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Abstract – Big data is a buzzword, used to describe a massive volume of both structured and unstructured data that is so 

large that it's difficult to process using traditional database and software techniques. In most enterprise scenarios the data is 

too big or it moves too fast or it exceeds current processing capacity. Big data has the potential to help companies improve 

operations and make faster, more intelligent decisions.Parallel computing is a frequently used method for large scale data 

processing. Many computing tasks involve heavy mathematical calculations, or analysing large amounts of data. These 

operations can take a long time to complete using only one computer.   Map Reduce is one of the most commonly used 

parallel computing frameworks. The execution time of the tasks and the throughput are the two important parameters of 

Map Reduce. Speculative execution is a method of backing up of slowly running tasks on alternate machines. Multiple 

speculative execution strategies have been proposed, but they have some pitfalls: (i) Use average progress rate to identify 

slow tasks while in reality the progress rate can be unstable and misleading, (ii) Do not consider whether backup tasks can 

finish earlier when choosing backup worker nodes. This project aims to improve the effectiveness of speculation execution 

significantly. To accurately and promptly identify the appropriate tasks, the following methods are employed: (i) Use both 

the progress rate and the process bandwidth within a phase to select slow tasks, (ii) Use exponentially weighted moving 

average (EWMA) to predict process speed and calculate a task’s remaining time, (iii) Determine which task to backup 

based on the load of a cluster using a cost-benefit model. 
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1. INTRODUCTION 

 

1.1 MAP REDUCE FRAMEWORK 
Big data is high-volume, high-velocity and high-

variety information assets which grow exponentially. It is 

the ocean of information in which vast zeta bytes of data 

are flowing from multiple sources. It demands cost-

effective and innovative forms of information processing 

for enhanced insight and decision making. With big data 

solutions, organizations can dive into all data and gain 

valuable insights that were previously unimaginable. Big 

data is difficult to work with using most relational database 

management systems and visualization packages and hence 

requires parallel processing. Map Reduce is a parallel 

computing framework for large scale data processing. 

Users specify a map function that processes a key/value 

pair to generate a set of intermediate key/value pairs, and a 

reduce function that merges all intermediate values 

associated with the same intermediate key. It was originally 

developed by google which replaced their original web 

indexing algorithm in 2004. A variant of Map Reduce 

namely Hadoop is currently being used by yahoo, 

facebook, amazon and so on. Google processes 20 PB/day, 

Jet engine produces 10 TB of data every 30 minutes of 

flight time and Facebook executes 3000 jobs per day. This 

shows that the smallest increase in performance will have a 

significant impact.Map Reduce is useful for large, long-

running jobs that cannot be handled within the scope of a 

single request [1]. It can be used for tasks like 

• Analyzing application logs 

• Aggregating related data from external 

sources 

• Transforming data from one format to another 

• Exporting data for external analysis and so on 

 

The key features of Map Reduce are: 

• Scale-out Architecture - Add servers to increase 

processing power 

• Security & Authentication - Makes sure that only 

approved users can operate against the data in the 

system 

• Resource Manager - Employs data locality and server 

resources to determine optimal computing operations 

• Optimized Scheduling - Completes jobs according to 

prioritization 

• Flexibility - Procedures can be written in virtually any 

programming language 

• Resiliency & High Availability - Multiple job and 

task trackers ensure that jobs fail independently and 

restart automatically 

Map and Reduce are higher-order functions in the Map 

reduce framework. Map function applies an operation to all 

elements in a list and Reduce function is like “fold” which 

aggregate elements of a list. The input file is divided into 

blocks and to each block a map function is applied which 

parses the input and generates intermediate key/value pairs. 

The reduce function aggregates the intermediate result by 

combining the values associated with the same key. The 
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final output of the reduce function is written to a file or a 

file system [2]. 

 
The following sequences of steps take place when a 

Map Reduce operation is performed. The number of map 

tasks is denoted as M, the number of reduce tasks by R, and 

the number of computers as C. 

� The Map Reduce library of the user program splits 

the input file into M pieces. It also starts several 

copies of the program on the C machines. 

�  One of the copies of the program is the master 

and the rest are the slaves. The master selects idle 

slaves and assigns a map or reduce task to each 

one of them. 

� The slave with an assignment of a map task reads 

the contents of the associated pieces of input 

assigned to it. It parses the input data to form the 

key-value pairs. It passes each key-value pair to a 

user-defined map function. The map function 

emits intermediate key-value pairs which are 

buffered in memory. 

� The key-value pairs buffered in memory are saved 

to the node's local disk and partitioned into R 

pieces by the partitioning function. The locations 

of the pairs are sent to the master. 

� The master notifies the reduce slaves about the 

locations of the pairs, and the reducers retrieve the 

buffered pairs from the local disks of the map 

slaves. Then the pairs are sorted according to their 

keys, and the pairs with the same keys are grouped 

together. 

� Each reduce slave passes the intermediate key and 

the associated values to the reduce function. The 

output produced by the reduce function is returned 

to the output file specified by the user. 

� After completions of all map and reduce tasks, the 

master notifies the user program. 

� The final outputs of the reduce functions are 

available as partitioned files inside the R 

partitions. These partition files can be used as 

input for another Map Reduce process or be fed to 

programs that are designed to handle partitioned 

input files, in order to combine them. 

