanwhile, it improves the throughput of

the cluster by 19 percent over Hadoop-LATE and by 53

percent over Hadoop-None. MCP achieves less

improvement over Hadoop-LATE for reduce skew than for

map skew because unnecessary reduce backups do not

affect the execution of map tasks from other jobs. It only

delays the reduce tasks of other jobs. Therefore, a small

delay in launching reduce tasks will not affect the

performance of other jobs significantly when those other

jobs are still in the map stage.

6. CONCLUSION AND FUTURE ENHANCEMENT

 The pitfalls of current speculative execution

strategies with respect to data skew, tasks starting

asynchronously and abrupt resource competitions in Map

Reduce are analyzed. Based on the analysis, new

speculative execution strategy called MCP is developed to

handle these pitfalls by taking into consideration the cost

performance of cluster computing resources. MCP

decreases the job execution time and improves the

throughput. MCP achieved up to 39 percent improvements

over Hadoop-LATE. It fits well in both heterogeneous and

homogeneous environments, handles the data skew case

and is quite scalable which performs very well in both

small clusters and large clusters. Time complexity of MCP

is found to be O(n).

The number of nodes in the distributed environment can be

increased to suit the real time requirements. Multiple data

sources can be added to improve the accuracy of the output.

The resource allocation capabilities of the MCP can be

optimized further so that all the tasks are assigned to proper

worker nodes and to minimize the execution time of the

task.

7. SCREEN SHOTS

 International Journal of Computer Sciences and Engineering Vol.-4(6), PP(78-87) Jun 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 86

8. REFERENCES

[1] J. Dean and S. Ghemawat, “Map reduce:

simplified data processing on large clusters,”

Commun. ACM, vol. 51, pp. 107–113, January

2008.

[2] “Apache hadoop, http://hadoop.apache.org/.”

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D.

Fetterly, “Dryad: distributed data-parallel

programs from sequential building blocks,” in

Proc. of the 2nd ACM SIGOPS/Euro Sys

European Conference on Computer Systems 2007,

ser. Euro Sys ’07, 2007.

[4] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz,

and I. Stoica, “Improving map reduce performance

in heterogeneous environments,” in Proc. of the

8th USENIX conference on Operating systems

design and implementation, ser. OSDI’08, 2008.

[5] G. Ananthanarayanan, S. Kandula, A. Greenberg,

I. Stoica, Y. Lu, B. Saha, and E. Harris, “Reining

in the outliers in map-reduce clusters using

mantri,” in Proc. of the 9th USENIX conference

 International Journal of Computer Sciences and Engineering Vol.-4(6), PP(78-87) Jun 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 87

on Operating systems design and implementation,

ser. OSDI’10, 2010.

[6] Y. Kwon, M. Balazinska, and B. Howe, “A study

of skew in map reduce applications,” in The 5th

Open Cirrus Summit, 2011.

[7] P.H and Ellaway, “Cumulative sum technique and

its application to the analysis of peri stimulus time

histograms,” Electroencephalography and Clinical

Neurophysiology, vol. 45, no. 2, pp. 302–304,

1978.

[8] K. Avi, K. Yaniv, L. Dor, L. Uri, and L. Anthony,

“Kvm: The linux virtual machine monitor,” Proc.

of the Linux Symposium, Ottawa, Ontario, 2007,

2007.

[9] Quiane-Ruiz,Pinkel, C.,Schad, J. ,Dittrich,

J.“RAFTing Map Reduce: Fast recovery on the

RAFT” Data Engineering (ICDE), 2011 IEEE

27th International Conference in Hannover,

Publication Year: 2011.

[10] G. Ananthanarayanan, S. Agarwal, S. Kandula, A.

Greenberg, I.Stoica, D. Harlan, and E. Harris,

“Scarlett: Coping with Skewed Content Popularity

in Map reduce Clusters,” Proc. Sixth Conf.

Computer Systems (EuroSys ’11), 2011.

[11] B. Nicolae, D. Moise, G. Antoniu, L. Bouge, and

M. Dorier,“Blobseer: Bringing High Throughput

under Heavy Concurrency to Hadoop Map-Reduce

Applications,” Proc. IEEE Int’l Symp. Parallel

Distributed Processing (IPDPS), Apr. 2010.

[12] J. Leverich and C. Kozyrakis, “On the Energy

(In)Efficiency of Hadoop Clusters,” ACM

SIGOPS Operating Systems Rev., vol. 44,pp. 61-

65, Mar. 2010.

[13] T. Sandholm and K. Lai, “Mapreduce

Optimization Using Regulated Dynamic

Prioritization,” Proc. 11th Int’l Joint Conf.

Measurement and Modeling of Computer

Systems, (SIGMETRICS ’09),2009.

[14] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,

K. Talwar, and A.Goldberg, “Quincy: Fair

Scheduling for Distributed Computing Clusters,”

Proc. ACM SIGOPS 22nd Symp. Operating

Systems Principles(SOSP ’09), 2009.

[15] M. Zaharia, D. Borthakur, J. SenSarma, K.

Elmeleegy, S. Shenker,and I. Stoica, “Delay

Scheduling: A Simple Technique for

AchievingLocality and Fairness in Cluster

Scheduling,” Proc. Fifth European Conference

Computer Systems (EuroSys ’10), 2010.

Kala Karun, A ; Chitharanjan, K ; "A review on

hadoop — HDFS infrastructure extensions ",

IEEE Conference on Information &

Communication Technologies (ICT), JeJu Island,

April 2013. Page(s): 132 - 137.

[16] D.Deepika1, K.Pugazhmathi, “Efficient Indexing

and Searching of Big Data in HDFs”, International

Journal of Computer Sciences and Engineering

(IJCSE) Vol.-4(4), Apr 2016, E-ISSN: 2347-2693.

[17] Tanuja A, Swetha Ramana D, “Processing and

Analyzing Big data using Hadoop”, International

Journal of Computer Sciences and Engineering

(IJCSE) Vol.-4(4), PP(91-94) April 2016, E-ISSN:

2347-2693.

AUTHORS PROFILE

 Mr. A. Saran kumar received his B.Tech. degree in

Information Technology from Coimbatore Institute of

Technology (Autonomous), Coimbatore, Tamil Nadu. And

he is currently pursuing M.E. Degree in Computer Science

and Engineering in Kumaraguru College of Technology

(Autonomous), Coimbatore, Tamil Nadu, India. His areas

of interest are Data mining, Big Data and Web Technology.

Ms. V. Vanitha Devi received her B.E. degree in Computer

Science and Engineering from Sri Shakthi Institute of

Engineering and Technology, Coimbatore, Tamil Nadu.

And she is currently pursuing M.E. Degree in Computer

Science and Engineering in Kumaraguru College of

Technology (Autonomous), Coimbatore, Tamil Nadu,

India. Her areas of interest are Cloud Computing, Big Data

and Data Structures.