� Input and final outputs are stored on a distributed 

file system. Scheduler tries to schedule map tasks 

“close” to physical storage location of input data. 

Intermediate results are stored on local FS of map 

and reduce workers. Output is often input to 

another map reduce task. 

 

1.2 CHALLENGES IN MAP REDUCE 

FRAMEWORK 

� Lack of performance and scalability 

� Lack of flexible resource management 

� Lack of application deployment support 

� Lack of quality of service assurance 

� Lack of multiple data source support 

1.3 SPECULATIVE EXECUTION 

Map Reduce can automatically handle failures. If 

a node is available but is performing poorly, then the task 

running on it will take a long time to finish and is called a 

straggler, Map Reduce runs a speculative copy of its task 

also called a “backup task” on another machine with the 

expectation to finish the computation faster. Speculative 

execution is a common approach for dealing with the 

straggler problem by simply backing up those slow running 

tasks on alternative machines. Without this mechanism of 

speculative execution, a job would be as slow as the 

misbehaving task. The scheduler schedules backup 

executions of the remaining in-progress tasks. The task is 

marked as completed whenever either the primary or the 

backup execution completes. Slow nodes/stragglers are the 

main bottleneck for jobs not finishing in time. So to reduce 

response time, stragglers are speculatively executed on 

other free machines [3].  

1.4 CHALLENGES IN SPECULATIVE EXECUTION 

Speculative execution involves the following challenges 

� Identifying free resource for the speculative tasks 

to be executed 

� Choosing proper worker nodes to run speculative 

tasks 

� A means to distinguish “stragglers” from nodes 

that are slightly slower. 

� Finding stragglers at the earliest. 

 

2. LITERATURE SURVEY 

 

2.1 RAFTing MAP REDUCE 

RAFT focuses on simplicity and also non-

intrusiveness, in order to be implementation independent. 

To efficiently recover from task failures, RAFT exploits the 

fact that Map Reduce produces and persists intermediate 

results at several points in time. RAFT piggy-backs 

checkpoints on the task progress computation. To deal with 

multiple node failures, query metadata check pointing is 

used. Therefore the mapping between input key-value pairs 

and intermediate data are tracked. Thereby, RAFT does not 

need to re-execute completed map tasks entirely. Instead 

RAFT only recomputed intermediate data that were 

processed by local reducers and hence not shipped to 

another node for processing. A scheduling strategy taking 

full advantage of these recovery algorithms is introduced. 

On implementing RAFT on top of Hadoop and evaluating 

it on a 45-node cluster using three common analytical tasks,  

the results showed that RAFT outperforms Hadoop 

runtimes by 23% on average under task and node 

failures[4].The disadvantages are: 

• Not sufficient switching, due to more delay in 

switching. 

• Delay in finding a  less workload node. 

The techniques used are: 

• Local Check pointing (RAFT-LC). 

• Remote Check pointing (RAFT-RC). 

  

2.2 DELAY SCHEDULING 
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Fair scheduler is developed to allocate fair share 

of capacity to all the users. Two locality problems 

identified when fair sharing is followed are–head-of-line 

scheduling and sticky slots. The first locality problem 

occurs in small jobs (jobs that have small input files and 

hence have a small number of data blocks to read). The 

problem is that whenever a job reaches the head of the 

sorted list for scheduling, one of its tasks is launched on the 

next slot that becomes free irrespective of which node this 

slot is on. If the head-of-line job is small, it is unlikely to 

have data locally on the node that is given to it. Head-of-

line scheduling problem was observed at Facebook in a 

version of HFS without delay scheduling. The other 

locality problem, sticky slots, is that there is a tendency for 

a job to be assigned the same slot repeatedly. The problems 

aroused because following a strict queuing order forces a 

job with no local data to be scheduled [5]. 

 To overcome the Head of line problem, scheduler 

launches a task from a job on a node without local data to 

maintain fairness, but violates the main objective of Map 

Reduce that schedule tasks near their input data. Running 

on a node that contains the data (node locality) is most 

efficient, but when this is not possible, running on a node 

on the same rack (rack locality) is faster than running off-

rack. Delay scheduling is a solution that temporarily 

relaxes fairness to improve locality by asking jobs to wait 

for a scheduling opportunity on a node with local data. 

When a node requests a task, if the head-of-line job cannot 

launch a local task, it is skipped and looked at subsequent 

jobs. However, if a job has been skipped long enough, non-

local tasks are allowed to launch to avoid starvation. The 

key insight behind delay scheduling is that although the 

first slot we consider giving to a job is unlikely to have data 

for it, tasks finish so quickly that some slot with data for it 

will free up in the next few seconds. The techniques used 

are: 

• Naive Fair Sharing Algorithm. 

• Delay Scheduling in HFS. 

 

2.3 SCARLETT 

Scarlett, a system that replicates blocks based on their 

popularity. By accurately predicting the popularity and 

working within hard bounds on additional storage, Scarlett 

causes minimal interference to running jobs. Scarlett 

improves data locality by 45%, which results in a 20.2% 

reduction of the job completion times of Hadoop jobs. In 

addition, by using extensive simulations, Scarlett reduces 

the number of evictions in the Dryad cluster by 83% and 

speeds up the jobs by 12.8%.Finally, Scarlett incurs low 

overhead, as it is able to achieve near-ideal performance by 

altering replication factors, using less than 10% extra 

storage space. Scarlett captures the popularity of files and 

uses that to increase the replication factor of non-accessed 

files, while avoiding hotspots in the cluster and causing 

minimal interference to the cross-rack network traffic. To 

do so, Scarlett computes a replication factor for each file 

that is proportional to its popularity while remaining within 

a budget on extra storage due to additional replicas. Scarlett 

smooth’s out placement of replicas across machines in the 

cluster so that the expected load on each machine (and 

rack) is uniform. Finally, Scarlett uses compression to 

reduce the cost of creating replicas [6].The disadvantage is 

that it mainly focuses on copying the popularity content 

and fails to schedule them [7]. 

The techniques used are: 

• Computing File Replication Factor 

• Smooth Placement of Replicas 

 

2.4 MOON 

Specifically, the data and task replication scheme 

adopted by existing Map Reduce implementations is 

woefully inadequate for resources with high unavailability. 

MOON extends Hadoop, an open-source implementation of 

Map Reduce, with adaptive task and data scheduling 

algorithms in order to offer reliable Map Reduce services 

on a hybrid resource architecture, where volunteer 

computing systems are supplemented by a small set of 

dedicated nodes. The adaptive task and data scheduling 

algorithms in MOON distinguish between (1) different 

types of Map Reduce data and (2) different types of node 

outages in order to strategically place tasks and data on 

both volatile and dedicated nodes. When a large number of 

volatile nodes are supplemented with a much smaller 

number of dedicated nodes, providing scalable data access 

is challenging. As such, MOON prioritizes the I/O requests 

on the different resources. Specifically, for files with 

replicas on both volatile and dedicated Data Nodes, read 

requests from clients on volatile Data Nodes will always try 

to fetch data from volatile replicas first. By doing so, the 

read request from clients on the volatile Data Nodes will 

only reach dedicated Data Nodes when none of the volatile 

replicas are available. The disadvantage is that it doesn’t 

support multiple scheduling when some tasks fail. The 

technique used is I/O throttling on dedicated Data Nodes. 

 

2.5 SPECULATIVE EXECUTION IN GOOGLE 
In this method, Google used Map Reduce as a 

programming model and an associated implementation for 

processing and generating large data sets. The Map 

invocations are distributed across multiple machines by 

automatically partitioning the input data into a set of M 

splits. The input splits can be processed in parallel by 

different machines. Reduce invocations are distributed by 

partitioning the intermediate key space into R pieces using 

a partitioning function (e.g., hash(key) mod R). The 

number of partitions (R) and the partitioning function are 

specified by the user. 

Speculative execution was first introduced in 

Google in which the last few running map and reduce tasks 

are simply backed up which showed a performance 

improvement of around 44% in job response time [8]. 

 

 

2.6 SPECULATIVE EXECUTION IN HADOOP 

When a node has an empty task slot, Hadoop 

chooses a task for it from one of three categories. First, any 

failed tasks are given highest priority. This is done to detect 

when a task fails repeatedly due to a bug and stop the job. 



   International Journal of Computer Sciences and Engineering            Vol.-4(6), PP(78-87) Jun 2016, E-ISSN: 2347-2693 

   © 2016, IJCSE All Rights Reserved                                                                                                                                  81 

Second, non-running tasks are considered. For maps, tasks 

with data local to the node are chosen first. Finally, Hadoop 

looks for a task to execute speculatively. To select 

speculative tasks, Hadoop monitors task progress using 

a progress score between 0 and 1. For a map, the progress 

score is the fraction of input data read. For a reduce task, 

the execution is divided into three phases, each of which 

accounts for 1/3 of the score: 

• The copy phase, when the task fetches map 

outputs. 

• The sort phase, when map outputs are sorted by 

key. 

• The reduce phase, when a user-defined function is 

applied to the list of map outputs with each key. 

      Hadoop looks at the average progress score of each 

category of tasks (maps and reduces) to define 

a threshold for speculative execution. When a task's 

progress score is less than the average for its category 

minus 0.2, and the task has run for at least one minute, it is 

marked as a straggler. All tasks beyond the threshold are 

considered "equally slow," and ties between them are 

broken by data locality. The scheduler also ensures that at 

most one speculative copy of each task is running at a time. 

Finally, when running multiple jobs, Hadoop uses a FIFO 

discipline where the earliest submitted job is asked for a 

task to run, then the second, etc. There is also a priority 

system for putting jobs into higher-priority queues [9]. 

2.6.1 ASSUMPTIONS IN HADOOP'S SCHEDULER 

Hadoop's scheduler makes several implicit assumptions: 

� Nodes can perform work at roughly the same rate. 

� Tasks progress at a constant rate throughout time. 

� There is no cost to launching a speculative task on 

a node that would otherwise have an idle slot. 

� A task's progress score is representative of fraction 

of its total work that it has done. Specifically, in a 

reduce task, the copy, sort and reduce phases each 

take about 1/3 of the total time. 

� Tasks in the same category (map or reduce) 

require roughly the same amount of work. 

2.6.2 HETEROGENEITY 
The first two assumptions are about homogeneity. 

Hadoop assumes that any detectably slow node is faulty. 

However, nodes can be slow for other reasons. 

Heterogeneity seriously impacts Hadoop's scheduler. 

Because the scheduler uses a fixed threshold for selecting 

tasks to speculate, too many speculative tasks may be 

launched taking away resources from useful tasks 

(assumption 3 is also untrue). Also, because the scheduler 

ranks candidates by locality, the wrong tasks may be 

chosen for speculation first. For example, if the average 

progress was 70% and there was a 2x slower task at 35% 

progress and a 10x slower task at 7% progress, then the 2x 

slower task might be speculated before the 10x slower task 

if its input data was available on an idle node. 

2.6.3 OTHER ASSUMPTIONS 

Assumptions 3, 4 and 5 are broken on both 

homogeneous and heterogeneous clusters, and can lead to a 

variety of failure modes. 

Assumption 3, that speculating tasks on idle nodes 

costs nothing, breaks down when resources are shared. For 

example, the network is a bottleneck shared resource in 

large Map Reduce jobs. Also, speculative tasks may 

compete for disk I/O in I/O-bound jobs. Finally, when 

multiple jobs are submitted, needless speculation reduces 

throughput without improving response time by occupying 

nodes that could be running the next job. 

Assumption 4, that a task's progress score is 

approximately equal to its percent completion, can cause 

incorrect speculation of reducers. In a typical Map Reduce 

job, the copy phase of reduce tasks is the slowest, because 

it involves all-pairs communication over the network. 

Tasks quickly complete the other two phases once they 

have all map outputs. However, the copy phase counts for 

only 1/3 of the progress score. Thus, soon after the first few 

reducers in a job finish the copy phase, their progress goes 

from 1/3 to 1, greatly increasing the average progress. As 

soon as about 30% of reducers finish, the average progress 

is roughly 0.3·1 + 0.7 ·1/3 = 53%, and now all reducers still 

in the copy phase will be 20% behind the average, and an 

arbitrary set will be speculatively executed. Task slots will 

fill up, and true stragglers may never be speculated 

executed, while the network will be overloaded with 

unnecessary copying.  

Assumption 5, that progress score is a good proxy 

for progress rate because tasks begin at roughly the same 

time, can also be wrong. The number of reducers in a 

Hadoop job is typically chosen small enough so that they 

they can all start running right away, to copy data while 

maps run. However, there are potentially tens of mappers 

per node, one for each data chunk. The mappers tend to run 

in waves. Even in a homogeneous environment, these 

waves get more spread out over time due to variance 

adding up, so in a long enough job, tasks from different 

generations will be running concurrently. In this case, 

Hadoop will speculatively execute new, fast tasks instead 

of old, slow tasks that have more total progress. 

Finally, the 20% progress difference threshold 

used by Hadoop's scheduler means that tasks with more 

than 80% progress can never be speculatively executed, 

because average progress can never exceed 100%. 

2.6.4 ISSUES IN SPECULATIVE EXECTION 

• Too many backups, thrashing shared resources 

like network bandwidth 

• Wrong tasks backed up 

• Backups may be placed on slow nodes 
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2.7 LONGEST APPROXIMATE TIME TO END 

(LATE) SCHEDULER 

In this method proposed by Zaharia, a new 

speculative task scheduler is proposed which starts from 

principles and adding features needed to behave well in a 

real environment. The task that will finish farthest into the 

future will be selected for speculative execution, because 

this task provides the greatest opportunity for a speculative 

copy to overtake the original and reduce the job's response 

time. A simple heuristic is used to estimate time left which 

finds  the progress rate of each task as Progress Score / T, 

where T is the amount of time the task has been running 

for, and then estimate the time to completion as (1 –

 Progress Score) / Progress Rate. This assumes that tasks 

make progress at a roughly constant rate. There are cases 

where this heuristic can fail but it is effective in typical 

Hadoop jobs [10]. 

Speculative tasks are launched only on fast nodes - 

not stragglers. This is achieved by not launchinga 

speculative task on nodes that are below some 

threshold, slow node threshold, of total work performed 

(sum of progress scores for all succeeded and in-progress 

tasks on the node). This heuristic leads to better 

performance than assigning a speculative task to the first 

available node. Another option would be to allow more 

than one speculative copy of each task, but this wastes 

resources needlessly. 

       Finally, to handle the fact that speculative tasks 

cost resources, the following two heuristics are augmented. 

• Speculative cap which indicates the number of 

speculative tasks that can be running at once 

• A Slow task Threshold that a task's progress rate is 

compared with to determine whether it is "slow 

enough" to be speculated upon. This prevents 

needless speculation when only fast tasks are 

running. 

LATE algorithm works as follows: 

• If a node asks for a new task and there are fewer 

than Speculative Cap speculative tasks running: 

o Ignore the request if the node's total 

progress is below Slow Node Threshold. 

o Rank currently running tasks that are not 

currently being speculated by estimated 

time left. 

o Launch a copy of the highest-ranked task 

with progress rate below Slow Task 

Threshold. 

Like Hadoop's scheduler, a task has to run atleast for 1 

minute before evaluating it for speculation. In practice, a 

good choice for the three parameters to LATE is 

– Speculative Cap -  10% of available task 

slots and 

– Slow Node Threshold - 25th percentile of 

node progress 

– Slow Task Threshold - 25th percentile 

task progress rates 

LATE does not take into account data locality for 

launching speculative map tasks, although this is a potential 

extension. 

The LATE algorithm has several advantages: 

� LATE takes into account node heterogeneity when 

deciding where to run speculative tasks.  

� It focuses on estimated time left rather than 

progress rate. LATE speculatively executes only 

tasks that will improve job response time, rather 

than any slow tasks. 

� It is robust to node heterogeneity. 

 
LATE scheduler has following demerits: 

� As the end time for a task is calculated using the 

averaged out progress rate against the current 

progress rate, the end time predicted is likely to be 

incorrect. 

� Initial evaluation time required by the LATE 

scheduler is high (1 minute) before a task can be 

marked a straggler. This essentially leads to longer 

response times. 

 

3. SYSTEM REQUIREMENTS 

 

3.1 HARDWARE REQUIREMENTS 

Processor                 :    Intel Pentium CPU B950 

2.10 GHZ 

RAM       :     51MB 

Hard Disk Drive       :     80 GB 

Keyboard                  :     101 Keys 

Mouse       :     Optical Mouse 

Monitor                     :     SVGA/color 

 

3.2 SOFTWARE REQUIREMENTS 

Operating System          :     Windows7 

IDE used            :     Net Beans 

Database used             :     MySql 

Platform            :     Hadoop 0.18.0  

Language Used           :   Java 

 

3.2.1 JAVA 

Java is an object-oriented language similar to C++, 

but simplified to eliminate language features that cause 

common programming errors. Java source code files (files 

with a .java extension) are compiled into a format called 

byte code (files with a .class extension), which can then be 

executed by a Java interpreter. Compiled Java code can run 

on most computers because Java interpreters and runtime 

environments, known as Java Virtual Machines (VMs), 

exist for most operating systems, including UNIX, the 

Macintosh OS, and Windows. Byte code can also be 

converted directly into machine language instructions by a 

just-in-time compiler (JIT). 
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3.2.2 JAVA PLATFORM 

One characteristic of Java is portability, which 

means that computer programs written in the Java language 

must run similarly on any hardware/operating-system 

platform. This is achieved by compiling the Java language 

code to an intermediate representation called Java byte 

code, instead of directly to platform-specific machine code. 

Java byte code instructions are analogous to machine code, 

but are intended to be interpreted by a virtual machine 

(VM) written specifically for the host hardware. End-users 

commonly use a Java Runtime Environment (JRE) installed 

on their own machine for standalone Java applications, or 

in a Web browser for Java applets. Standardized libraries 

provide a generic way to access host-specific features such 

as graphics, threading, and networking. 

 

3.2.3 NET BEANS 

The Net Beans Platform is a 

reusable framework for simplifying the development 

of Java Swing desktop applications. The Net Beans IDE 

bundle for Java SE contains what is needed to start 

developing Net Beans plug-in and Net Beans Platform 

based applications; no additional SDK is required. 

The features of the platform are: 

� User interface management (e.g. menus and toolbars) 

� User settings management 

� Storage management (saving and loading any kind of 

data) 

� Window management 

� Wizard framework (supports step-by-step dialogs) 

� Net Beans Visual Library 

� Integrated Development Tools 

 

3.2.4 J2EE 

A Java EE application or a Java Platform, 

Enterprise Edition application is any deployable unit of 

Java EE functionality. This can be a single Java EE module 

or a group of modules packaged into an EAR file along 

with a Java EE application deployment descriptor. Java EE 

applications are typically engineered to be distributed 

across multiple computing tiers. 

 

3.2.5 WAMP SERVER 

WAMPs are packages of independently-created 

programs installed on computers that use a Microsoft 

Windows operating system. WAMP is an acronym formed 

from the initials of the operating system Microsoft 

Windows and the principal components of the package: 

Apache, MySQL and one of PHP, Perl or Python.  

 

3.2.6 MySQL 

The MySQL development project has made its 

source code available under the terms of the GNU General 

Public License, as well as under a variety of proprietary 

agreements. MySQL was owned and sponsored by a single 

for-profit firm, the Swedish company MySQL AB, now 

owned by Oracle Corporation.  

 

3.2.7 HADOOP: 

Apache Hadoop is an open-source software 

framework that supports data-intensive distributed 

applications licensed under the Apache v2 license. It 

supports parallel running of applications on large clusters 

of commodity hardware [2]. The Hadoop framework 

transparently provides both reliability and data motion to 

applications. Hadoop implements a computational 

paradigm named Map Reduce, where the application is 

divided into many small fragments of work, each of which 

can execute or re-execute on any node in the cluster. In 

addition, it provides a distributed file system that stores 

data on the compute nodes, providing very high aggregate 

bandwidth across the cluster. Both map/reduce and the 

distributed file system are designed so that node failures are 

automatically handled by the framework. It enables 

applications to work with thousands of computation-

independent computers and petabytes of data. The entire 

Apache Hadoop “platform” is now commonly considered 

to consist of the Hadoop kernel, Map Reduce and Hadoop 

Distributed File System (HDFS).  

For effective scheduling of work, every Hadoop-

compatible file system should provide location awareness: 

the name of the rack (network switch) where a worker node 

is. Hadoop applications can use this information to run 

work on the node where the data is, and, failing that, on the 

same rack/switch, reducing backbone traffic. HDFS uses 

this method when replicating data to try to keep different 

copies of the data on different racks. The goal is to reduce 

the impact of a rack power outage or switch failure, so that 

even if these events occur, the data may still be readable. A 

small Hadoop cluster includes a single master and multiple 

worker nodes. The master node consists of a Job Tracker, 

Task Tracker, Name Node and Data Node. A slave 

or worker node acts as both a Data Node and Task Tracker, 

though it is possible to have data-only worker nodes and 

compute-only worker nodes.  

In a larger cluster, the HDFS is managed through a 

dedicated Name Node server to host the file system index, 

and a secondary Name Node that can generate snapshots of 

the name node's memory structures, thus preventing file-

system corruption and reducing loss of data. Similarly, a 

standalone Job Tracker server can manage job scheduling. 

In clusters where the Hadoop Map Reduce engine is 

deployed against an alternate file system, the Name Node, 

secondary Name Node and Data Node architecture of 

HDFS is replaced by the file-system-specific equivalent. 
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                     Figure 3.1 Hadoop architecture 

4. SYSTEM DESIGN 

 

A new speculative execution strategy named MCP for 

maximum cost performance is used. The cost is considered 

to be the computing resources occupied by tasks, while the 

performance is considered to be the shortening of job 

execution time and the increase of the cluster throughput. 

MCP aims at selecting straggler tasks accurately and 

promptly and backing them up on proper worker nodes. To 

ensure fairness, we assign task slots in the order the jobs 

are submitted. Just like other speculative execution 

strategies, MCP gives new tasks a higher priority than 

backup tasks. In other words, MCP will not start backing 

up straggler map/reduce tasks until all new map/reduce 

tasks of this job have been assigned. MCP chooses backup 

candidates based on a prompt prediction of the tasks’ 

process speed and an accurate estimation of their remaining 

time. Then, these backup candidates will be selectively 

backed up on proper worker nodes to achieve max cost 

performance according to the cluster load. The modules 

used are: 

� Exponentially Weighted Moving Average 

(EWMA) 

� Maximizing Cost Performance 

� Schedule Job 

� Map reduce 

 

4.1 EWMA 

The task’s process speed in the near future is 

predicted instead of simply using the past average rate. 

There are many prediction algorithms in the literature, such 

as EWMA (Exponentially Weighted Moving Average). 

EWMA scheme which can be expressed as follows: 

Z(t) = α* Y (t) + (1-α )* Z(t-1); 0 <α< 1 

 

Where Z(t) and Y(t) are the estimated and the 

observed process speed at time t, respectively and reflects a 

tradeoff between stability and responsiveness. The value of 

α is set to be 0.5 according to the evaluation result. To 

assure the accuracy of prediction, tasks process speed is not 

calculated until it has executed for a certain amount of time 

(speculative lag).  

 

4.2 MAXIMIZING COST PERFORMANCE 

Speculative execution has not only benefits, but 

also costs. In a Hadoop cluster, the cost of speculative 

execution is task slots, while the benefit is the shortening of 

the job execution time. A cost-benefit model is established 

to analyze the tradeoff. In this model, the cost is 

represented as the time that the computing resources are 

occupied while the benefit is represented as the time saved 

by speculative execution. 

 
 

4.3 SCHEDULE JOBS 

In order to achieve better performance, backup 

tasks should be assigned to fast worker nodes. This requires 

an appropriate metric to measure the performance of 

worker nodes which varies a lot from time to time. To 

tackle this problem, the moving average process bandwidth 

of data-local map tasks completed is used on a worker node 

to represent the node’s performance. The data-locality of 

map tasks is considered when making the backup decisions. 

The process speed of data-local map tasks can be three 

times that of non-local map tasks. As a result, if data-

locality is not considered, backing up a map task may gain 

no benefit. 

 

4.4 MAP REDUCE 

Map Reduce cluster, after a job is submitted, a 

master divides the input files into multiple map tasks, and 

then schedules both the map tasks and the reduce tasks to 

worker nodes. A worker node runs tasks on its task slots 

and keeps updating the tasks progress to the master by 

periodic heartbeat. Map tasks extract key-value pairs from 

the input, transfer them to some user defined map function 

and combine function, and finally generate the intermediate 

map outputs. After that, the reduce tasks copy their input 

pieces from each map task, merge these pieces to a single 

ordered (key, value list) pair stream by a merge sort, 

transfer the stream to some user defined reduce function, 

and finally generate the result for the job. A map task is 

divided into map and combine phases, while a reduce task 

is divided into copy, sort and reduce phases. Reduce tasks 

can start when only some map tasks complete, which 

allows reduce tasks to copy map outputs earlier as they 

become available and hence mitigates network congestion. 

However, no reduce task can step into the sort phase until 

all map tasks complete. This is because each reduce task 

must finish copying outputs from all the map tasks to 

prepare the input for the sort phase. 

 

5. PERFORMANCE ANALYSIS 
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5.1 EXISTING SYSTEM 

 It cannot appropriately handle the situation when 

there exists data skew among the tasks. Map Reduce 

cluster, after a job is submitted, a master divides the input 

files into multiple map tasks, and then schedules both the 

map tasks and the reduce tasks to worker nodes. Map tasks 

extract key-value pairs from the input, transfer them to 

some user defined map function and combine function, and 

finally generate the intermediate map outputs. A map task 

is divided into map and combine phases, while a reduce 

task is divided into copy, sort and reduce phases. No reduce 

task can step into the sort phase until all map tasks 

complete. The map or the reduce tasks in Sort jobs, MCP 

performs much better compared to Hadoop-LATE. The job 

execution speed and the cluster throughput are improved by 

37% and 44% when map skew exists, and by 17% and 19% 

when reduce skew. 

 

5.2 PROPOSED SYSTEM  

Average progress rate is used to identify slow 

tasks while in reality the progress rate can be unstable and 

misleading. In a typical Map Reduce job, the master 

divides the input files into multiple map tasks, and then 

schedules both map tasks and reduce tasks to worker nodes 

in a cluster to achieve parallel processing. The main 

difference between LATE and Mantriis that Mantri uses the 

task’s process bandwidth to calculate the task’s remaining 

time. EWMA is used to predict the process speed of tasks 

in order to find slow tasks or slow nodes in time. The 

scenarios which affect the performance of those strategies: 

data skew, tasks that start asynchronously, improper 

configuration of phase percentage and abrupt resource 

competitions. 

 The Word Count benchmark is run first. Figure 

5.1shows the performance comparison of the three 

strategies. On average, MCP finishes jobs 10 percent faster 

than Hadoop-LATE and 10 percent faster than Hadoop-

None. Moreover, MCP improves the throughput of the 

cluster by5 percent compared with Hadoop-LATE and 6 

percent compared with Hadoop-None. It shows that MCP 

identifies straggler tasks more accurately and promptly than 

Hadoop-LATE. In particular, MCP can improve the 

precision in identifying stragglers in reduce tasks by over 

90 percent compared to Hadoop-LATE.  

First, an environment that exhibits data skew 

among map tasks is set up. According to the split strategy 

in Hadoop, those input files will be divided into two parts, 

which results in data skew among map tasks. Figure5.2 

shows that MCP performs much better than Hadoop-LATE 

and Hadoop-None. On average MCP increases the job 

execution speed by 37 percent over Hadoop-LATE and 58 

percent over Hadoop-None. Mean while, it improves the 

throughput of the cluster by 44 percent over Hadoop-LATE 

and 57 percent over Hadoop-None.MCP can achieve a 

much bigger improvement than Hadoop-LATE because 

Hadoop-LATE may conduct many unnecessary backups for 

the map tasks which occupies the precious slots for other 

jobs. As a result, the average delay of all jobs in Hadoop-

LATE is much longer than that in MCP. 

Reduce skew is likely to happen when the 

distribution of keys in the input data set is skewed and the 

map output is partitioned by some hash function. This kind 

of skew is also known as partition skew. Figure5.3 shows 

that ona verage MCP increases the job execution speed by 

17 percent over Hadoop-LATE and by 53 percent over 

Hadoop-None. Meanwhile, it improves the throughput of 

the cluster by 19 percent over Hadoop-LATE and by 53 

percent over Hadoop-None. MCP achieves less 

improvement over Hadoop-LATE for reduce skew than for 

map skew because unnecessary reduce backups do not 

affect the execution of map tasks from other jobs. It only 

delays the reduce tasks of other jobs. Therefore, a small 

delay in launching reduce tasks will not affect the 

performance of other jobs significantly when those other 

jobs are still in the map stage. 

6. CONCLUSION AND FUTURE ENHANCEMENT 

 The pitfalls of current speculative execution 

strategies with respect to data skew, tasks starting 

asynchronously and abrupt resource competitions in Map 

Reduce are analyzed. Based on the analysis, new 

speculative execution strategy called MCP is developed to 

handle these pitfalls by taking into consideration the cost 

performance of cluster computing resources. MCP 

decreases the job execution time and improves the 

throughput.  MCP achieved up to 39 percent improvements 

over Hadoop-LATE. It fits well in both heterogeneous and 

homogeneous environments, handles the data skew case 

and is quite scalable which performs very well in both 

small clusters and large clusters. Time complexity of MCP 

is found to be O(n).  

The number of nodes in the distributed environment can be 

increased to suit the real time requirements. Multiple data 

sources can be added to improve the accuracy of the output. 

The resource allocation capabilities of the MCP can be 

optimized further so that all the tasks are assigned to proper 

worker nodes and to minimize the execution time of the 

task. 

7. SCREEN SHOTS 

 

 
 



   International Journal of Computer Sciences and Engineering            Vol.-4(6), PP(78-87) Jun 2016, E-ISSN: 2347-2693 

   © 2016, IJCSE All Rights Reserved                                                                                                                                  86 

 
 

 
 

 
 

 
 

 
 

8. REFERENCES 

 

[1] J. Dean and S. Ghemawat, “Map reduce: 

simplified data processing on large clusters,” 

Commun. ACM, vol. 51, pp. 107–113, January 

2008.  

[2] “Apache hadoop, http://hadoop.apache.org/.” 

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. 

Fetterly, “Dryad: distributed data-parallel 

programs from sequential building blocks,” in 

Proc. of the 2nd ACM SIGOPS/Euro Sys 

European Conference on Computer Systems 2007, 

ser. Euro Sys ’07, 2007.  

[4] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, 

and I. Stoica, “Improving map reduce performance 

in heterogeneous environments,” in Proc. of the 

8th USENIX conference on Operating systems 

design and implementation, ser. OSDI’08, 2008.  

[5] G. Ananthanarayanan, S. Kandula, A. Greenberg, 

I. Stoica, Y. Lu, B. Saha, and E. Harris, “Reining 

in the outliers in map-reduce clusters using 

mantri,” in Proc. of the 9th USENIX conference 



   International Journal of Computer Sciences and Engineering            Vol.-4(6), PP(78-87) Jun 2016, E-ISSN: 2347-2693 

   © 2016, IJCSE All Rights Reserved                                                                                                                                  87 

on Operating systems design and implementation, 

ser. OSDI’10, 2010.   

[6] Y. Kwon, M. Balazinska, and B. Howe, “A study 

of skew in map reduce applications,” in  The 5th 

Open Cirrus Summit, 2011.  

[7] P.H and Ellaway, “Cumulative sum technique and 

its application to the analysis of peri stimulus time 

histograms,” Electroencephalography and Clinical 

Neurophysiology, vol. 45, no. 2, pp. 302–304, 

1978.  

[8] K. Avi, K. Yaniv, L. Dor, L. Uri, and L. Anthony, 

“Kvm: The linux virtual machine monitor,” Proc. 

of the Linux Symposium, Ottawa, Ontario, 2007, 

2007. 

[9] Quiane-Ruiz,Pinkel, C.,Schad, J. ,Dittrich, 

J.“RAFTing Map Reduce: Fast recovery on the 

RAFT” Data Engineering (ICDE), 2011 IEEE 

27th International Conference in Hannover, 

Publication Year: 2011. 

[10] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. 

Greenberg, I.Stoica, D. Harlan, and E. Harris, 

“Scarlett: Coping with Skewed Content Popularity 

in Map reduce Clusters,” Proc. Sixth Conf. 

Computer Systems (EuroSys ’11), 2011. 

[11] B. Nicolae, D. Moise, G. Antoniu, L. Bouge, and 

M. Dorier,“Blobseer: Bringing High Throughput 

under Heavy Concurrency to Hadoop Map-Reduce 

Applications,” Proc. IEEE Int’l Symp. Parallel 

Distributed Processing (IPDPS), Apr. 2010. 

[12] J. Leverich and C. Kozyrakis, “On the Energy 

(In)Efficiency of Hadoop Clusters,” ACM 

SIGOPS Operating Systems Rev., vol. 44,pp. 61-

65, Mar. 2010. 

[13] T. Sandholm and K. Lai, “Mapreduce 

Optimization Using Regulated Dynamic 

Prioritization,” Proc. 11th Int’l Joint Conf. 

Measurement and Modeling of Computer 

Systems, (SIGMETRICS ’09),2009. 

[14] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, 

K. Talwar, and A.Goldberg, “Quincy: Fair 

Scheduling for Distributed Computing Clusters,” 

Proc. ACM SIGOPS 22nd Symp. Operating 

Systems Principles(SOSP ’09), 2009. 

[15] M. Zaharia, D. Borthakur, J. SenSarma, K. 

Elmeleegy, S. Shenker,and I. Stoica, “Delay 

Scheduling: A Simple Technique for 

AchievingLocality and Fairness in Cluster 

Scheduling,” Proc. Fifth European Conference 

Computer Systems (EuroSys ’10), 2010. 

Kala Karun, A ; Chitharanjan, K ; "A review on 

hadoop — HDFS infrastructure extensions ", 

IEEE Conference on  Information & 

Communication Technologies (ICT), JeJu Island, 

April 2013. Page(s): 132 - 137. 

[16] D.Deepika1, K.Pugazhmathi, “Efficient Indexing 

and Searching of Big Data in HDFs”, International 

Journal of Computer Sciences and Engineering 

(IJCSE) Vol.-4(4), Apr 2016, E-ISSN: 2347-2693. 

[17] Tanuja A, Swetha Ramana D, “Processing and 

Analyzing Big data using Hadoop”, International 

Journal of Computer Sciences and Engineering 

(IJCSE) Vol.-4(4), PP(91-94) April 2016, E-ISSN: 

2347-2693. 

 

AUTHORS PROFILE 

 Mr. A. Saran kumar received his B.Tech. degree in 

Information Technology from Coimbatore Institute of 

Technology (Autonomous), Coimbatore, Tamil Nadu. And 

he is currently pursuing M.E. Degree in Computer Science 

and Engineering in Kumaraguru College of Technology 

(Autonomous), Coimbatore, Tamil Nadu, India. His areas 

of interest are Data mining, Big Data and Web Technology. 

 

Ms. V. Vanitha Devi received her B.E. degree in Computer 

Science and Engineering from Sri Shakthi Institute of 

Engineering and Technology, Coimbatore, Tamil Nadu. 

And she is currently pursuing M.E. Degree in Computer 

Science and Engineering in Kumaraguru College of 

Technology (Autonomous), Coimbatore, Tamil Nadu, 

India. Her areas of interest are Cloud Computing, Big Data 

and Data Structures. 

 

 

 

 

 


